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ABSTRACT
Objective. A wide array of methods exist for processing and analysing DNA methyla-
tion data. We aimed to perform a systematic comparison of the behaviour of these
methods, using cord blood DNAm from the LIMIT RCT, in relation to detecting
hypothesised effects of interest (intervention and pre-pregnancy maternal BMI) as well
as effects known to be spurious, and known to be present.
Methods. DNAm data, from 645 cord blood samples analysed using Illumina 450K
BeadChip arrays, were normalised using three different methods (with probe filtering
undertaken pre- or post- normalisation). Batch effects were handled with a supervised
algorithm, an unsupervised algorithm, or adjustment in the analysis model. Analysis
was undertaken with and without adjustment for estimated cell type proportions. The
effects estimated included intervention and BMI (effects of interest in the original
study), infant sex and randomly assigned groups. Data processing and analysis methods
were compared in relation to number and identity of differentially methylated probes,
rankings of probes by p value and log-fold-change, and distributions of p values and
log-fold-change estimates.
Results. There were differences corresponding to each of the processing and analysis
choices. Importantly, some combinations of data processing choices resulted in a
substantial number of spurious ‘significant’ findings. We recommend greater emphasis
on replication and greater use of sensitivity analyses.

Subjects Bioinformatics, Gynecology and Obstetrics, Statistics, Data Science, Obesity
Keywords DNA methylation, Bioinformatics, Differential methylation, Reproducibility

INTRODUCTION AND BACKGROUND
With the advent of high-throughput assays, epigenome-wide DNA methylation studies
have become more popular, and researchers are now investigating the effects on DNA
methylation (DNAm) of a wide range of environmental exposures and physiological
conditions, with particular interest in the contribution of epigenetic mechanisms such
as DNAm to the early life origins of health and disease. The ability to perform EWAS
is particularly useful in relation to conditions where associated differences in DNAm
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are likely to be fairly modest (Marabita et al., 2013). However, DNAm data—as with
high-dimensional ‘omics’ data generally—requires substantial pre-processing prior to
analysis, including probe and sample filtering, normalisation to remove variation due
to technological factors, and correction for other factors which may confound effects of
interest, such as batch effects or differences in cell type proportions between samples.
Numerous methods exist to perform these processing steps, and many articles have been
published which provide useful guidance for the use of analysis pipelines (Marabita et al.,
2013; Yousefi et al., 2013; Lehne et al., 2015; Morris & Beck, 2015; Maksimovic, Phipson &
Oshlack, 2017), or comparing some alternatives for individual steps in the overall processing
pipeline, including probe filtering (Heiss & Just, 2019), normalisation (Wang et al., 2012;
Wang et al., 2015; Fortin et al., 2014; Wu et al., 2014; Hicks & Irizarry, 2015), or correction
for/avoidance of batch effects. These have led to some general conclusions regarding the
need to account for batch effects, the importance of correcting for estimated cell type
proportion, and perhaps the greater suitability of within-array normalisation methods
compared to between-array methods when global methylation differences are not expected
(Maksimovic, Phipson & Oshlack, 2017), but there is no clear overall consensus on the best
processing or analysis approach (Price & Robinson, 2018; Zindler et al., 2020), or of the
overall advantages and disadvantages of different combinations of processing choices.

We recently investigated the effect of an antenatal diet and lifestyle intervention, and
of maternal early pregnancy BMI, on neonatal cord blood DNA methylation in infants
of mothers who were overweight or obese in early pregnancy (Louise et al., 2022). We
were unable to replicate findings from previous studies which reported a range of loci
to be significantly differentially methylated in relation to maternal BMI or diet and
lifestyle in pregnancy (Gemma et al., 2009; Sharp et al., 2015; Sharp et al., 2017; Thakali
et al., 2017; Hjort et al., 2018) and indeed did not find any significant differences in
methylation corresponding to either BMI or intervention effects. We were aware of
literature suggesting that use of supervised batch-correction algorithms may produce
spurious findings (Nygaard, Rødland & Hovig, 2016a; Price & Robinson, 2018; Zindler et
al., 2020), and that the number of statistically significant findings may differ according
to normalisation method (Wu et al., 2014), adjustment for estimated cell type proportion
(Sharp et al., 2017) or stringency of type I error control (Wu et al., 2014), which led to
the hypothesis that the discrepancy in findings may be due in part to differences in data
processing and analysis methods. Following the common practice in clinical trials of
conducting sensitivity analyses to assess robustness of results to various assumptions
and decisions (Thabane et al., 2013), we performed several re-analyses with different
normalisation methods, methods for batch effect handling, type I error control, and
presence vs absence of adjustment for estimated cell type proportions. This confirmed that
our findings indeed differed under different data-processing and analysis choices.

While previous studies comparing different methods have also produced different
findings, these have tended to consider only one element of the processing and analysis
pipeline (such as normalisation, or batch correction) in isolation. In addition, they have
tended to concentrate on the tendency for some methods to produce results which are
likely to be spurious (false positives), while often being unable to definitively confirm
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this due to the lack of known truth regarding the presence and magnitude of differential
methylation effects.

We therefore set out to investigate the impact of different data-processing choices in
a more systematic way, looking at the effect of combinations of data processing choices
on findings specifically regarding statistically significant differentially methylated probes
(DMPs), and of the behaviour of these combinations in cases where effects are known
to be either absent or present, as well as their behaviour in relation to our effects of
interest (maternal BMI and lifestyle intervention). We were able to create a scenario in
which effects were known to be absent by randomly assigning samples to groupings. We
could not similarly ensure a scenario where effects were known to be present (as the truth
regarding the existence, location andmagnitude of any effects in our samples is not known);
however we investigated effects of infant sex as a rough proxy, since infant sex is known to
have substantial effects on DNAm which can be detected by the 450K array (Yousefi et al.,
2015).

DATA AND METHODS
The LIMIT randomised controlled trial
The LIMIT study was a randomised, controlled trial of an antenatal diet and lifestyle
intervention for women with early pregnancy BMI ≥25.0 kg/m2. The study, and its
primary and main secondary outcomes, have been extensively reported elsewhere (Dodd
et al., 2014b). Inclusion criteria were early pregnancy BMI ≥25.0 kg/m2 and pregnancy
between 10 +0 and 20 +0 weeks’ gestation, with exclusion criteria of multiple gestation or
previously existing diabetes. The study randomised 2,212 women in total to one of two
groups: a comprehensive diet and lifestyle intervention (Lifestyle Advice; n= 1,108) or
antenatal care delivered according to local guidelines (Standard Care; n= 1,104) which did
not include information on diet or physical activity. The study was reviewed by the ethics
committee of each participating institution including the Women’s and Children’s Health
Network Human Research Ethics Committee (1839 & 2051), the Central and Northern
Adelaide Health Network Human Research Ethics Committee (2008033) and the Southern
Adelaide Local Health Network Human Research Ethics Committee (128/08). Informed
written consent was obtained for all participants to participate in the LIMIT study, and
additional written consent was obtained to collect samples of umbilical cord blood at
delivery for the purposes of gene expression research related to weight and to the diet and
lifestyle intervention.

The primary outcome of the LIMIT study was birth of a large for gestational age (LGA)
infant. There were no significant differences observed between the groups in relation to
this outcome; however, a significantly lower incidence of high birthweight (>4 kg) was
observed in the Lifestyle Advice group, with a Relative Risk of 0.82 (95% CI: 0.68, 0.99,
p= 0.04). Additionally, measures of diet quality and physical activity were improved in
women in the Lifestyle Advice group compared to those in the Standard Care group (Dodd
et al., 2014a).

As previously outlined in the companion paper (Louise et al., 2022), cord blood DNA for
a range of secondary studies was collected at the time of birth from consenting participants,
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and was frozen as whole blood preserved with EDTA. Funding was available to perform
DNA methylation analysis for a total of 649 samples, which were randomly selected
from the total number of available samples, balanced between the Lifestyle Advice and
Standard Care groups (Table S1). After DNA extraction, genome-wide DNA methylation
was performed using the Illumina Infinium HumanMethylation 450K Bead-Chip array.
Results were supplied as raw probe intensities (IDAT files).

For the additional analyses investigating known spurious effects, artificial (fake) groups
were created by assigning samples based on random draws from binomial distributions.
The first grouping (‘Tortoiseshell’ vs ‘Tabby’) was generated using a binomial distribution
with 50% probability of assignment to each group. The second grouping (‘Long’- vs ‘Short-
Haired’) was created to mimic stratified randomisation as well as unequal proportions in
each group: within each level of the first fake group, samples were assigned to Long-Haired
with 40% probability and Short-Haired with 60% probability.

All data processing and analyses were undertaken using R version 4.0 (R Core Team,
2018).

Probe and sample filtering
The minfi package (Aryee et al., 2014) was used to read in the raw idats (without
normalisation), and to calculate both probe-wise and sample-wise detection p values.
Samples were identified as faulty if they had a detection p-value ≥0.05. A total of 13
such samples were excluded; however these were due to a known chip failure, and had
subsequently been rerun. A further four samples were excluded because the correct
corresponding study identifier could not be ascertained, leaving 645 samples for analysis.

Probes were filtered using multiple criteria. Firstly, probes were excluded if they had a
detection p-value≥0.001 in more than 25% of the 645 samples, indicating that their signal
could not be accurately detected for a large proportion of samples (Dedeurwaerder et al.,
2014; Maksimovic, Phipson & Oshlack, 2017). Secondly, probes were excluded if they were
on a list of those previously identified as cross-reactive (Chen et al., 2013); i.e., there was a
high probability they may hybridize to locations on the genome different to those for which
the probe was designed (Dedeurwaerder et al., 2014; Naeem et al., 2014). Thirdly, probes
with an identified SNP within 3 nucleotides of the CpG site and minor allele frequency
>1%, and probes on the X and Y chromosomes were excluded. This was done in order
to avoid spurious methylation ‘differences’ due either to SNPs within the CpG targets, or
due to X and Y chromosomes (Dedeurwaerder et al., 2014; Naeem et al., 2014). Filtering of
cross-reactive probes, probes with a nearby SNP and probes on the X and Y chromosomes
was performed using the DMRCate package (Peters et al., 2015). This left 426,572 probes
available for analysis.

Probe filtering was performed either after normalisation (post-filtered) or prior to
normalisation (pre-filtered). The one exception for pre-filtering was when normalising
using the BMIQ method, where probes on the X and Y chromosome were retained as this
was required in order for the function to run.
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Normalisation
Normalisation involves making changes to the raw data in order to remove artifactual
variation. In the case of Illumina 450K BeadChip arrays, this requires correcting for the
presence of two different probe types. Infinium I probes use the same colour signal for
methylated and unmethylated CpG and are often used for regions of high CpG density,
while Infinium II probes use different colours to differentiate between methylated and
unmethylated states (Pidsley et al., 2013; Wang et al., 2015). Normalisation is performed
on βvalues, or the ratio of methylated to total intensity, defined as M

M+U+offset . Here, M
is the methylated intensity and U is the unmethylated intensity; the offset is a constant
added to regularize the βvalue where both methylated and unmethylated intensities are
low. The distribution of β values is bimodal, with peaks corresponding to methylated
and unmethylated states, but the distribution of Infinium II probes differs from that of
Infinium I, being more compressed towards 0.5 (Pidsley et al., 2013) and hence having a
smaller dynamic range (Teschendorff et al., 2013; Dedeurwaerder et al., 2014).

Numerousmethods exist for normalising Illumina BeadChip array data, but there is little
consensus or guidance on which should be employed in a given context. The main advice
is that between-array methods, which normalise across samples, are preferable when global
differences between samples are expected, while within-array methods, which normalise
probes within each sample, are better suited to effects in which themajority of genes will not
be differentially expressed. (Maksimovic, Phipson & Oshlack, 2017). The latter is the context
in which many EWAS studies, including the present one, are conducted; as noted above,
only modest differences in a small proportion of genes are expected for most early-life
exposures. The methods chosen for the present investigation have all been used in the
context of studies such as this: Categorical-Subset Quantile Normalisation (SQN) (Wu et
al., 2014; Wang et al., 2015), Beta-Mixture Quantile Normalisation (BMIQ) (Teschendorff
et al., 2013), and Subset-Quantile Within-Array Normalisation (SWAN) (Maksimovic,
Gordon & Oshlack, 2012). While numerous other methods exist, a comparison of all
available normalisation methods was beyond the scope of this paper. Further details on the
methods are given in the Supplemental Information.

Both Subset Quantile Normalisation and Subset-Within-Array-Normalisation were
performed using functions in the minfi package (preprocessQuantile and preprocessSWAN
respectively), on raw intensity data. Beta-Mixture Quantile normalisation was performed
using the champ.norm function in the ChAMP package after converting intensities to β
values.

Batch effects
Batch effects arise when samples are processed in separate groups, creating unwanted
variation due, for example, to different reagents, different plates or different scanner
settings (Morris & Beck, 2015; Nygaard, Rødland & Hovig, 2016a; Price & Robinson, 2018).

There are 12 Illumina 450K arrays (samples) per chip (this is reduced to eight arrays
per chip for the more recent 850K array); thus most studies involving large numbers of
samples must be run on multiple chips. This introduces extra variability to the data, and
may also confound the actual effects of interest, if samples from different groups are not

Louise et al. (2023), PeerJ, DOI 10.7717/peerj.14786 5/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.14786#supplemental-information
http://dx.doi.org/10.7717/peerj.14786


evenly distributed between the batches. These effects must be accounted for in order to
obtain valid estimates of the effects of interest.

Unlike probe filtering and normalisation, batch effects can be handled at the analysis
stage, by adjusting for batch in the analysis model. However, it is also common to address
batch effects at the data-processing stage, using a batch-correction algorithm, with the
resulting data considered to be free of batch effects (Nygaard, Rødland & Hovig, 2016a).
The ComBat algorithm has been widely used and considered the most effective method
(Zindler et al., 2020) of removing batch effects in DNAm data; it has been incorporated
into various analysis pipelines. Until recently, ComBat could be implemented only as a
supervised method, in which the biological factors of interest had to be specified along with
the batch variable (Price & Robinson, 2018; Fortin, Triche & Hansen, 2016); it can now also
be implemented as an unsupervised method, in which only the batch variable is specified.

For each of the normalised datasets (i.e., SQN, BMIQ and SWAN normalised datasets,
each with probes filtered either before or after normalisation), we handled batch effects in
three ways: firstly, by adjusting for batch in the analysis model (BatchAdjust); secondly,
implementing the supervised ComBat algorithm (sCB); and thirdly, implementing the
unsupervised ComBat algorithm (uCB). For the supervised ComBat algorithm, it was
necessary to run the process twice: once with the effects of interest specified as maternal
early pregnancy BMI, antenatal intervention group, and their interaction; and again with
the effects of interest specified as Fake Group 1, Fake Group 2, their interaction, and infant
sex.

Cell type proportions
Cord blood, like whole blood, contains a mixture of different cell types, which have
different DNA methylation profiles.(Jaffe & Irizarry, 2014; Teschendorff & Zheng, 2017) If
samples differ in the proportion of these different cell types, this may confound effects of
interest, either hiding true differences in DNAm, or giving rise to spurious differences.
Most studies of the effect of BMI, lifestyle interventions, or similar factors on cord blood
DNA methylation have not attempted (or have not documented an attempt) to correct
for potential differences in cell type composition, perhaps because reference profiles for
cord blood were not available until more recently (Bakulski et al., 2016), and the mix of
cell types and DNAm profiles may differ in cord blood compared to whole blood, making
it inappropriate to apply reference profiles from whole blood to cord blood data (Cardenas
et al., 2016).

We estimated the proportion of B cells, CD4+T, CD8+T, granulocytes, monocytes,
natural killer, and nucleated RBCs in the raw data using the estimateCellCounts() function
in the minfi package, with the cord blood reference panel. The estimated proportions
were then added to the metadata for use as adjustment variables in the analyses. We then
undertook analyses either adjusted or not adjusted for estimated cell type proportion.

Figure 1 depicts the combinations of data-processing and analysis choices that were
undertaken. In brief, there were six normalised datasets (three different normalisation
methods, with probe filtering performed before normalisation or after normalisation).
These datasets were either used immediately for analysis, or processed using the ComBat

Louise et al. (2023), PeerJ, DOI 10.7717/peerj.14786 6/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.14786


Figure 1 Flowchart of data processing and analysis. Combinations of data-processing and analysis
choices, consisting of six normalised datasets (SQN, BMIQ or SWAN, with probe filering before or
afterwards), use or non-use of ComBat processing (supervised or unsupervised), and analysis with either
an unadjusted model, a model adjusted for batch, or a model adjusted for batch and cell type proportion.

Full-size DOI: 10.7717/peerj.14786/fig-1

algorithm (in both supervised and unsupervised form) prior to analysis. Non-ComBat-
processed data were analysed with three different models: an unadjustedmodel (containing
only the effects of interest), a model adjusted for batch, and a model adjusted for batch and
estimated cell type proportions. ComBat-processed data were analysed with two different
models: one containing no other adjustment variables (but assumed to be pre-adjusted for
batch), and one adjusted for cell type proportion.

Statistical analysis
Differential methylation was investigated probe-wise using linear models with empirical
Bayes variance correction as implemented in the limma package (Ritchie et al., 2015; Smyth,
2005). For effects of BMI and intervention, models specified BMI (as continuous andmean-
centred), intervention (Lifestyle Advice vs Standard Care), and their interaction. Contrasts
were specified to estimate the effect of the intervention and of maternal BMI. Because of
the presence of the intervention-by-BMI interaction term, this required specification of the
BMI values at which the intervention effect was to be estimated, and the intervention groups
in which the effect of BMI was to be estimated. For estimating intervention effects, we chose
the mean BMI of the cohort (i.e., value of 0 for the mean-centred variable, corresponding
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to an actual BMI of approximately 33 kg/m2), and at 5 kg/m2 above the mean (a value of
5, corresponding to an actual BMI of approximately 38 kg/m2. For the effect of BMI, we
estimated the effect of an increase of 5 kg/m2 in BMI in each of the intervention groups
(Standard Care, Lifestyle Advice) respectively. For effects of fake groups and infant sex, the
models specified sex (Female vsMale), Fake Group 1 (Tortoiseshell vs Tabby), Fake Group
2 (Long-Haired vs Short-Haired), and their interaction. Contrasts were specified for infant
sex, and for the effect of each fake group separately within levels of the other fake group
(i.e., effect of Tortoiseshell in Long-Haired and in Short-Haired; and effect of Short-Haired
in Tortoiseshell and Tabby). The model matrix and contrast matrices are shown in the
Table S4.

For each contrast in each model, the number and identity (where applicable) of any
differentially methylated probes (DMPs) were obtained. For detection of DMPs, limma’s
default method of multiple-comparisons correction (Benjamini–Hochberg) and default
alpha of 0.05 was used; this method controls the false discovery rate, or the proportion
of statistically significant results not corresponding to true effects. Where DMPs were
obtained, a comparison was made using the Holm method (retaining alpha of 0.05),
which controls the Family-Wise-Error Rate (the probability that at least one statistically
significant result does not correspond to a true effect). TheHolmmethod can be considered
more stringent than Benjamini–Hochberg, but is less stringent than Bonferroni correction,
which is known to be too conservative even outside the context of high-dimensional data
and is therefore not generally appropriate for EWAS studies (and has not been used in
other studies investigating cord blood DNAm in relation to maternal BMI or diet and
lifestyle). The full set of p values and estimated log-fold-changes (for all 426,572 probes)
corresponding to each contrast were also obtained, in order to compare probe rankings
and overall distributions. To make the comparison more tractable, probe rankings were
investigated using only those probes ranked in the top 10 (i.e., the probes with the smallest
p value, or largest estimated logFC, in a given model).

The findings from different data-processing choices were then compared along five
dimensions:
1. Number and identity of differentially methylated probes (DMPs); for infant sex, the

direction of differential methylation (‘down’, corresponding to negative t-statistics
or lower methylation in females, versus ‘up’, corresponding to higher methylation in
females) was also examined. For BMI and intervention effects, the number and identity
of statistically significant DMPs allows us to see differences in detection of effects,
and whether the different analysis pipelines produce consistent results regarding the
identity of any DMPs, though the truth is not known. For the fake groupings, the
number of statistically significant DMPs is an indication of the tendency to produce
spurious findings. For infant sex, while we do not know the actual number and identity
of truly differentially methylated sites, differences in the number and identity of DMPs
demonstrate that there must be either false positives or false negatives.

2. Consistency of rankings by p value for ‘top 10’ probes. This gives an indication of
whether different methods will give the same results for the probes with the largest
differences.
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3. Consistency of rankings by logFC for ‘top 10’ probes, as well as the consistency of the
logFC estimates. This gives an indication of whether the estimates of effect are similar
between methods.

4. Overall distribution of p values. Under the null hypothesis of no effect, p values should
have a uniform distribution between 0 and 1; if effects are present, there will be more
p values at the lower end of the distribution, the extent of which will depend on how
many DMPs there are and the strength of the effects.

5. Overall distribution of logFC estimates. Under the null hypothesis of no effect, logFC
estimates should be roughly normally distributed around 0. If effects are present, there
will be more estimates far away from 0 (with the direction depending on whether the
effect is one of hypomethylation or hypermethylation, and the distance depending on
the strength of the effect).

RESULTS
All dimensions of data processing choices had some impact on downstream analysis
results, in terms of the number (and identity) of differentially methylated probes, rankings
of probes (by p value and logFC), estimates of logFC, and overall distribution of p values
and logFC, corresponding to both real and spurious effects of interest. In some cases
a consistent impact of a particular choice was observed, while in others there was no
consistent pattern, or this pattern varied according to the other choices with which it was
combined.

Tables 1–3 give information about the number of significantly differentially methylated
probes in each of the models fitted for the combinations of filtering, normalisation, batch
correction and cell adjustment approaches, for infant sex, maternal BMI (in the Standard
Care group) and Tortoiseshell (in the Tabby group) respectively. Figures S1-S4 show the
degree of overlap in the actual probes found to be significantly differently methylated
between models for infant sex, intervention (at the mean BMI of the cohort), BMI (in the
Standard Care group), and the effect of Short-Haired in the Tabby group. Figure 2 and
Figs. 3–5 show the differences in ranking of probes (those which were in the top 10 in
any model) by p value and log-Fold-Change for the same set of effects, and Tables S4–S6
gives Spearman Rank Correlation matrices for these rankings. The overall distribution of
p values, and of log-Fold-Change estimates, for the same set of effects is shown in Figs. 6
and 7.

Below we discuss the effect of each dimension (probe filtering, normalisation, batch
effects, cell type correction) on results.

Effect of probe filtering pre-normalisation vs post-normalisation
Filtering probes prior to normalisation, compared to filtering after normalisation, led
to modest differences in number of DMPs, rankings of probes by logFC and p value,
and overall distributions of p values and logFC estimates. Filtering pre-normalisation
produced different numbers of DMPs for infant sex, but the nature of the effect differed by
normalisation method: in SWAN data there was a consistent pattern of fewer significant
probes both negative and positive, while in BMIQ data there were fewer negative but more
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Table 1 Number of DMPs for infant sex (female), by probe filtering method, batch correction method, normalisation method and cell type
method.

Model SQN BMIQ SWAN

Post Filtered Pre Filtered Post Filtered Pre Filtered Post Filtered Pre Filtered

No ComBat
- Unadjusted Down

Up
15,088
20,587

14,878
20,441

7,935
28,004

7,554
30,741

7,581
25,784

6,890
25,962

- Adjusted for Batch Down
Up

13,132
20,225

13,215
19,956

6,602
39,482

6,112
34,408

7,100
30,362

6,140
29,780

- Adjusted for Batch + Cell Down
Up

28,406
31,973

28,633
32,204

15,855
39,719

14,900
45,255

14,239
43,155

10,408
40,709

Supervised ComBat
- Unadjusted* Down

Up
20,967
25,690

21,230
25,320

11,235
41,518

10,180
48,191

10,772
45,193

9,252
43,237

- Adjusted for Cell Down
Up

35,559
37,068

36,022
36,972

18,036
56,521

16,512
64,851

16,423
68,769

12,198
65,109

UnSupervised ComBat
- Unadjusted* Down

Up
14,603
21,336

14,763
21,041

7,634
30,961

6,836
34,882

7,344
31,892

6,377
31,170

- Adjusted for Cell Down
Up

28,012
32,478

28,286
32,447

14,060
43,370

12,916
49,520

13,030
52,037

9,560
49,102

Notes.
*No adjustment beyond the correction for batch as implemented in the ComBat algorithm.

Table 2 DMPs for effect of maternal BMI in the standard care group.

SQN BMIQ SWAN

Model Post Filtered Pre Filtered Post Filtered Pre Filtered Post Filtered Pre Filtered

No ComBat
- Unadjusted 0 0 5 6 0 0
- Adjusted for Batch 0 0 6 0 0 0
- Adjusted for Batch + Cell 0 0 8 0 6 0

Supervised ComBat
- Unadjusted 0 0 0 10 0 0
- Adjusted for Cell 0 0 99 207 0 0

UnSupervised ComBat
- Unadjusted 0 0 0 0 0 0
- Adjusted for Cell 0 0 0 0 0 6

positive probes, and in SQN data there were more negative but fewer positive probes. In
relation to effects of BMI, intervention, and fake groups, differences were harder to discern
due to the lack of any DMPs for many models; however, when DMPs were present for an
effect, there was a tendency for there to be a greater number of them in the pre-filtered
data.

Probe rankings, by logFC and p value, tended to be relatively consistent between
pre-filtered and post-filtered data, with some cases of larger discrepancies in rankings for
individual probes. The discrepancies were more common, and larger, for fake group, BMI
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Table 3 DMPs for fake groups: ‘short-haired’ in ‘Tabby’.

SQN BMIQ SWAN

Model Post Filtered Pre Filtered Post Filtered Pre Filtered Post Filtered Pre Filtered

No ComBat
- Unadjusted 0 0 0 0 0 0
- Adjusted for Batch 2,180 2,574 0 0 0 0
- Adjusted for Batch + Cell 0 0 0 0 0 0

Supervised ComBat
- Unadjusted 6,768 7,007 3 6 8 8
- Adjusted for Cell 123 133 1 1 0 0

UnSupervised ComBat
- Unadjusted 0 0 0 0 0 0
- Adjusted for Cell 0 0 0 0 0 0

Figure 2 Probes ranked in top 10 by p-value in batch+cell adjusted model, for (A) infant sex, (B) BMI
in standard care, (C) short-haired in Tabby. For each probe the rank is given by pre- vs post-filtering,
normalisation method, and batch-handling method. The model is one adjusting for batch (either explic-
itly in the model or via batch-correction algorithm) and cell type proportion. Adjust= adjusted for batch
in the model; SCB= Supervised ComBat; UCB= Unsupervised ComBat.

Full-size DOI: 10.7717/peerj.14786/fig-2

and intervention effects than for infant sex. Similarly, there were no dramatic differences
in distributions of p values or logFC estimates for infant sex; there were differences in
distribution between pre- and post-filtered data for fake group, intervention and BMI
effects, but there was no consistent pattern to these differences.

The question of whether probe filtering should be carried out before or after
normalisation is one which has received surprisingly little attention in the literature,
but our results suggest that it can make a difference to findings in some contexts. In
particular there may be a higher risk of spurious findings in pre-filtered data, but there
may also be a risk of failing to detect true differences –either any differences, or specifically
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Figure 3 Top 10 probes by LogFC: infant sex. Largest LogFC for Infant Sex (female), by normalisation
and batch correction method.

Full-size DOI: 10.7717/peerj.14786/fig-3

Figure 4 Top 10 probes by LogFC: BMI in standard care. Largest LogFC for effect of BMI in standard
care group, by normalisation and batch correction method.

Full-size DOI: 10.7717/peerj.14786/fig-4

hypomethylated or hypermethylated loci, depending upon the normalisation method
employed.

Effect of normalisation method
Normalisation method had a substantial influence on number and identity of DMPs,
rankings of probes and p values, and distributions of p values and logFC estimates. For
infant sex, SQN data consistently had the highest number of significant negative probes and
the lowest number of significant positive probes, while SWAN data always had the lowest
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Figure 5 Top 10 probes by LogFC: ‘short-haired’ in ‘Tabby’. Largest LogFC for effect of ‘Short-Haired’
in ‘Tabby’ group, by normalisation and batch correction method.

Full-size DOI: 10.7717/peerj.14786/fig-5

Figure 6 Distribution of unadjusted P values by normalisation and batch correction method, for
batch and cell adjusted models.Only models from data where probe filtering was performed post-
normalisation are included. The model is one adjusting for batch (either explicitly in the model or via
batch-correction algorithm) and cell type proportion.

Full-size DOI: 10.7717/peerj.14786/fig-6

number of significant positive probes. For BMI and intervention effects, only BMIQ data
produced DMPs where no ComBat processing was used; in data processed using supervised
ComBat, all three normalisation methods resulted in some DMPs, but the number and
identity of these probes differed. In fake group data, SQN data produced a large number of
significant probes in non-ComBat-processed and supervised-ComBat data, while BMIQ
and SWAN data produced a small number of probes in supervised-ComBat data only;
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Figure 7 Distribution of log-fold-change estimates by normalisation and batch correction method,
for batch and cell adjusted models.Only models from data where probe filtering was performed post-
normalisation are included. The model is one adjusting for batch (either explicitly in the model or via
batch-correction algorithm) and cell type proportion.

Full-size DOI: 10.7717/peerj.14786/fig-7

again, the number of significant probes differed between the normalisation methods (see
Tables 1–3 and Figs. S1–S4).

There was a fair degree of consistency in rankings of probes by p value for infant sex,
but some large discrepancies in rankings for BMI, intervention, and fake group effects. The
rankings were less consistent for highest-ranked probes by logFC, with some quite large
differences in both rankings and effect estimates (including different directions of effect)
for infant sex, BMI, intervention and fake groups. BMIQ estimates tended to be more
extreme (further from 0) than the other two methods.

Distributions of p values and logFC estimates also differed between normalisation
methods. For p values the differences were not consistent across models and effects, but
for logFC there was a clear difference between BMIQ and the other two methods, with the
range of estimates in BMIQ data being much more widely dispersed; SQN and SWAN data
had more similar distributions, but SQN was moderately narrower than SWAN across all
effects and models.

Overall, there was little difference between SQN and SWAN methods when adjusting
for batch in the model. There is some evidence that SQN would result in fewer significant
DMPs than SWAN for known effects (particularly when using supervised ComBat), but
(many) more spuriously significant DMPs than either SWAN or BMIQ where effects
are absent. The behaviour of BMIQ was more variable depending on other dimensions
of the pipeline, but had a wider dispersion of logFC estimates than the other methods,
particularly when adjusting for batch in the model. This tended to result in more DMPs
in some scenarios, but in general will lead effect estimates derived from BMIQ data to be
more extreme (and probably overestimates of the true effect).
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Effect of batch correction method
There were clear differences in all dimensions between batch correction methods. For
all effects (infant sex, BMI, intervention and fake groups), supervised ComBat processing
produced a larger number ofDMPs compared to either unsupervisedComBat processing or
adjustment for batch in the analysis model. The difference between unsupervised ComBat
and batch-adjustment was less consistent for infant sex effects, but for BMI, intervention
and fake group effects, there were no DMPs in unsupervised ComBat models, whereas
there were a few for batch-adjusted models.

Rankings of top probes by p value were relatively consistent between batch-adjustment
methods for infant sex, but there were some large discrepancies particularly for BMI and
intervention effects, and especially in BMIQ data. The same phenomenon was observed for
logFC rankings, which also showed a tendency for logFC estimates in unsupervised-ComBat
data to be smaller in absolute magnitude (closer to 0).

The distribution of p values showed clear and consistent differences between batch-
correction methods, with the distribution in supervised ComBat data shifted substantially
towards 0 relative to both unsupervised ComBat and batch-adjusted models, for all effects.
For logFC estimates, supervised ComBat and batch-adjusted data were generally fairly
similar, but unsupervised ComBat data generally resulted in a narrower range. This means
that supervised ComBat will tend to producemore statistically significant probes, regardless
of the presence or absence of an effect. Conversely, effect estimates from unsupervised
ComBat may be underestimated; at least, they will tend to be smaller in magnitude than
those derived from data where batch is handled differently.

Of particular note is the combination of SQN normalisation and either adjustment
for batch in the model, or use of supervised ComBat. These combinations produced an
extremely large number of significant DMPs for fake group effects; this was more extreme
in the case of supervised ComBat (producing over 6,000 DMPs) than when adjusting
for batch (somewhat over 2,000 DMPs). Additional adjustment for cell type proportion
ameliorated this effect, as discussed below, but in the case of supervised ComBat data, did
not eliminate spurious findings. This suggests that batch adjustment may be particularly
ill-advised in the context of SQN normalisation; since SQN involves between-array as well
as within-array normalisation, additional adjustment for batch may be over-correcting.

Effect of adjustment for estimated cell type proportion
Adjustment for cell type proportion affected results, but the impact was not consistent
across the different types of effects studied. Adjustment for batch resulted in a substantially
larger number of DMPs (both negative and positive) for infant sex, but reduced the number
of DMPs for fake groups (for models where there were DMPs for fake groups effects). For
BMI and intervention, the effect of cell type adjustment was mostly but not entirely to
produce more DMPs.

The effect of cell type adjustment on top probe rankings was fairly modest, although
some quite large discrepancies were observed for p value rankings, logFC rankings, and
logFC estimates. The effect on distribution of p values depended on the effect: for infant sex,
adjustment for cell type proportion consistently (for all normalisation and batch-correction
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methods) shifted the distribution downwards towards 0 (i.e., more statistically significant
probes), whereas the differences were less consistent and smaller in BMI, intervention and
fake group effects. There were no large or consistent differences in distribution of logFC
estimates between cell-type-adjusted and non-adjusted models.

Overall, adjustment for cell type proportion tended to improve model behaviour
regarding spurious results: the number of significantly differentially methylated probes
decreasedwith adjustment for cell type proportion, though theywere not always eliminated.
The number of differentially methylated probes for infant sex was increased, which may
reflect either improvement (greater ability to detect true effects due to removal of noise
due to cell type differences) or harm (greater number of spurious effects) depending on
whether the extra probes are in fact differentially methylated between males and females;
without knowing the true number and identity of DMPs, we cannot be certain. Similarly,
adjustment for cell type proportion increased the number of DMPs for BMI effects in
BMIQ and SWAN data, in one scenario (BMIQ with Supervised ComBat) by a substantial
amount (from 99 to 2017 DMPs) and these are most likely to be false positives.

DISCUSSION
Different choices in probe filtering, normalisation, batch handling, and adjustment for
cell types resulted in different findings regarding the presence and identity of differentially
methylated probes, rankings of probes by p value and log-fold-change, and different overall
distributions of p values and log-fold-change estimates. While some of these differences
were relatively modest, our results nevertheless show that particular combinations of
data processing and analysis choices may result in spurious false positive findings, and/or
potentially the failure to detect true effects. Additionally, while the magnitude of effect
estimates is often not considered in differential methylation studies, some pipelines may
result in an overestimate or underestimate of the true effect. Importantly, the results
tended to depend on combinations of choices rather than individual elements of the
analysis pipeline.

The results of our analyses are consistent with other investigations which have been
undertaken into different data-processing and analysis choices. As noted above, the
potential for ‘false positives’ to result from supervised batch-correction methods specifying
effects of interest has been previously identified by a number of authors (Nygaard,
Rødland & Hovig, 2016a; Price & Robinson, 2018; Zindler et al., 2020). Our finding that
the distribution of p values in the supervised ComBat algorithm tends to shift the p value
distribution downward is consistent with the finding ofNygaard, Rødland & Hovig (2016a)
that, in contexts where the effects of interest are not evenly spread between batches, the
distribution of F-statisticswill be biased upwards.While implementation as anunsupervised
method may be preferable, our findings suggest that this may create a different problem,
with the estimates of log-fold-change corresponding to effects of interest biased towards
zero.

Wu et al. (2014) compared a variety of normalisation approaches noted a tendency
for more statistically significant differences to arise in SQN data, which they hypothesise
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may be due to reduced overall variance. In our investigation, the main context in which
SQN data produced a large number of spurious differentially methylated probes was when
supervised ComBat, or adjustment for batch in the model, was used; we additionally found
that adjustment for cell type proportion reduced the number of spurious findings (while
not necessarily eliminating them). Thus, SQN is not universally more prone to producing
spurious findings than other normalisation methods.

Our findings do not suggest that there is one particular combination of methods which
can be guaranteed to work in all contexts, and some of the recommendations which have
been made by others may need to be modified somewhat. For example Nygaard, Rødland
& Hovig (2016b) conclude that adjustment for batch in the model is preferable to the use
of batch-correction algorithms, but our results suggest that this is inadvisable for data
that have been normalised using SQN; in our data, this combination resulted in a large
number of spurious findings. In general, while our results support others’ findings that
supervised bach-correction algorithms should not be used, there does not appear to be
much difference between unsupervised batch-correction and adjustment for batch in the
model. The only caveat here is that some of our results (particularly regarding effects of
infant sex) suggest that unsupervised ComBat may underestimate the magnitude of effects,
as the distribution of logFC estimates was substantially narrower than other methods. The
use of a more stringent method of Type I error control may also help to reduce the number
of spurious findings: the use of FDR correction methods such as Benjamini–Hochberg,
while very common (Maksimovic, Phipson & Oshlack, 2017), may not be sufficient to deal
with higher rates of spurious results (Nygaard, Rødland & Hovig, 2016a). In our data, the
use of the Holm method (which controls the Family-Wise Error Rate) reduced, but did
not eliminate, spurious findings associated with fake group effects. Investigation of DNA
regions, rather than probe-wise analysis, may also help to differentiate true methylation
differences from spurious ones (Wang et al., 2015): the statistically significant DMPs for
fake group effects (as well as for BMI and intervention effects) tended to be isolated
rather than being grouped in the same region, and in our companion paper, we found no
significant differences in methylation for groups of probes on candidate genes (Louise et
al., 2022).

One limitation of our study is our inability to compare model behaviour in relation to
known effects. It was relatively simple to create fake groups to study behaviour of models
for effects which were known not to exist, but as we do not know the truth about which
effects actually exist in our data, we could not compare behaviour of models in their ability
to detect these known effects. Simulated data could potentially be used for this purpose;
however, the effects in the simulated data would have to be biologically plausible. This
was beyond the scope of our study; however, it is a good subject for future research. We
used infant sex as the nearest proxy to a known effect, as we knew at least that some effects
existed. However, we cannot say whether, and to what extent, the differences observed in
relation to infant sex reflect spurious findings versus the failure to detect true effects.

Overall, as many other authors have noted, researchers working with DNAmdata should
better understand the methods built into standard pipelines (Price & Robinson, 2018;
Zindler et al., 2020), and should better document the specific data-processing methods
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used (Nygaard, Rødland & Hovig, 2016a; Zindler et al., 2020). It is also important, in our
view, to pay more attention to the context in which a particular epigenome-wide analysis is
performed. For example, a less stringentmethod of Type I error controlmay often be chosen
because the study is exploratory (hypothesis-generating) rather than confirmatory, and it
is considered more important not to miss potential findings than to rule out spurious ones.
In this case, the results from such studies should be interpreted accordingly: as suggestive
findings which cannot be confidently accepted until they are validated in new data. The
validation of existing findings should be treated as a high priority in epigenetics research
(Price & Robinson, 2018).

Additionally, the degree of confidence that can be placed in any new discoveries could
be enhanced by performing sensitivity analyses—re-performing analyses using different
normalisation methods, batch correction methods, or models—which we believe should
become standard in this area.
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