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Objective: A wide array of methods exist for processing and analysing DNA methylation
data. We aimed to perform a systematic comparison of the behaviour of these methods,
using cord blood DNAm from the LIMIT RCT, in relation to detecting hypothesised effects of
interest (intervention and pre-pregnancy maternal BMI) as well as effects known to be
spurious, and known to be present. Methods: DNAm data, from 645 cord blood samples
analysed using Illumina 450K BeadChip arrays, were normalised using three different
methods (with probe filtering undertaken pre- or post- normalisation). Batch effects were
handled with a supervised algorithm, an unsupervised algorithm, or adjustment in the
analysis model. Analysis was undertaken with and without adjustment for estimated cell
type proportions. The effects estimated included intervention and BMI (effects of interest
in the original study), infant sex and randomly assigned groups. Data processing and
analysis methods were compared in relation to number and identity of differentially
methylated probes, rankings of probes by p value and log-fold-change, and distributions of
p values and log-fold-change estimates. Results: There were differences corresponding to
each of the processing and analysis choices. Importantly, some combinations of data
processing choices resulted in a substantial number of spurious ‘significant’ findings. We
recommend greater emphasis on replication and greater use of sensitivity analyses.
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25 Abstract
26 Objective: A wide array of methods exist for processing and analysing DNA methylation data. We aimed 

27 to perform a systematic comparison of the behaviour of these methods, using cord blood DNAm from 

28 the LIMIT RCT, in relation to detecting hypothesised effects of interest (intervention and pre-pregnancy 

29 maternal BMI) as well as effects known to be spurious, and known to be present.

30 Methods: DNAm data, from 645 cord blood samples analysed using Illumina 450K BeadChip arrays, 

31 were normalised using three different methods (with probe filtering undertaken pre- or post-

32 normalisation). Batch effects were handled with a supervised algorithm, an unsupervised algorithm, or 

33 adjustment in the analysis model. Analysis was undertaken with and without adjustment for estimated 

34 cell type proportions. The effects estimated included intervention and BMI (effects of interest in the 

35 original study), infant sex and randomly assigned groups. Data processing and analysis methods were 

36 compared in relation to number and identity of differentially methylated probes, rankings of probes by p 

37 value and log-fold-change, and distributions of p values and log-fold-change estimates.

38 Results: There were differences corresponding to each of the processing and analysis choices. 

39 Importantly, some combinations of data processing choices resulted in a substantial number of spurious 

40 �significant� findings. We recommend greater emphasis on replication and greater use of sensitivity 

41 analyses. 
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46 Introduction and Background

47

48 With the advent of high-throughput assays, epigenome-wide DNA methylation studies have become 

49 more popular, and researchers are now investigating the effects on DNA methylation (DNAm) of a wide 

50 range of environmental exposures and physiological conditions, with particular interest in the 

51 contribution of epigenetic mechanisms such as DNAm to the early life origins of health and disease. The 

52 ability to perform EWAS is particularly useful in relation to conditions where associated differences in 

53 DNAm are likely to be fairly modest (1). However, DNAm data � as with high-dimensional �omics� data 

54 generally � requires substantial pre-processing prior to analysis, including probe and sample filtering, 

55 normalisation to remove variation due to technological factors, and correction for other factors which 

56 may confound effects of interest, such as batch effects or differences in cell type proportions between 

57 samples. Numerous methods exist to perform these processing steps, but there is no clear consensus on 

58 the best processing or analysis approach (2,3).

59

60 We recently investigated the effect of an antenatal diet and lifestyle intervention, and of maternal early 

61 pregnancy BMI, on neonatal cord blood DNA methylation in infants of mothers who were overweight or 

62 obese in early pregnancy. The findings are reported in a companion paper. In brief, we did not find 

63 evidence of differential methylation in relation to either the intervention or early pregnancy maternal 

64 BMI, and were unable to replicate findings from previous studies which reported a range of loci to be 

65 significantly differentially methylated in relation to these factors. Moreover, in conducting sensitivity 

66 analyses involving use of different normalisation methods and methods for handling batch effects, we 

67 observed a number of differences in results, both in relation to the most highly ranked probes and in the 

68 �detection� of effects which we believed to be spurious. We therefore set out to investigate the impact 

69 of different data-processing choices in a more systematic way, looking at the effect of these choices on 

70 detection of differentially methylated probes (DMPs), on overall distribution of p values and log-fold-

71 change (logFC) estimates, and on rankings of probes (by logFC and by p value).

72

73 In this paper we report the findings from a set of analyses conducted on data processed and handled 

74 according to a combination of different prespecified choices. The particular factors we investigated 

75 related to (a) filtering of probes before versus after normalisation; (b) method used for normalisation; 

76 (c) method used to handle batch effects; and (d) adjustment vs non-adjustment for estimated cell type 

77 proportions. We compared results from analyses estimating effects of the antenatal intervention and 

78 maternal early pregnancy BMI, but also were interested in observing the behaviour of different data-

79 processing choices in relation to effects that were both known to be present, and known to be absent. 

80 We therefore performed further analyses in which effects of infant sex, and of randomly assigned (fake) 

81 groups were estimated.

82

83 Data and Methods

84 The LIMIT Randomised Controlled Trial
85

86 The LIMIT study was a randomised, controlled trial of an antenatal diet and lifestyle intervention for 

87 women with early pregnancy BMI 25.0 kg/m2.  The study, and its primary and main secondary 

88 outcomes, have been extensively reported elsewhere (4). Women were eligible if they had early 

89 pregnancy BMI 25.0 kg/m2, a singleton pregnancy between 10+0 and 20+0 weeks� gestation, and no 

90 previously existing diabetes.  A total of 2212 women were randomised to receive either Lifestyle Advice 

91 (n=1108), a comprehensive diet and lifestyle intervention,  or Standard Care (n=1104), in which 
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92 antenatal care was delivered according to local guidelines (and did not include information on diet or 

93 physical activity).  The study was reviewed by the ethics committee of each participating instituting 

94 including the Women�s and Children�s Health Network Human Research Ethics Committee (1839 & 

95 2051); the Central and Northern Adelaide Health Network Human Research Ethics Committee (2008033) 

96 and the Southern Adelaide Local Health Network Human Research Ethics Committee (128/08).  

97 Informed written consent was obtained for all participants to participate in the LIMIT study, and 

98 additional written consent was obtained to collect samples of umbilical cord blood at delivery for the 

99 purposes of gene expression research related to weight and to the diet and lifestyle intervention.

100

101 The primary outcome of the LIMIT study was birth of a Large for Gestational Age (LGA) infant. There 

102 were no significant differences observed between the groups in relation to this outcome; however, a 

103 significantly lower incidence of birthweight >4kg was observed in the Lifestyle Advice group, with a 

104 Relative Risk of 0.82 (95% CI: 0.68, 0.99, p=0.04). Additionally, measures of diet quality and physical 

105 activity were improved in women in the Lifestyle Advice group compared to those in the Standard Care 

106 group (5).

107

108 Cord Blood DNA for a range of secondary studies was collected at the time of birth from consenting 

109 participants, and was frozen as whole blood preserved with EDTA. Funding was available to perform 

110 DNA methylation analysis for a total of 649 samples, which were randomly selected from the total 

111 number of available samples, balanced between the Lifestyle Advice and Standard Care groups.  After 

112 DNA extraction, genome-wide DNA methylation was performed using the Illumina Infinium 

113 HumanMethylation 450K Bead-Chip array. Results were supplied as raw probe intensities (idats files).

114

115 For the additional analyses investigating known spurious effects, artificial (fake) groups were created by 

116 assigning samples based on random draws from binomial distributions.  The first grouping 

117 (�Tortoiseshell� vs�Tabby�) was generated using a binomial distribution with 50% probability of 

118 assignment to each group. The second grouping (�Long�- vs �Short-Haired�) was created to mimic 

119 stratified randomisation as well as unequal proportions in each group: within each level of the first fake 

120 group, samples were assigned to Long-Haired with 40% probability and Short-Haired with 60% 

121 probability.

122

123 All data processing and analyses were undertaken using R version 4.0 (6).

124

125 Probe and Sample Filtering
126

127 The minfi package (7) was used to read in the raw idats files (without normalisation), and to calculate 

128 both probe-wise and sample-wise �detection p values�. Samples were identified as �faulty� if they had a 

129 detection p-value 0.05; 13 such samples were excluded; however these were due to a known chip 

130 failure, and had subsequently been rerun. A further four samples were excluded because the correct 

131 corresponding study identifier could not be ascertained, leaving 645 samples for analysis.

132

133 Probes were filtered using multiple criteria. Firstly, probes were excluded if they had a detection p-value 

134 0.001 in more than 25% of the 645 samples, indicating that their signal could not be accurately 

135 detected for a large proportion of samples (8,9). Secondly, probes were excluded if they were on a list of 

136 those previously identified as cross-reactive (10); i.e. there was a high probability they may hybridize to 

137 locations on the genome different to those for which the probe was designed (8,11). Thirdly, probes 

138 with an identified SNP within 3 nucleotides of the CpG site and minor allele frequency >1%, and probes 
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139 on the X and Y chromosomes were excluded. This was done in order to avoid spurious methylation 

140 �differences� due either to SNPs within the CpG targets, or due to X and Y chromosomes (8,11). Filtering 

141 of cross-reactive probes, probes with a nearby SNP, and probes on the X and Y chromosomes, was 

142 performed using the DMRCate package (12). This left 426,572 probes available for analysis.

143

144 Probe filtering was performed either after normalisation (post-filtered) or prior to normalisation (pre-

145 filtered). The one exception for pre-filtering was when normalising using the BMIQ method, where 

146 probes on the X and Y chromosome were retained as this was required in order for the function to run.

147

148

149 Normalisation
150

151 Normalisation involves making changes to the raw data in order to remove artifactual variation. In the 

152 case of Illumina 450K BeadChip arrays, this requires correcting for the presence of two different probe 

153 types. Infinium I probes use the same colour signal for methylated and unmethylated CpG and are often 

154 used for regions of high CpG density, while Infinium II probes use different colours to differentiate 

155 between methylated and unmethylated states (13,14).  In general, the distribution of values � 
156  will be bimodal, with peaks corresponding to methylated and unmethylated states), but ( �� + � + ������)
157 the distribution of Infinium II probes differs from that of Infinium I, being more compressed towards 0.5 

158 (13) and hence having a smaller �dynamic range� (8,15).

159

160 Numerous different methods exist for normalising Illumina BeadChip array data, but there is little 

161 consensus or guidance on which should be employed in a given context. The main advice is that 

162 �between-array� methods, which normalise across samples, are preferable when global differences 

163 between samples are expected, while �within-array� methods, which normalise probes within each 

164 sample, are better suited to effects in which the majority of genes will not be differentially expressed. 

165 (9) The latter is the context in which many EWAS studies, including the present one, are conducted; as 

166 noted above, only modest differences in a small proportion of genes are expected for most early-life 

167 exposures. The methods chosen for the present investigation have all been used in the context of 

168 studies such as this: Categorical-Subset Quantile Normalisation (SQN) (14,16), Beta-Mixture Quantile 

169 Normalisation (BMIQ) (15), and Subset-Quantile Within-Array Normalisation (SWAN) (18).  While 

170 numerous other methods exist, a comparison of all available normalisation methods was beyond the 

171 scope of this paper. Further details on the  methods are given in the Supplementary Information.

172

173 Both Subset Quantile Normalisation and Subset-Within-Array-Normalisation were performed using 

174 functions in the minfi package (preprocessQuantile and preprocessSWAN respectively), on raw intensity 

175 data. Beta-Mixture Quantile normalisation was performed using the champ.norm function in the ChAMP 

176 package after converting intensities to  values. �
177

178 Batch Effects
179

180 Batch effects arise when samples are processed in separate groups, creating unwanted variation due, 

181 for example, to different reagents, different plates or different scanner settings. (3,19,20)

182 There are 12 Illumina 450K arrays (samples) per chip (this is reduced to 8 arrays per chip for the more 

183 recent 850K array); thus most studies involving large numbers of samples must be run on multiple chips. 

184 This introduces extra variability to the data, and may also confound the actual effects of interest, if 
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185 samples from different groups are not evenly distributed between the batches. These effects must be 

186 accounted for in order to obtain valid estimates of the effects of interest.

187

188 Unlike probe filtering and normalisation, batch effects can be handled at the analysis stage, by adjusting 

189 for batch in the analysis model.  However, it is also common to address batch effects at the data-

190 processing stage, using a batch-correction algorithm, with the resulting data considered to be free of 

191 batch effects (19). The ComBat algorithm has been widely used and considered the most effective 

192 method (2) of removing batch effects in DNAm data; it has been incorporated into various analysis 

193 pipelines. Until recently, ComBat could be implemented only as a supervised method, in which the 

194 biological factors of interest had to be specified along with the batch variable (3) (21); it can now also be 

195 implemented as an unsupervised method, in which only the batch variable is specified.

196

197 For each of the normalised datasets (i.e. SQN, BMIQ and SWAN normalised datasets, each with probes 

198 filtered either before or after normalisation), we handled batch effects in three ways: firstly, by 

199 adjusting for batch in the analysis model (BatchAdjust); secondly, implementing the supervised ComBat 

200 algorithm (sCB); and thirdly, implementing the unsupervised ComBat algorithm (uCB).  For the 

201 supervised ComBat algorithm, it was necessary to run the process twice: once with the effects of 

202 interest specified as maternal early pregnancy BMI, antenatal intervention group, and their interaction; 

203 and again with the effects of interest specified as Fake Group 1, Fake Group 2, their interaction, and 

204 infant sex.

205

206 Cell Type Proportions
207 Cord blood, like whole blood, contains a mixture of different cell types, which have different DNA 

208 methylation profiles.(22,23) If samples differ in the proportion of these different cell types, this may 

209 confound effects of interest, either hiding true differences in DNAm, or giving rise to spurious 

210 differences. Most studies of the effect of BMI, lifestyle interventions, or similar factors on cord blood 

211 DNA methylation have not attempted (or have not documented an attempt) to correct for potential 

212 differences in cell type composition, perhaps because reference profiles for cord blood were not 

213 available until more recently (24), and the mix of cell types and DNAm profiles may differ in cord blood 

214 compared to whole blood, making it inappropriate to apply reference profiles from whole blood to cord 

215 blood data.(25)

216

217 We estimated the proportion of B cells, CD4+T, CD8+T, granulocytes, monocytes, natural killer, and 

218 nucleated RBCs in the raw data using the estimateCellCounts() function in the minfi package, with the 

219 Cord Blood reference panel. The estimated proportions were then added to the metadata for use as 

220 adjustment variables in the analyses. We then undertook analyses either adjusted or not adjusted for 

221 estimated cell type proportion.

222

223 Figure 1 depicts the combinations of data-processing and analysis choices that were undertaken. In 

224 brief, there were six normalised datasets (three different normalisation methods, with probe filtering 

225 performed before normalisation or after normalisation). These datasets were either used immediately 

226 for analysis, or processed using the ComBat algorithm (in both supervised and unsupervised form) prior 

227 to analysis.  Non-ComBat-processed data were analysed with three different models: an unadjusted 

228 model (containing only the effects of interest), a model adjusted for batch, and a model adjusted for 

229 batch and estimated cell type proportions.  ComBat-processed data were analysed with two different 

230 models: one containing no other adjustment variables (but assumed to be �pre-adjusted� for batch), and 

231 one adjusted for cell type proportion.
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232

233 Statistical Analysis
234

235 Differential methylation was investigated probe-wise using linear models with empirical Bayes variance 

236 correction as implemented in the limma package (26,27).  For effects of BMI and intervention, models 

237 specified BMI (as continuous and mean-centred), intervention (Lifestyle Advice vs Standard Care), and 

238 their interaction. Contrasts were specified for the effect of the intervention at the mean BMI of the 

239 cohort, and at 5 kg/m2 above the mean; and for the effect of an increase of 5 kg/m2 in BMI in each of the 

240 intervention groups (Standard Care, Lifestyle Advice). For effects of fake groups and infant sex, the 

241 models specified sex (Female vs Male), Fake Group 1 (Tortoiseshell vs Tabby), Fake Group 2 (Long-

242 Haired vs Short-Haired), and their interaction. Contrasts were specified for infant sex, and for the effect 

243 of each fake group separately within levels of the other fake group (i.e. effect of Tortoiseshell in Long-

244 Haired and in Short-Haired; and effect of Short-Haired in Tortoiseshell and Tabby). 

245

246 For each contrast in each model, the number and identity (where applicable) of any differentially 

247 methylated probes (DMPs) were obtained. For detection of DMPs, limma�s default method of multiple-

248 comparisons correction (Benjamini-Hochberg) was used; this method controls the False Discovery Rate, 

249 or the proportion of statistically significant results not corresponding to true effects.  Where DMPs were 

250 obtained, a comparison was made using the Holm method, which controls the Family-Wise-Error Rate 

251 (the probability that at least one statistically significant result does not correspond to a true effect).  The 

252 full set of p values and estimated log-fold-changes (for all 426572 probes) corresponding to each 

253 contrast were also obtained, in order to compare probe rankings and overall distributions. To make the 

254 comparison more tractable, probe rankings were investigated using only those probes ranked in the top 

255 10 (i.e. the probes with the smallest p value, or largest estimated logFC, in a given model).

256

257 The findings from different data-processing choices were then compared along five dimensions:

258 1. Number and identity of differentially methylated probes (DMPs); for infant sex, the direction of 

259 differential methylation (�down�, corresponding to negative t-statistics or lower methylation in 

260 females, versus �up�, corresponding to higher methylation in females) was also examined.

261 2. Consistency of rankings by p value for �top 10� probes;

262 3. Consistency of rankings by logFC for �top 10� probes, as well as the consistency of the logFC 

263 estimates;

264 4. Overall distribution of p values;

265 5. Overall distribution of logFC estimates.

266

267 Results

268 All data processing choices had an impact on downstream analysis results, in terms of the number (and 

269 identity) of differentially methylated probes, rankings of probes (by p value and logFC), estimates of 

270 logFC, and overall distribution of p values and logFC, corresponding to both real and spurious effects of 

271 interest. In some cases a consistent impact of a particular choice was observed, while in others there 

272 was no consistent pattern, or this pattern varied according to the other choices with which it was 

273 combined.

274

275 Tables 1-3 give information about differentially methylated probes in each of the models fitted for the 

276 combinations of filtering, normalisation, batch correction and cell adjustment approaches. Table 1 lists 

277 the number of significant negative (�down�) probes and significant positive (�up�) probes for infant sex. 
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278 Table 2 gives the number of differentially methylated probes for any of the BMI and intervention effects, 

279 while Table 3 gives the number of differentially methylated probes for any of the fake group effects (the 

280 specific effects and probes, as well as their rankings in other models, are listed in Supplementary Tables 

281 3-8).  

282

283 Differences in ranking of probes by p value and log-Fold-Change are shown in Figures 2 and 3, 

284 respectively, for a selected set of effects (infant sex; the effect of maternal BMI in the Standard Care 

285 group, and the effect of �short-haired� in �Tabby�).  Similarly, the overall distribution of p values and of 

286 log-Fold-Change estimates for this same set of selected effects is shown in Figures 4 and 5.

287

288 Effect of probe filtering pre-normalisation vs post-normalisation
289 Filtering probes prior to normalisation, compared to filtering after normalisation, led to modest 

290 differences in number of DMPs, rankings of probes by logFC and p value, and overall distributions of p 

291 values and logFC estimates. Filtering pre-normalisation produced different numbers of DMPs for infant 

292 sex, but the nature of the effect differed by normalisation method: in SWAN data there was a consistent 

293 pattern of fewer significant probes both negative and positive, while in BMIQ data there were fewer 

294 negative but more positive probes, and in SQN data there were more negative but fewer positive 

295 probes. In relation to effects of BMI, intervention, and fake groups, differences were harder to discern 

296 due to the lack of any DMPs for many models; however, when DMPs were present for an effect, there 

297 was a tendency for there to be a greater number of them in the pre-filtered data.

298

299 Probe rankings, by logFC and p value, tended to be relatively consistent between pre-filtered and post-

300 filtered data, with some cases of larger discrepancies in rankings for individual probes. The discrepancies 

301 were more common, and larger, for fake group, BMI and intervention effects than for infant sex. 

302 Similarly, there were no dramatic differences in distributions of p values or logFC estimates for infant 

303 sex; there were differences in distribution between pre- and post-filtered data for fake group, 

304 intervention and BMI effects, but there was no consistent pattern to these differences.

305

306 Effect of Normalisation Method
307 Normalisation method had a substantial influence on number and identity of DMPs, rankings of probes 

308 and p values, and distributions of p values and logFC estimates. For infant sex, SQN data consistently 

309 had the highest number of significant negative probes and the lowest number of significant positive 

310 probes, while SWAN data always had the lowest number of significant positive probes. For BMI and 

311 intervention effects, only BMIQ data produced DMPs where no ComBat processing was used; in data 

312 processed using supervised ComBat, all three normalisation methods resulted in some DMPs, but the 

313 number and identity of these probes differed. In fake group data, SQN data produced a large number of 

314 significant probes in non-ComBat-processed and supervised-ComBat data, while BMIQ and SWAN data 

315 produced a small number of probes in supervised-ComBat data only; again, the number and identity of 

316 the probes differed between the normalisation methods.

317

318 There was a fair degree of consistency in rankings of probes by p value for infant sex, but some large 

319 discrepancies in rankings for BMI, intervention, and fake group effects.  The rankings were less 

320 consistent for highest-ranked probes by logFC, with some quite large differences in both rankings and 

321 effect estimates (including different directions of effect) for infant sex, BMI, intervention and fake 

322 groups. BMIQ estimates tended to be more extreme (further from 0) than the other two methods.

323

PeerJ reviewing PDF | (2022:09:77923:0:1:NEW 11 Oct 2022)

Manuscript to be reviewed



324 Distributions of p values and logFC estimates also differed between normalisation methods. For p 

325 valuesthe differences were not consistent across models and effects, but for logFC there was a clear 

326 difference between BMIQ and the other two methods, with the range of estimates in BMIQ data being 

327 much more widely dispersed; SQN and SWAN data had more similar distributions, but SQN was 

328 moderately narrower than SWAN across all effects and models.

329

330 Effect of Batch Correction Method
331 There were clear differences in all dimensions between batch correction methods. For all effects (infant 

332 sex, BMI, intervention and fake groups), supervised ComBat processing produced a larger number of 

333 DMPs compared to either unsupervised ComBat processing or adjustment for batch in the analysis 

334 model. The difference between unsupervised ComBat and batch-adjustment was less consistent for 

335 infant sex effects, but for BMI, intervention and fake group effects, there were no DMPs in unsupervised 

336 ComBat models, whereas there were a few for batch-adjusted models.

337

338 Rankings of top probes by p value were relatively consistent between batch-adjustment methods for 

339 infant sex, but there were some large discrepancies particularly for BMI and intervention effects, and 

340 especially in BMIQ data.  The same phenomenon was observed for logFC rankings, which also showed a 

341 tendency for logFC estimates in unsupervised-ComBat data to be smaller in absolute magnitude (closer 

342 to 0).

343

344 The distribution of p values showed clear and consistent differences between batch-correction methods, 

345 with the distribution in supervised ComBat data shifted down substantially relative to both unsupervised 

346 ComBat and batch-adjusted models, for all effects. For logFC estimates, supervised ComBat and batch-

347 adjusted data were generally fairly similar, but unsupervised ComBat data generally resulted in a 

348 narrower range.

349

350 Effect of Adjustment for Estimated Cell Type Proportion
351 Adjustment for cell type proportion produced different results, but the impact differed depending on 

352 the effect. Adjustment for batch resulted in a substantially larger number of DMPs (both negative and 

353 positive) for infant sex, but reduced the number of DMPs for fake groups (for models where there were 

354 DMPs for fake groups effects). For BMI and intervention, the effect of cell type adjustment was mostly 

355 but not entirely to produce more DMPs.  

356

357 The effect of cell type adjustment on top probe rankings was fairly modest, although some quite large 

358 discrepancies were observed for p value rankings, logFC rankings, and logFC estimates. The effect on 

359 distribution of p values depended on the effect: for infant sex, adjustment for cell type proportion 

360 consistently (for all normalisation and batch-correction methods) shifted the distribution downwards, 

361 whereas the differences were less consistent and smaller in BMI, intervention and fake group effects.  

362 There were no large or consistent differences in distribution of logFC estimates between cell-type-

363 adjusted and non-adjusted models.

364

365 Discussion

366 Different choices in probe filtering, normalisation, batch handling, and adjustment for cell types resulted 

367 in different findings regarding the presence and identity of differentially methylated probes, rankings of 

368 probes by p value and log-fold-change, and different overall distributions of p values and log-fold-

369 change estimates. Some differences were relatively modest, while others were more substantial. The 
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370 effect of some choices appeared to be consistent: in particular, supervised ComBat processing resulted 

371 in more differentially methylated probes and shifted the distribution of p values downward, while 

372 unsupervised ComBat processing resulted in a narrower range of log-fold-change estimates which were 

373 generally closer to 0 (a null effect) than other methods.  Data normalised using BMIQ tended to produce 

374 a more widely-dispersed distribution of log-fold-change estimates and also appeared to respond in a 

375 more volatile manner to other data processing choices.  By contrast, the effect of filtering probes prior 

376 to normalisation, and of adjustment for estimated cell type proportion, had different impacts depending 

377 on other data processing choices, and the effects being studied. Of interest, the number of differentially 

378 methylated probes for infant sex was increased, and the p value distribution shifted downward, when 

379 models were adjusted for estimated cell type proportion, suggesting that the removal of noise due to 

380 cell type differences allowed more precise estimation of these effects. However, the effect in relation to 

381 fake group effects was equivocal.

382

383 The results of these analyses are consistent with other investigations which have been undertaken into 

384 different data-processing and analysis choices. In particular, the potential for �false positives� to result 

385 from supervised batch-correction methods specifying effects of interest has been previously identified 

386 by a number of authors.(2,3,19).  The finding that the distribution of p values in the supervised ComBat 

387 algorithm tends to shift the p value distribution downward is consistent with the finding of Nygaard et al 

388 that, in contexts where the effects of interest are not evenly spread between batches, the distribution of 

389 F-statistics will be biased upwards (19).  While implementation as an unsupervised method may be 

390 preferable, our findings suggest that this may create a different problem, with the estimates of log-fold-

391 change corresponding to effects of interest biased towards zero.

392

393 In terms of different normalisation approaches, Wu et al (17) compared a variety of normalisation 

394 approaches, including GenomeStudio, SWAN, BMIQ, and a �complete pipeline� incorporating SQN, when 

395 investigating the association between smoking and cord blood methylation. They found that with more 

396 stringent Type I error control, and for the �most confident� results, the different normalisation methods 

397 gave similar values; more differences arose with laxer Type I error control. When using a split-data 

398 method to validate findings, many �significant� differences at the CpG level in the development data did 

399 not validate in the testing data. They noted a tendency for more statistically significant differences to 

400 arise in SQN data, which they hypothesise may be due to reduced overall variance.  In our investigation, 

401 the main context in which SQN data produced a large number of spurious differentially methylated 

402 probes was when supervised ComBat, or adjustment for batch in the model, was used. This suggests 

403 that batch adjustment is particularly ill-advised in the context of SQN normalisation; since SQN involves 

404 between-array as well as within-array normalisation, additional adjustment for batch may be over-

405 correcting.

406

407 Our findings do not suggest that there is one particular combination of methods which can be 

408 guaranteed to �work� in all contexts, although there are some recommendations which can be made. 

409 Echoing Nygaard et al, we suggest that adjustment for batch in the model, rather than batch-correction 

410 algorithms, be used. Secondly, as many other authors have noted, researchers working with DNAm data 

411 should better understand the methods built into standard pipelines (2,3), and should better document 

412 the specific data-processing methods used (2,19).  The use of a more stringent method of Type I error 

413 control may also help to reduce the number of spurious findings: the use of FDR correction methods 

414 such as Benjamini-Hochberg, while very common (9), may not be sufficient to deal with higher rates of 

415 spurious results (19). In our data, the use of the Holm method (which controls the Family-Wise Error 

416 Rate) reduced, but did not eliminate, spurious findings associated with fake group effects. Investigation 
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417 of DNA regions, rather than probe-wise analysis, may also help to differentiate true methylation 

418 differences from spurious ones (14).

419

420 It is also important, in our view, to pay more attention to the context in which a particular epigenome-

421 wide analysis is performed. For example, a less stringent method of Type I error control may often be 

422 chosen because the study is exploratory (hypothesis-generating) rather than confirmatory, and it is 

423 considered more important not to miss potential findings than to rule out spurious ones. In this case, 

424 the results from such studies should be interpreted accordingly: as suggestive findings which cannot be 

425 confidently accepted until they are validated in new data. The validation of existing findings should be 

426 treated as a high priority in epigenetics research (3).The degree of confidence that can be placed in any 

427 new discoveries could be enhanced by performing sensitivity analyses � re-performing analyses using 

428 different normalisation methods, batch correction methods, or models -  which we believe should 

429 become standard in this area.
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Figure 1
Flowchart of Data Processing and Analysis
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Figure 2
Probes ranked in top 10 by p-value in Batch+Cell Adjusted Model, for (a) Infant Sex, (b)
BMI in Standard Care, (c) Short-Haired in Tabby

For each probe the rank is given by pre- vs post-filtering, normalisation method, and batch-
handling method. The model is one adjusting for batch (either explicitly in the model or via
batch-correction algorithm) and cell type proportion.
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Figure 3(on next page)

Probes ranked in top 10 in any Batch and Cell-Adjusted Model by Log Fold Change, for
(a) Infant Sex, (b) BMI in Standard Care, (c) Short-Haired in Tabby.

Only models from data with probe filtered post-normalisation are included, to simplify results
presentation. The model is one adjusting for batch (either explicitly in the model or via batch-
correction algorithm) and cell type proportion. The graphs give the estimated log-Fold-
Change (circles) and 95% confidence interval by normalisation method and batch-correction
method, with rank also indicated by the size of the circles.
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Figure 3 Probes Ranked in Top 10 in any Batch and Cell-Adjusted Model by Log Fold Change, for (a) Infant Sex, (b) BMI in Standard Care, (c) Short-Haired in Tabby. 

Only models from data with probe filtered post-normalisation are included, to simplify results presentation. The model is one adjusting for batch (either explicitly in the model 

or via batch-correction algorithm) and cell type proportion.  The graphs give the estimated log-Fold-Change (circles) and 95% confidence interval by normalisation method 

and batch-correction method, with rank also indicated by the size of the circles. 
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(c) Short-Haired in Tabby 
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Figure 4
Distribution of Unadjusted P Values by Normalisation and Batch Correction Method, for
Batch and Cell Adjusted Models

Only models from data where probe filtering was performed post-normalisation are included.
The model is one adjusting for batch (either explicitly in the model or via batch-correction
algorithm) and cell type proportion.
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Figure 5
Distribution of Log-Fold-Change Estimates by Normalisation and Batch Correction
Method, for Batch and Cell Adjusted Models

Only models from data where probe filtering was performed post-normalisation are included.
The model is one adjusting for batch (either explicitly in the model or via batch-correction
algorithm) and cell type proportion.
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Table 1(on next page)

Number of DMPs for Infant Sex (Female), by Probe Filtering Method, Batch Correction
Method, Normalisation Method and Cell Type Method

* No adjustment beyond the correction for batch as implemented in the ComBat algorithm
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1 Table 1. Number of DMPs for Infant Sex (Female), by Probe Filtering Method, Batch Correction Method, Normalisation Method and Cell Type 

2 Method

3

SQN BMIQ SWANModel

Post Filtered Pre Filtered Post Filtered Pre Filtered Post Filtered Pre Filtered

No ComBat

- Unadjusted Down

Up

15088

20587

14878

20441

7935

28004

7554

30741

7581

25784

6890

25962

 - Adjusted for Batch Down

Up

13132

20225

13215

19956

6602

39482

6112

34408

7100

30362

6140

29780

- Adjusted for Batch + Cell Down

Up

28406

31973

28633

32204

15855

39719

14900

45255

14239

43155

10408

40709

Supervised ComBat

- Unadjusted* Down

Up

20967

25690

21230

25320

11235

41518

10180

48191

10772

45193

9252

43237

- Adjusted for Cell Down

Up

35559

37068

36022

36972

18036

56521

16512

64851

16423

68769

12198

65109

UnSupervised ComBat

- Unadjusted* Down

Up

14603

21336

14763

21041

7634

30961

6836

34882

7344

31892

6377

31170

- Adjusted for Cell Down

Up

28012

32478

28286

32447

14060

43370

12916

49520

13030

52037

9560

49102

4 * No adjustment beyond the correction for batch as implemented in the ComBat algorithm

5
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Table 2(on next page)

DMPs for Intervention and BMI Effects
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1 Table 2 DMPs for InterI������ and BMI E������

2

SQN BMIQ SWAN

Model Post Filtered Pre Filtered Post Filtered Pre Filtered Post Filtered Pre Filtered

No ComBat

- Unadjusted 0 0 7 11 0 0

- Adjusted for Batch 0 0 8 6 0 0

- Adjusted for Batch + Cell 0 0 6 8 0 0

Supervised ComBat

- Unadjusted 1 1 0 99 0 0

- Adjusted for Cell 3 3 9 208 6 6

UnSupervised ComBat

- Unadjusted 0 0 0 0 0 0

- Adjusted for Cell 0 0 0 0 0 0

3
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Table 3(on next page)

DMPs for Fake Groups
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1 Table 3 DMPs for FaF� G	
��


2

SQN BMIQ SWAN

Model Post Filtered Pre Filtered Post Filtered Pre Filtered Post Filtered Pre Filtered

No ComBat

- Unadjusted 0 0 0 0 0 0

 - Adjusted for Batch 2180 2574 0 0 0 0

- Adjusted for Batch + Cell 0 0 0 0 0 0

Supervised ComBat

- Unadjusted 6768 7007 3 6 8 8

- Adjusted for Cell 124 134 1 2 0 0

UnSupervised ComBat

- Unadjusted 0 0 0 0 0 0

- Adjusted for Cell 0 0 0 0 0 0

3
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