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ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is considered to be related to the worse

prognosis, which might in part be attributed to the early recurrence and metastasis,
compared with other type of kidney cancer. Oxidative stress refers to an imbalance
between production of oxidants and antioxidant defense. Accumulative studies have
indicated that oxidative stress genes contribute to the tumor invasion, metastasis and
drug sensitivity. However, the biological functions of oxidative stress genes in ccRCC
remain largely unknown. In this study, we identified 1,399 oxidative stress genes from
GeneCards with a relevance score >7. Data for analysis were accessed from The Cancer
Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC)

database, and were utilized as training set and validation set respectively. Univariate
Cox analysis, least absolute shrinkage and selection operator (LASSO) Cox regression
and multivariate Cox were employed to construct a prognostic signature in ccRCC.
Finally, a prognostic signature including four different oxidative stress genes was

constructed from 1,399 genes, and its predictive performance was verified through

Kaplan-Meier survival analysis and the receiver operating characteristic (ROC) curve.
Interestingly, we found that there was significant correlation between the expression
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of oxidative stress genes and the immune infiltration and the sensitivity of tumor cells
to chemotherapeutics. Moreover, the highest hazard ratio gene urocortin (UCN ) was
chosen for further study; some necessary vitro experiments proved that the UCN could
promote the ability of ccRCC proliferation and migration and contribute to the degree
of oxidative stress. In conclusion, it was promising to predict the prognosis of ccRCC
through the four oxidative stress genes signature. UCN played oncogenic roles in ccRCC
by influencing proliferation and oxidative stress pathway, which was expected to be the

page 17 novel therapeutic target for ccRCC.
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INTRODUCTION

Kidney cancer is a major health issue worldwide, and is estimated to account for nearly 4%
(79,000 cases) of new cases diagnosed and 2% (13,920 deaths) of cancer deaths in the USA
in 2022 (Siegel et al., 2022). Clear cell renal cell carcinoma (ccRCC) is the most prevalent
of kidney cancer and make up approximately 70% of all cancers in kidney (Rini, Campbell
& Escudier, 2009). So far, surgical resection is still thought to be the first choice for ccRCC
patients (Drangsholt & Huang, 2017; Escudier et al., 2016). However, these patients who
underwent surgery have a nearly 50 percent risk of future metastases (Liu et al., 2020; Yin
et al., 2019). Indeed, it is quite difficult to accurately evaluate the prognosis of ccRCC
patients nowadays.

One of the key factors linked to the development of ccRCC is oxidative stress, which
refers to an imbalance between oxidant production and antioxidant defense that may give
rise to damage to various biological systems (Forman & Zhang, 20215 Zhao et al., 2021).
The final result of oxidative stress is the overproduction and aggregation of reactive oxygen
species (ROS) in vivo (Klaunig, 2018; Prasad, Gupta ¢ Tyagi, 2017). Oxidative stress has
been demonstrated to participate in a wide range of human diseases, especially in malignant
tumor (Klaunig, 2018; Moloney ¢~ Cotter, 2018; Sosa et al., 2013). For an instance, Lee et al.
(2017) found that the excessive generation of ROS may be the reason for drug resistance
to triple-negative breast cancer (TNBC). Bell et all shown that the loss of Sirt3 increases
tumorigenesis of cancer cells in a ROS-dependent way (Bell et al., 2011). Hopefully,
targeting different chemicals involved in oxidative stress may be a great anticancer target.
However, the use of small molecules therapeutically has been disappointing so far (Gorrini,
Harris & Mak, 2013; Zhang, 2019). Therefore, in addition to cancer therapy, we assumed
that oxidative stress can also be utilize to estimate the survival in ccRCC patients to a
certain extent.

In this study, we explored the mutations of oxidative stress genes extracted from
the GeneCards, followed by performing cluster analysis through oxidative stress related
genes on ccRCC samples from The Cancer Genome Atlas (TCGA), and constructed a
prognostic signature consisted of four oxidative stress genes, which was validated as well as
in another data set from ICGC. Moreover, the immune infiltration of these selected genes
was analyzed. Finally, we picked the most significant P value gene urocortin (UCN) for
further verification, and proved that it could significantly promote the ability of ccRCC
proliferation and migration. In a word, this study presented that the prognostic signature
based on oxidative stress was effective on the prediction of the ccRCC prognosis and UCN
might play a vital role in ccRCC progression through oxidative stress.

MATERIALS AND METHODS

Data acquisition

All data about ccRCC were acquired from TCGA and ICGC. The TCGA KIRC cohort
including 530 ccRCC samples and 72 normal samples was selected as a training set and
was downloaded from the University of California, Santa Cruz (UCSC) Cancer Genomics
Browser (https:/genome-cancer.ucsc.edu/). Principal component analysis (PCA) was
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utilized to compare normal and cancer transcriptomic profiles in the TCGA KIRC cohort
(Fig. S1). Additionally, gene expression and clinical data of 91 ccRCC samples in the
validation set were acquired from the ICGC database (https:/dcc.icgc.orgfprojects RECA-
EU).

Clustering of ccRCC samples

The consistent cluster were conducted on the ccRCC samples from the TCGA database via
the R package ConsensusClusterPlus. After that, all samples were divided into seven clusters
form k =2 to k = 8 through Pearson correlation coefficient and Hierarchical clustering
algorithm. Results were obtained from 100 repeated sampling on 80% of the sample.
Finally, we determined the optimal cluster number (k = 3) according to the consistent
cumulative distribution function (CDF) and the delta area diagram, which met the criteria
of high consistency and regional stability under CDF curve.

Statistical analysis
The differentially expressed oxidative stress genes was analyzed by the R package DEseq?2.
The Kaplan—Meier method and log-rank test were used to generate survival curves. Cox
regression models were constructed to calculate the hazard ratio (HR). Subsequently
the following formula were utilized to calculate the risk score of each sample for further
prediction of overall survival (OS): risk score = (exp mRNA 1x coef mRNA1) + (exp
mRNA 2x coef mRNA2) + ... + (exp mRNAN x coef mRNAN). Moreover, the receiver
operating characteristic (ROC) analysis was applied to access the efficiency of the prognostic
signature and was validated as well as in the dataset ICGC. Prognostic signature and some
clinical features were combined to construct a nomogram to further evaluate the survival
probability of ccRCC patients.

All statistical tests were two-side, and P <0.05 was regarded as a statistically significant
difference.

Tumor mutational burden (TMB)

Mutation data of ccRCC in the TCGA database were downloaded from UCSC Xena. The
maf files and count the number of variants in ccRCC patients were identified through
the R package “Maftools”. We then separated the patients into mutation and wild groups
according to the mutation of gene, and compared the difference in prognosis.

Evaluation of tumor microenvironment

Here, one of the most commonly used tools for analyzing immune infiltration CIBERSORT
was applied to evaluated the ccRCC microenvironment. Briefly, we calculated the respective
proportions of list of 22 immune cells combined with the gene expression matrix in the
different risk group patients.

Sensitivity analysis of chemotherapy

In this study, the NCI-60 cell line was utilized as a cancer cell sample group for anti-cancer
drug testing. RNA-seq of 60 different cancer cell lines and drug activity data were obtained
from the CellMiner (Reinhold et al., 2012). This was followed by the Pearson correlation
analysis on the selected gene expression and sensitivity of 792 drugs.
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Cell lines

The 786-O, OS-RC-2 and HEK-293T cell lines were obtained from the Shanghai Cell Bank
Type Culture Collection Committee. Cells were cultured as previously described (Sun
etal., 2021).

Plasmid and stable transfected cells construction
Plasmid, lentivirus and stable transfected cells were constructed as previously described
(Sun et al., 2021). Specially, target DNA sequences were inserted into pLKO.1 plasmid.

RNA extraction, reverse transcribed PCR,quantitative real- time PCR
(qRT-PCR)

Total RNA was extracted with TRIzol reagent (Thermo Fisher Scientific, Waltham, MA,
USA). mRNA was reverse transcribed into cDNA via the Prime-Script™ RT Reagent
Kit (TAKARA, Beijing, China). Quantitative PCR was performed with 2x ChamQ
Universal SYBR qPCR Master Mix* (Vazyme, Nanjing, China). The target gene UCN
expression was normalized to the ratio of GAPDH. The specific primers (5'-3’) used
for qPCR were as follows. (GAPDH -F: ACAACTTTGGTATCGTGGAAGG, GAPDH-R:
GCCATCACGCCACAGTTTC; UCN-F: CAACCCTTCTCTGTCCATTGAC, UCN-R:
CGAGTCGAATATGATGCGGTTCQC)

Cell proliferation assays
Cell proliferation assay was carried out via the CCK-8 kit according to the manufacturer’s
instruction. Cells were seeded in a 96-well flat-bottomed plates, and each well contained
1,500 of 786-0 cells or 2,000 of OS-RC-2 cells in 100 wL of cell suspension. After 24, 48, 72,
and 96 h in culture at 37 °C, cell viability was measured through CCK-8 assays (Dojindo,
Kumamoto, Japan). Each experiment consisted of five replicates and was repeated at least
three times.

Additionally, cell proliferative ability was as well as measured by EAU incorporation assay
(RiboBio, Guangzhou, China). The proliferative nuclei were stained with red fluorescence,
while all nucleus were blue fluorescent light.

Colony-formation assays

786-0 (1,000 cells/well) cells and OS-RC-2 (1,500 cells/well) cells were seeded into 6-well
plate, After the cultivation for two weeks, the colonies were washed with cold 10% PBS
twice, fixed with methano, and stained with crystal violet for 1 h at room temperature,
followed by washing with water. Finally, the colony number in each well was counted and

analyzed.

Transwell migration assay
For transwell migration assays, 6.0 x 10* 786-O cells or 7.0 x 10* OS-RC-2 cells were used
for each well. The specific method was as previously described (Sun et al., 2021).

Intracellular ROS
The dichlorodihydrofluorescein diacetate (DCFH-DA) (Beyotime Institute of
Biotechnology, China) was utilized to test intracellular ROS. The final concentration
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of DCFH-DA was adjusted to 10 mol/L via serum-free medium with 1:1,000. ccRCC cells
transfected with sh-UCN and shControl plasmids were inoculated into 96-well plates
(10,000 cells per well). Cells were washed with serum-free medium for three times after
incubation at 37 °C for 30 min. Finally, the excitation fluorescence values were measured
at 488 nm, while the emission fluorescence values were measured at 525 nm through a
microplate reader (Thermo Fisher Scientific, Waltham, MA, USA).

Intracellular superoxide levels

The dihydroethidium (DHE; Beyotime Institute of Biotechnology, Jiangsu, China) was
utilized to detect Intracellular superoxide levels. ccRCC cells transfected with sh-UCN and
shControl plasmids were inoculated into 96-well plates (10,000 cells per well). Cells were
washed with serum-free medium for three times after incubation at 37 °C for 30 min.
Finally, the excitation fluorescence values were measured at 300 nm, while the emission
fluorescence values were measured at 610 nm.

RESUTLS

Gene mutations are identified in oxidative stress related genes

in ccRCC

A total of 1,399 oxidative stress related genes were collected from the GeneCards and
matched with the mRNA matrix of 530 ccRCC samples from the TCGA database. Then the
oxidative stress related genes were analyzed by TMB. Some vital gene mutations with the
ability to alter the corresponding protein sequence were considered, including missense-
mutation, frame-shift-variant, splice-site—variant, nonsense-mutation, inframe-variant,
translation-start-site-variant and nonstop-mutation. The top 50 oxidative stress genes with
most mutation frequency was shown in Fig. 1A. Furthermore, we divided ccRCC patients
into mutated and wild groups and compared the effects of gene mutations on the prognosis
of patients. The results revealed that the gene mutation in oxidative stress gene set can
reduced patients’ OS time. OS curves of two representative genes (MALATI, RYR3) whose
P values were the most significant are presented in Fig. 1B. It suggested that oxidative stress
related genes were closely associated with genetic mutations in ccRCC.

Consistent clustering of ccRCC by oxidative stress genes
In order to research the possible effect of oxidative stress gene set on prognosis and clinical
characteristics of ccRCC patients, we conducted an unsupervised clustering analysis and
determined the optimal number of clusters by CDF. Considering both CDF and delta area,
we noticed that CDF descending slope tended to be stable and had the optimal consistency
and clustering confidence when K =3 (Figs. S2A, S2B). In addition, the item-consensus
graph also manifested that the sample classification region was stable enough when the
cluster number was 3 (Fig. S2C). The matrix heatmap visually exhibited the distribution
of the cluster samples (Fig. 52D). Ultimately, the heatmap of 1,399 oxidative stress related
genes in 3 clusters was presented in Fig. 2A.

Subsequently, we utilized Kaplan—Meier curve analysis to study the effects of three
clusters on survival time and the result indicated that there were significant differences in
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OS among the three clusters and the cluster 3 had the worst prognosis while the cluster 2
had the best prognosis compared to other clusters (Fig. 2B). Furthermore, we compared

the clinical features among the three clusters including stage, grade, pathologic_TNM stage
(Figs. 2C, 2D, Figs. S3A-S3C). In a brief, the clinical features of patients in different clusters

varied visibly.
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Oxidative stress genes are differently expressed in ccRCC
A total of 531 tumor tissues and 72 adjacent normal tissues in TCGA KIRC cohort
were selected to study the oxidative expression profile of stress genes and explore the

aberrant oxidative stress genes in ccRCC. 139 differentially expressed oxidative stress genes
were extracted after the first round of screening, in which 82 oxidative stress genes were
upregulated while 57 oxidative stress genes were downregulated in tumor tissues compared

Ma et al. (2023), PeerdJ, DOI 10.7717/peerj.14784

7122


https://peerj.com
https://doi.org/10.7717/peerj.14784/fig-2
http://dx.doi.org/10.7717/peerj.14784

Peer

Expression type:
:tumor |
A 0'_'_‘"_‘5 T normal C
'Y | ”’w\ 1 lH H\‘ l“ ‘H W ” (I ‘ ‘I | “ H e
o0
| H m ” N‘ w m 1 “| ’ ‘ HH “ I”H “‘ response to oxidative stress
|
E | ‘ | regulation of stress-activated
i H protein kinase signaling cascade o -log,,
Il | (P.value)
| ‘\ “ ‘ | ’ ” l r‘ ‘|” regulation of stress-activated MAPK cascade o 9
8
L L JM “ h J lw I“’ regulation of oxidative stress—induced Ig
I neuron death 5
s regulatlon of oxidative stress—induced cell death =4
\ “ ‘ il ‘ | \ \f \l regulation of cellular response to
“‘ ‘ ‘ H ‘ ‘ ‘ ‘ oxidative stress * COUNT
it L uw il | -3
”m . ‘ , it “ il ‘ I ‘\ i m posmve regulation of transmembrane transport. . ® 6
|
‘“ “““‘ ‘ ‘ positive regulation of stress—activated &
H‘ |y L‘ ‘ ‘ [ ‘ ‘“ | | MAPK cascade ®
positive regulation of cell migration . 12
] ‘H “‘ “ ‘HH H ‘ \‘ M ‘“ I " H\ positive regulation of cell-cell adhesion| @
1\ it wwl w w R
‘ ‘ ‘ ‘ Fold enrichment
B Volcano D
§ © CALB1 I 1 Transcriptional misregulation |
' ' i -lo
© SLC4A1 ' ! Ras |sn can‘cer (P.vagllfe)
. , ignaling pathway {@ ;
' '
! ' _ - 6
g o TYRP1 : : PI3K-Akt signaling pathway . Ii
- © ADHIC E 3 NF-kappa B signaling pathway B3
L] . .
§ < -- CAL(.)A ° E 3 SLCBA3 o MAPK signaling pathway o
L= : X Lipid and atherosclerosis o
& ° . ' '
TO ., ! ! JAK-STAT signaling pathway [ ) COUNT
° ° 1 ! [ 4
3 oo oo | ! HIF-1 signaling pathway [ ) @5
' '
. e Cell cycle [ X
@ 10
cAMP signaling pathway
6 8 10 12 14

log, (fold change)

Fold enrichment

Figure 3 Prognostic-related and differentially expressed oxidative stress genes in TCGA KIRC cohort.

(A, B) Heatmap showing the expression of 62 prognostic-related and differentially expressed genes be-
tween ccRCC and normal samples, differentially expressed oxidative stress genes with fold change >1 and
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with adjacent normal tissues, and the screening criteria was P value <0.05 and fold change
>1.0 (Table S2).

Secondly, 62 prognostic genes were identified through Univariate Cox analysis (P-value
<0.05) among 139 differentially expressed oxidative stress in ccRCC, and the specific
expression of these prognostic genes were shown in Figs. 3A, 3B. Moreover, the prognostic
genes were found enriched in many pathways related to oxidative stress such as response to

oxidative stress, regulation of cellular response to oxidative stress through GO and KEGG
analysis (Figs. 3C, 3D).
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Construction of the oxidative stress gene signature for predicting
survival in ccRCC

As is shown in Fig. 4A, least absolute shrinkage and selection operator (LASSO) regression
(Figs. S4A, S4B) and multivariate Cox analysis (Table 1) were applied to determine
statistically significant oxidative stress genes which were related to survival time. Finally,
four genes (UCN, PLG, FOXM1, HRH2) with prognostic significance were filtered to
construct a prognostic signature after four rounds of screening. Subsequently, a prognostic
model was established for the following analysis: risk score = (0.30010645 x UCN
expression) - (0.16955462 x PLG expression) + (0.23343259 x FOXM1I expression) -
(0.12178059 x HRH2 expression). To assess the prognostic value of four selected genes,
the ccRCC patients in TCGA KIRC cohort were divided into high-risk group and low-
risk group according to the median risk score. In addition, the Kaplan—Meier curve
demonstrated that the high-risk group patients tended to have worse OS than the low-risk
group patients (Fig. 4B). Additionally, area under the receiver operating characteristic
(AUROQC) curves for the four oxidative stress gene prognostic models were plotted, and the
area under the time-dependent ROC curve for 1-, 3- and 5-year OS were 0.77, 0.70, and
0.71 severally, indicating that this model has great predictive value (Fig. 4D). The heatmap
of four oxidative stress genes between high and low risk groups further visually evidenced
that a higher risk score predicted a worse prognosis (Fig. 4F). Meanwhile, in order to more
exactly assess the survival probability, we constructed the prognostic nomogram for OS at
1, 3, and 5 years (Fig. 4H).

Furthermore, we verified the predictive feasibility of the prognostic signature by 91
ccRCC samples from the ICGC database. All these samples were divided into high-risk and
low-risk group by the above formula. As expected, the prognosis was significantly worse
in the high-risk group than in the low-risk group (Fig. 4C). The AUCs of the four-gene
signature for the 1-, 3- and 5-year OS were 0.677, 0.673 and 0.681 (Fig. 4E). Similarly, we
plotted the heatmap of four genes in the ICGC and constructed the prognostic nomogram
for OS at 1, 3, and 5 years (Figs. 4G, 41).

We explored the relationship between oxidative stress gene signature and some clinical
characteristics of ccRCC patients. The results revealed that men tended to have higher
risk scores compared with women (Fig. S5A). Meanwhile, higher risk scores were closely
associated with poorer disease-specific survival (DSS) outcomes and lymph node metastasis
(Figs. S5B, S5C).

Immune infiltration in high risk and low risk group

Oxidative stress had been reported to be related to immune infiltration (McGarry et al.,
2018; Mendiola et al., 2020). Immune infiltrates in the tumor microenvironment had been
verified to exert important influence in tumor development and had the ability to affect
the clinical outcomes of variety types of cancer patients (Zhang ¢» Zhang, 2020). Here, we
evaluated the immune infiltration status of 22 different immune cell types in the high
risk and low risk ccRCC samples via the method of CIBERSORT. It was noteworthy
that the high-risk group was more likely linked with higher percentage of CD8+T cells,
Tregs, macrophages, T cells follicular helper and plasma cells. In contrast, high-risk group
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Figure 4 Construction and validation of a prognostic model for OS in ccRCC. (A) The detailed pro-
cess to identify oxidative stress genes that significantly correlated to OS. (B, C) The Kaplan—Meier survival
curves of the prognostic signature between high and the low-risk group in the TCGA KIRC cohort and the
ICGC dataset. (D, E) Time-dependent area under the receiver operating characteristic (AUROC) curve
is presented to evaluate the prognostic value of the four gene prognostic in the training and validation
dataset. (F, G) The distribution of risk score, survival status, and gene expression panel in TCGA KIRC co-
hort and ICGC dataset. (H, I) The prognostic nomogram of the four oxidative stress genes for OS at 1, 3,
and 5 years in the training and validation dataset.
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presented significantly higher proportions of Mast cells resting, B cells naive and Dendritic
cells resting (Figs. 5A, 5B). Generally, oxidative stress genes were closely related to immune
infiltration. The difference in prognosis among ccRCC patients might be attributed to the
different distribution of immune cells.
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Table 1 Multivariate Cox regression analysis for four oxidative stress genes’ expression levels in the

TCGA KIRC cohort.
Genes HR (95% CI) P value
UCN 1.350 (1.122-1.624) 0.0015
FOXM1 1.263 (1.079-1.478) 0.0036
HRH2 0.885 (0.803-0.967) 0.0151
PLG 0.844 (0.756-0.943) 0.0027
Notes.

KIRC, Kidney Clear Cell Carcinoma; HR, hazard ratio; CI, confidence interval.

UCN independently predict poor prognosis and may be involved in
oxidative stress

Subsequently, we chose the most significant P-value and highest hazard ratio gene UCN
among the panel of four oxidative stress genes for next study. In TCGA KIRC cohort,
patients with high UCN expression had poorer OS, DSS and progression-free survival
(PES) than low expressed patients (Figs. 6A—6C). We found that UCN was overexpressed
in tumor samples compared to normal samples in both TCGA and ICGC cohorts (Figs.
6D, 6E). Then, the nomograms of UCN for OS were constructed to evaluate the survival
probability of ccRCC patient (Fig. 6F). Furthermore, we performed GSEA analysis to
look for the cancer hallmark pathways of UCN and the top enrichment pathways were
shown in Fig. 6G. The result suggested that UCN exert non-negligible effect on oxidative
phosphorylation. Generally, the level of oxidative stress was positively correlated with the
content of ROS and superoxide in vivo. In order to investigate whether UCN impacted
oxidative stress in tumor cells actually, we constructed a stable knocking down UCN
ccRCC cell lines (Fig. 7A) and employed a series of specific kits to determine the ROS
through DCFH-DA and the superoxide content by dihydroethidium. The result of the
ROS and superoxide content further demonstrated that the UCN was of great importance
in oxidative stress (Figs. 6H, 6I).

UCN promote proliferation and migration of ccRCC

Next, we implemented some functional experiments to determine the role of UCN in
ccRCC cells. Comparing with the control cells, we observed that colony formation was
markedly reduced in silencing UCN cells (Fig. 7B). Similarly, we also observed that the
proliferation of silencing UCN cells was significantly weakened (Figs. 7C, 7D). Furthermore,
to explore whether silencing UCN could as well as affect the migration ability of tumor cells,
we performed the transwell migration assay and proved that knocking down UCN could
vastly attenuated tumor migration (Fig. 7E). In brief, UCN exerted important influence in
the development and migration of cancer cells.

Finally, the data of selected genes in the NCI-60 cell line was acquired from the CellMiner
database, and the relationship between the UCN expression and drug sensitivity was
analyzed. It was worth noting that, the sensitivity of many drugs was associated with the
UCN (P < 0.001) (Fig. 8A). For instance, the high expression of UCN indicated the high
IC50 levels of Gemcitabine, Elliptinium Acetate, Clofarabine, etc. (Fig. 8B). Hopefully,
these drugs were promising as approach for tumor-targeted therapy in the future.
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DISSCUSION

ccRCC always has a poor prognosis compared with other type of renal cell cancer, which may
in part be attributed to its recurrence and distant metastasis (Wang et al., 2019). With the
development of medical science, the treatment of ccRCC has been improved significantly
(Hahn et al., 2020; Snyder et al., 2014; Stein et al., 2019). To date, some immunotherapies
such as cytotoxic T-lymphocyte-associated protein 4 inhibitors and PD1 blockade are
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applied for clinical treatment especially to patients with advanced ccRCC (Atkins ¢» Tannir,
2018; Braun et al., 20205 Kliimper et al., 2021). However, different patients do not respond
synchronously to existing treatments, which leads to a wide range of prognosis among
ccRCC patients (Hsieh et al., 2017; Linehan ¢ Ricketts, 2019). So, it is of great importance
to explore effective prognostic biomarkers for ccRCC patients. Zhou et al. (2020) presented
that HHLA2/PD-L1 co-expression had an adverse effect on the prognosis of ccRCC
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patients, indicating that anti-HHLA2 and blocking PD-L1 combined immunotherapy
was effective in patients with ccRCC possibly. Similarly, Yin et al. (2021) constructed a
novel signature including FOXM1 and TOP2A in TCGA database, which was promising in
predicting prognosis and response to anti-PD-1 therapy in ccRCC. Moreover, Zhang et al.
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(2021) reported that circular RNAs also were prognostic biomarkers for ccRCC and the
hsa_circ_0001167/hsa-miR-595/CCDCS8 regulatory axis, served as prognostic indicators,
was highly correlated with patient prognosis.

Here, our study, for the first time, constructed a prognostic signature including four
genes related to oxidative stress and elaborate that UCN are upregulated and associated
with poor survival in ccRCC patients. We analyzed the mutation of oxidative stress genes
and then divided ccRCC patients from TCGA into three clusters according to the oxidative
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stress genes. The survival probability and clinical characteristics of the three clusters were
detailed analyzed. Next, a prognostic signature containing four selected oxidative stress
genes (UCN, PLG, FOXM1, HRH2) were conducted as a prognostic biomarker for ccRCC
patients by differential expression, survival, and Cox model analysis. The effective of this
signature were verified by Kaplan—Meier survival curve and ROC curve both in TCGA
and ICGC database. Generally, patients in high-risk group according to above signature
tended to have poor prognosis. UCN was also proved to predict poor prognosis in ccRCC.
Additionally, we analyzed the immune cell infiltration in the high and low risk group, and
the drug resistance of prognostic gene UCN. Although more studies with larger sample
sizes are required for further verification, these conclusions can be provided to help clinical
experts in accurate prognosis prediction.

Accumulative evidence confirms a strong relationship between oxidative stress and the
formation or progression of various human cancers (Jelic et al., 2021; Reuter et al., 2010;
Sosa et al., 2013). It is the cellular state of imbalance between oxidation and antioxidant in
which the level ROS always override the antioxidant defense mechanisms of cell (Kirtonia,
Sethi & Garg, 2020; Vallejo, Salazar & Grijalva, 2017). Kumar et al. (2008) showed the
essential role of ROS production by extramitochondrial source in the progression of
prostate cancer and reducing ROS production could provide an effective mean of combating
prostate cancer hopefully (Kirtonia, Sethi & Garg, 2020). Oxidative damage can also lead
to abnormal DNA base modifications that contributes to point mutations, deletions,
insertions, or chromosomal translocations, resulting in oncogene activation or tumor
suppressor gene inactivation. The study of Tanaka et al. (1999) demonstrated that ROS
induced the inactivation of tumor suppressor gene, PI5INK4B and P16INK4A, in ccRCC.
Similarly, Oxidative damage could also affect RNA and proteins (Li, Wu & Deleo, 20065
Yang & Chen, 2021). The primary target of ROS protein interaction is to damage amino
acids giving rise to the modification of protein function. Additionally, Chiang, Chen ¢
Chang (2021) proposed that heme oxygenases (HOs) which acted on heme degradation to
produce carbon monoxide was also a signature of oxidative stress like ROS. Overall, the
degree of oxidative stress in tumor cells are key for determining the prognosis of patients
and specific therapy.

Among our selected four prognostic characteristic genes, the role of FOXM1 and PLG
in ccRCC has been reported widely. Briefly, the overexpression of FOXM1 enhanced RCC
cell aggressiveness and FOXM1 could be regulated by various ncRNAs such as IncRNA and
miRNA, while the overexpression of PLG might inhibit the proliferation and metastasis
of ccRCC (Jiang et al., 2021; Okato et al., 2017; Wu et al., 2021). Of note, the role of UCN
in ccRCC remains unclear. UCN, one of three Urocortins isoforms, is a member of the
corticotrophin-releasing factor family (Fekete ¢ Zorrilla, 2007). UCN affects a range of
pathophysiological processes including different types of cancer through binding to its
receptors (CRFRI and CRFR2). Zhu et al. (2014) proved that UCN promotes hepatic cancer
cell migration through CRFRI, and inhibits hepatic cancer cell migration through CRFR2.
Interestingly, a lot of reports had presented that UCN was a molecule highly associated
with patient prognosis in colorectal cancer, which could effectively predict the survival
time of colorectal cancer patient to a certain extent (Chen, Luo & Guo, 2020; Miao et al.,
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2020). Therefore, we explored that whether UCN could also serve as a prognostic gene in
ccRCC in this study. Meanwhile, we verified that the decrease of UCN expression could
significantly restrict the proliferation and metastasis of ccRCC, and UCN contributed to
the degree of oxidative stress.

To conclude, dysregulation of oxidative stress played a vital role in the carcinogenesis
and progression of ccRCC. It was promising to predict the prognosis of ccRCC through the
four oxidative stress genes signature. In addition, we evaluated the predictive power of the
model on clinical characteristics and immune microenvironment and analyzed the drug
sensitivity of prognostic genes. These results revealed the key role of oxidative stress genes
in progression of ccRCC progression and indicated their potential value in prognostic
prediction and targeted therapy.
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