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ABSTRACT
As plant-specific transcription regulators, YABBYs are involved in plant growth,
development and stress responses. However, little information is available about
genome-wide screening and identification of OsYABBY-interacting proteins. In this
study, phylogenetic relationship, gene structure, protein structure and gene
expression profile of eight OsYABBYs were carried out, all of which indicated that
OsYABBYs were involved in different developmental processes and had functional
differentiation. More importantly, PPI (protein-protein interaction) analysis and
molecular docking simulation predicted that WUSCHEL-related homeobox (WOX)
proteins might be interacting proteins of OsYABBYs. Yeast two-hybrid (Y2H) and
luciferase complementation imaging assays (LCI) further confirmed that OsYABBYs
(except for OsYABBY7) could interact with OsWOX3A in vitro and in vivo.
In addition, OsYABBY3 and OsYABBY5 also could interact with OsWUS. Taken
together, our results provided valuable information for further elucidating
OsYABBYs regulation mechanism in improving rice performance.

Subjects Biochemistry, Bioinformatics, Molecular Biology, Plant Science
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INTRODUCTION
Plants, even more than animals, must respond to adverse environmental conditions, and
make appropriate adjustments in their growth and development in order to survive and
reproduce. During their life cycle, plants have evolved various mechanisms to perceive
challenges. Among these, transcriptional regulators (TRs) play vital roles in activating or
repressing key gene expression (Riechmann et al., 2000; Johnson et al., 2007). YABBYs, as
plant-specific gene family, encode a family of TRs containing two conserved domains: a
C2C2-type zinc finger domain in the N-terminal region, and a helix-loop-helix YABBY
domain (helix-loop-helix motif) in the C-terminal region (Bowman, 2000; Jang et al.,
2004). Most members of YABBY family are expressed in a polar manner in lateral organs
and involved in developmental processes such as leaf growth, floral organ development,
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leaf margin establishment and polarity maintenance (Hou, Lin & Hou, 2020; Kang et al.,
2022; She et al., 2022; Yang et al., 2022).

In Arabidopsis thaliana, six YABBY genes have been identified: FILAMENTOUS
FLOWER (FIL), CRABS CLAW (CRC), INNER NO OUTER (INO), YABBY2 (YAB2),
YABBY3 (YAB3), and YABBY5 (YAB5) (Sieber et al., 2004; Lee et al., 2005a). FIL, YAB2,
YAB3, and YAB5 are considered to be involved in vegetative organ development
(Soundararajan et al., 2019). In establishment of adaxial-abaxial pattern of leaf early
development, FIL and YAB3 directly regulate KAN1 (KANADI1) and ARF4 (AUXIN
RESPONSE FACTOR 4) expression, which in turn set up a positive feedback loop.
In addition, FIL and YAB3 interact with transcriptional co-repressors such as LEUNIG
(LUG) and the closely related LEUNIG_HOMOLOG (LUH) to form a repressive complex,
which negatively regulates potential adaxial-promoting factors (Stahle et al., 2009;
Bonaccorso et al., 2012). By contrast, CRC and INO expression are restricted to
reproductive organs (Eckardt, 2010). CRC is activated by some MADS proteins such as
APETALA3, PISTILLATA, AGAMOUS, and SEPALLATA to regulate nectary and carpel
development (Lee et al., 2005a; Gross, Broholm & Becker, 2018). INO is specifically
expressed in the abaxial region of the ovule primordium, and involved in the formation
and asymmetric growth of the outer integument (Gallagher & Gasser, 2008). Recent studies
suggest that INO reduces the early iron storage in seeds by repressing the expression of
NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1) (Sun
et al., 2021). In cucurbits, wintersweet and petunia, CRC regulates carpel and nectary
development, and displays similar expression patterns to AtCRC (Lee et al., 2005b; Li et al.,
2018;Morel et al., 2018; Zhang et al., 2022). So far, most members of YABBY gene families
in dicotyledonous plants are reported to participate in the determination of abaxial cell
fates and promote leaf abaxial development, while maize CRC-like genes drooping leaf1
(drl1) and drooping leaf2 (drl2) do not exhibit polar expression profiles in meristems
(Strable et al., 2017; Strable & Vollbrecht, 2019).

Compared with Arabidopsis, rice genome comprises eight OsYABBY genes (Toriba
et al., 2007). Knockout/knockdown or ectopic expressing some OsYABBYs do not cause
changes in the polarity of the lateral organs, indicating that these YABBYs may have
different functions between rice and Arabidopsis (Jang et al., 2004; Yamaguchi et al., 2004).
Rice DL (DROOPING LEAF), an orthologous gene of AtCRC, is required for flower
development and leaf vein formation (Ohmori et al., 2011; Sugiyama et al., 2019;
Yamaguchi et al., 2004). Overexpression of OsYABBY1 leads to extra carpels and stamens
(Jang et al., 2004). Another report reveals that OsYABBY1 determines rice height via the
feedback regulation of GA biosynthesis (Dai et al., 2007a). OsSH1 (OsYABBY2) is reported
that a fragment (>4 kb) insertion in intron three causes loss of OsSH1 function (Lin et al.,
2012). Likewise OsYABBY1, overexpression of OsYABBY4 also leads to a semi-dwarf
phenotype by negatively controlling a GA biosynthetic gene, GA20ox2 (Liu et al., 2007;
Yang, Ma & Li, 2016). OsYABBY5 (formerly known as OsYAB3) is negatively regulated by
OsWOX3, simultaneously repressing the class I KNOX (KNOTTED-LIKE HOMEOBOX)
gene expression in rice leaf development. OsYABBY5 RNAi plant exhibits a twisted and
knotted leaf phenotype (Dai et al., 2007b). Apart from this, TOB1 (TONGARI-BOUSHI1,
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OsYABBY5) is a pleiotropic factor of rice spikelet development that function by a non-cell
autonomous manner, and its homolog TOB2 (OsYABBY4), TOB3 (OsYABBY3) also
regulate the maintenance and fate of all reproductive meristems (Tanaka et al., 2012;
Tanaka, Toriba & Hirano, 2017). Although the function of some OsYABBYs have been
identified, there are few reports on the regulatory networks and interacting proteins of
OsYABBYs.

Prediction and characterization of protein-protein interactions (PPIs) can improve our
knowledge of the functions and the 3D structures of proteins, and is essential for
proteomics. In this study, the construction of PPI network of OsYABBYs was viewed as an
important research content, which will help to understand OsYABBYs transcriptional
regulatory network, clarify the interaction between TRs, and provide more accurate target
information for rice growth and development.

MATERIALS AND METHODS
Sequence alignment and phylogenetic analysis
YABBY sequences of rice, Arabidopsis, tomato (Solanum lycopersicum) and maize (Zea
mays) were obtained from the Rice Annotation Project Database (https://rapdb.dna.affrc.
go.jp/) (Sakai et al., 2013), the TAIR10 database (https://www.arabidopsis.org/) (Lamesch
et al., 2012), the SOL Genomics Network (https://solgenomics.net/) (Fernandez-Pozo et al.,
2015), and the MaizeGDB database (https://www.maizegdb.org/) (Portwood et al., 2019),
respectively. Accession numbers of YABBYs were listed in Table S1. Multiple sequence
alignment was performed using ClustalX (Larkin et al., 2007) with default values. Then
neighbor-joining (NJ) phylogenetic tree and maximum-likelihood (ML) tree were
constructed using MEGA7.0 (Kumar, Stecher & Tamura, 2016). For NJ tree construction,
the parameters were set to the poisson model, 1,000 bootstrap replicates, and the bootstrap
value more than 50% was listed at the branches, and those for ML tree are Jones-Taylor-
Thornton (JTT) Model.

Gene structure, motifs and conserved domains prediction
Exon-intron structures of OsYABBYs were confirmed from the Rice Annotation Project
Database (Sakai et al., 2013), and the conserved domains of OsYABBYs were identified by
the uniprot database (https://www.uniprot.org/) (MacDougall et al., 2020). MEME website
(https://meme-suite.org/meme/tools/meme) (Nystrom & McKay, 2021) was used to
predict the motifs of OsYABBYs with the following parameter settings: the maximum
number of motifs, 10; the minimum width and maximum width of motifs, 5 and 20; and
default parameters. Eventually, gene structures, motifs, and conserved domains were
visualized by IBS1.0.3 (Liu et al., 2015).

Plant growth conditions, RNA extraction and qRT-PCR
Rice variety Zhonghua 11 (ZH11, Oryza sativa ssp Japonica/geng) was cultivated in plant
growth room. Seven-day-old seedlings were used for sampling. Roots, stems, and leaves
were taken followed by a quick grind in liquid nitrogen. Similarly, reproductive tissues like
spikelet (40–50 mm), embryo (7–10 days after pollination), stamen (1 day before
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flowering), pistil (1 day before flowering), palea/lemma (1 day before flowering) at
reproductive stage were sampled and immediately stored at −80 �C. Total RNA from
different tissues was isolated by TransZol (Transgen ET101-01; TransGen Biotech Co.,
Ltd., Beijing, China) reagent, and detected by NANODROP 1000 spectrophotometer to
determine the extraction quality and concentration, then reversed transcribed into cDNA
with M-MLV reverse transcriptase (Thermo Fisher Scientific, Waltham, MA, USA)
following the manufacturer’s instructions. Specific primers for all OsYABBYs were
designed using online programs (https://sg.idtdna.com/scitools/Applications/
RealTimePCR/) (Table S2). The RT-qPCR was performed on the QuantStudio 6 Flex
real-time PCR instrument (Applied Biosystems, Foster City, CA, USA) using TB Green�
Premix Ex TaqTM II reagent (Takara RR820A; Takara, Kusatsu, Japan). OsActin1 was used
as an internal reference to standardize gene expression levels, and each cDNA was
subjected to three biological replicates. Relative expression values were calculated using the
2−DDCt method (Livak & Schmittgen, 2001) and the heatmap of gene expression levels was
drawn using TBtools (Toolbox for Biologists) v1.09876 software (Chen et al., 2020a).

PPIs network prediction
OsYABBY interaction proteins were predicted by STRING website (https://string-db.org)
(Szklarczyk et al., 2021). Predicted interacting protein score was set to a minimum of 0.4,
predicted number of direct interacting proteins was set to no more than 50, and the
number of secondary interacting proteins was set to zero. Interaction information was
visualized by Cytoscape 3.7.1 (Shannon et al., 2003). Nodes represented proteins, the
connections between nodes were represented by edges, which hinted the interactions
between these biological molecules (Bader & Hogue, 2003).

Molecular docking simulation
Based on PPI prediction of interacting proteins, RGAP (Rice Genome Annotation Project)
database (http://rice.uga.edu/index.shtml) (Kawahara et al., 2013) was used to obtain
protein sequences, and AlphaFold website (https://www.alphafold.ebi.ac.uk/) (Varadi
et al., 2022) was used to get PDB files containing 3D structure information. ZDOCK
SERVER (http://zdock.umassmed.edu/) (Chen, Li & Weng, 2003) was applied to dock
prediction between two proteins by inputting the PDB files. The spatial structures were
visualized by PyMOL (Yuan et al., 2016), and the closest distance between possible
interacting proteins was measured by the measurement plug-in.

Yeast two-hybrid
The full length of OsYABBY cDNA was amplified and cloned into the bait vector
(pGBKT7), and the CDS of OsWOX3A and OsWUS were obtained and cloned into prey
vector (pGADT7). The fused pGBKT7 and pGADT7 vectors were transformed into yeast
cells (AH109). Transformed cell growth status on the SD/-Leu/-Trp/-His/-Ade medium
was used to determine whether the proteins interact with each other. The primers used to
construct pGBKT7 and pGADT7 vectors were listed in Table S2.
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Luciferase complementation imaging assay (LCI)
OsYABBYs were fused with the amino-terminal of luciferase to construct the N-luc vector,
and OsYABBY-interacted protein coding genes were fused with the carboxyl-terminal of
luciferase to construct the C-luc vector. The two fusion proteins were simultaneously
expressed in tobacco (Nicotiana benthamiana) through agrobacterium-mediated
transformation. If the two proteins interacted with each other, the two parts of luciferase
would be recombined into whole luciferase, which could oxidate luciferin and generate
bioluminescence detected by Tanon5200 (Sun, Zheng & Zhu, 2017).

RESULTS
Phylogenetic analysis of YABBY family proteins
To reveal the phylogenetic relationship of YABBY proteins, amino acid sequences of Zinc
finger and YABBY domains of 37 YABBYs, including eight from rice, six from
Arabidopsis, nine from tomato and 14 from maize were aligned and constructed two
phylogenetic trees. In NJ (neighbor-joining) tree (Fig. 1), all these YABBYs from four
species were clearly divided into five groups: FIL/YAB3, CRC, YAB5, INO and YAB2,
based on the similarity of amino acid sequences. OsYABBYs existed in four groups
excluding YAB5 group, and ZmYABBYs was also not in YAB5 group, which was
consistent with the phylogenetic analysis of other monocot YABBYs (Romanova et al.,
2021; Jie et al., 2022) and suggested that the members in YAB5 group might had unique

Figure 1 Phylogenetic tree of YABBY proteins. Full-size DOI: 10.7717/peerj.14783/fig-1
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function of dicotyledons. In both CRC and INO groups, dicotyledonous and
monocotyledonous YABBYs clustered into a subgroup, respectively, indicating that the
function of these YABBYs might have obvious differentiation. However, the differentiation
of dicotyledonous and monocotyledonous YABBYs in the FIL/YAB3 and YAB2 groups
was not as significant as that in CRC and INO groups. In the ML tree (Fig. S1), similar
results to the NJ tree was shown, indicating that the classification of YAB proteins of the NJ
tree was reliable.

Gene structure, motif and conserved domain identification
Gene structure can provide effective information for understanding gene evolution and
function. Structural analysis revealed that FIL/YAB3 and CRC group genes (OsYABBY3/4/
5, DL) contained seven exons, INO and YAB2 group genes (OsYABBY7, OsYABBY1/2/6)
had six exons (Fig. 2A). Members of the same group were more similar to each other than
to members of other groups, indicating that each group of OsYABBYs might have specific
functions.

The function of a protein is determined by its domains, so the motifs and domains of
OsYABBYs were analyzed. Six motifs were predicted among all YABBY proteins (Fig. 2B,
Fig. S2). OsYABBYs in the same group had similar motifs. For example, YABBY3/4/5 all
had motif5, but other YABBYs did not. It might be a motif unique to FIL/YAB3 group
(Fig. 2B). Motif1 and motif4 constituted the YABBY domain of OsYABBYs, and motif2
and motif3 constituted the zinc finger domain (Fig. 2C). Both the zinc finger domain and
the YABBY domain were considered to be responsible for binding DNA, in which YABBY
domain was the main binding site and was also required for YABBY’s nuclear localization
(Gross, Broholm & Becker, 2018). However, not every OsYABBY had motif4. Absence of
motif4 in some OsYABBYs suggested that the sequences of YABBY domain might be
different. Changes in sequence often lead to changes in function. In the site directed
mutagenesis of AtCRC, it was found that mutations in C2C2 zinc finger domainat affected
the DNA-binding ability, and mutations in YABBY domain destroyed 3D structure and
DNA-binding ability (Gross, Broholm & Becker, 2018). Within the amino acid alignment of
the domains between OsYABBYs and AtCRC (Fig. S3), it could be seen that a few sites
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Figure 2 (A-C) Gene and protein structure of OsYABBYs.
Full-size DOI: 10.7717/peerj.14783/fig-2
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mutated in YABBY domain, suggesting that OsYABBYs might have different
DNA-binding ability.

Expression level of OsYABBYs in various tissues
Plant-specific TRs, such as OsWOX11 (Zhao et al., 2009), OsLBD6 (OsIG1) (Zhang et al.,
2015), OsIDD10 (Xuan et al., 2013), play vital roles during organogenesis and exhibit
specific expression profiles. The expression data of OsYABBYs in various tissues (Figs. 3A
and 3B) provided by the RiceXpro website (http://ricexpro.dna.affrc.go.jp/) were used to
construct a heat map (Fig. 3C, Table S3). Except for the constitutive expression ofDL, most
OsYABBYs were predominantly expressed in reproductive tissues (Fig. 3C).

To verify the reliability of the microarray data of the RiceXpro website, transcriptional
level of OsYABBYs in vegetative and reproductive organs was detected by RT-qPCR
(Fig. 4). All OsYABBYs were expressed at a higher level in reproductive organs (spikelet,
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Figure 3 (A-C) Expression profile of OsYABBYs. Full-size DOI: 10.7717/peerj.14783/fig-3
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embryo, stamen, palea/lemma and pistil) than those in vegetative organs (root, stem
and leaf). OsYABBY1/2/6 (YAB2 group) and OsYABBY7 (INO group) displayed high
expression in palea/lemma, suggesting these genes might redundantly regulate
palea/lemma development. OsYABBY1 expressed widely in various tissues, which was in
accordance with previous report (Dai et al., 2007b) and indicated OsYABBY1 might
participate in different developmental processes. FIL/YAB3 group genes (OsYABBY3/4/5)
had higher transcript in spikelet and weaker in root, demonstrating that they might
co-regulate spikelet growth. Different from the constitutive expression of OsDL in
microarray data, RT-qPCR analysis showed tissue-specific expression pattern of OsDL,
which was mainly expressed in pistil, palea/lemma and spikelet. These results suggested
that different OsYABBYs might be responsible for the development of different
reproductive tissues.

Prediction and verification of OsYABBY interacting proteins
In order to further elucidate OsYABBY functions, the interacting proteins of OsYABBYs
were investigated through STRING website (https://string-db.org). The results revealed
that some OsYABBYs could interact with each other (Fig. S4), and also form complex with
other proteins (Fig. S5). Since the complexes that formed between YABBYs had been
reported (Sieber et al., 2004; Stahle et al., 2009), the more other proteins that could interact

Figure 4 Expression analysis of OsYABBYs in various tissues detected by RT-qPCR. Full-size DOI: 10.7717/peerj.14783/fig-4
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with YABBYs needed to be elucidated. As TRs, YABBYs function in the nucleus, their
interaction candidate proteins should also be localized in the nucleus. Based on this
standard, 17 non-YABBY proteins were screened, including transcription factors (TFs),
chromosome recombination factors, elongator-associated factor, zinc transporter,
gibberellin regulatory protein, enzymes and chaperone (Fig. S5A, Table S4). Among these,
the number of TFs accounted for 70% of all proteins, and the WOX (WUSCHEL-related
homeobox) family proteins accounted for 30% of TFs, indicating that OsYABBYs and
OsWOXs might interact with each other (Fig. S5B). It was reported that some OsWOX
genes (OsWUS, OsWOX3A, OsWOX9A) were highly expressed in reproductive organs and
function in reproductive organ development (Cho et al., 2013; Cheng et al., 2014), which
was similar to expression pattern and role of OsYABBYs. Based on interaction prediction
and expression profiling analysis of OsWOXs and OsYABBYs, interaction verification of
OsYABBYs and OsWOXs was further conducted by molecular 3D docking, Y2H and LCI
experiments.

The 3D docking of OsYABBYs and OsWOXs was executed by ZDOCK program, which
was a docking program to predict several protein complexes via PSC (Pairwise Shape
Complementarity) of input protein structure. The docking results were visualized by
PyMOL software (Fig. 5), and the closest distances measured by PyMOL and the closest
distances between hydrogen bonds were organized into Table S5. Two groups of proteins
YABBY3-WUS and YABBY5-WUS were the closest in space, with distances of 1.0 and
0.9 Å, respectively. The closest distances of YABBY3-WOX3A and YABBY5-WOX3A are
3.2, and 3.1 Å, respectively. The reliability of the STRing website results was confirmed by
the distance between proteins, and the information between hydrogen bonds can also
predict these protein interactions.

The Y2H suggested that OsYABBYs except OsYABBY7 could interact with OsWOX3A,
and OsYABBY3, OsYABBY5 could interact with OsWUS (Fig. 6A). LCI experiment
further verified the results of Y2H (Fig. 6B). It could be seen from the Y2H and LCI that
OsYABBY5-OsWUS, OsYABBY4-OsWOX3A, OsYABBY6-OsWOX3A had strong
interactions, while DL-OsWOX3A had weaker interaction (Fig. 6). The results showed that
there was indeed possibility of interaction between OsYABBYs and OsWOXs, which
would lay a foundation of interpreting OsYABBYs regulatory mechanisms.

DISCUSSION
YABBYs, both C2C2 zinc finger and YABBY domain-containing TRs, are widely involved
in lateral organ development in higher plants and the identification of YABBY gene family
has made progress in many plants (Lu et al., 2021; Xia et al., 2021; Yin et al., 2022; Zeng
et al., 2022). However, systematic investigation of the OsYABBYs-interacting proteins
have been poorly reported. In present study, OsYABBYs evolutionary relationship, gene
structures, conserved domains, and expression pattern were analyzed. More importantly,
their interaction protein information was determined.

It has been reported that YABBY genes have shown functional differentiation in some
species, such as Phalaenopsis orchid, Brassica napus, Cucumis sativus (Chen et al., 2020b;
Xia et al., 2021; Yin et al., 2022), and so on. According to the clustering and expression
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pattern of this study, OsYABBYs also exhibited functionally diverged and were involved in
different biological processes. In the YAB3 group, OsYABBY3, OsYABBY4 and OsYABBY5
were proved to affect spikelet development (Tanaka, Toriba & Hirano, 2017), which was
accordance with their expression profiles (Fig. 4). In the CRC group, OsDL was highly
expressed in pistil (Fig. 4) and in line with its reported regulation of carpel specification
(Yamaguchi et al., 2004). In the YAB2 group, OsYABBY1 was confirmed to control carpel
and stamen development, and plant height, due to its wide expression trait (Fig. 4). These
results indicated that OsYABBYs in different groups had different function based on their
various expression pattern, which suggested that expression profile of OsYABBYs might
one major reason of their function divergence.

Protein interactions also play an essential role in protein functional differentiation.
In Arabidopsis, YABBY-interacting proteins had been identified and characterized by
biochemical and genetic methods. For instance, LUG, LUH and LUG-associated
coregulator SEUSS were verified as interacting proteins of most vegetative AtYABs (FIL,
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Figure 5 (A-D) Tertiary structure simulation and molecular docking.
Full-size DOI: 10.7717/peerj.14783/fig-5
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Figure 6 The interaction of OsYABBYs with OsWUS and OsWOX3A. (A) Protein interaction identified
by Y2H. AD and BD indicated empty pGADT7 and pGBKT7 vectors, respectively. SD/-Ade/-His/-Leu/-Trp
indicated SD medium lacking Ade, His, Leu, and Trp. (B) Protein interaction identified by LCI. Cluc vector
and Nluc vector were selected as negative control. The pseudocolor bars indicated the range of luminescence
intensity in each image. Full-size DOI: 10.7717/peerj.14783/fig-6
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YAB3, and YAB5) (Stahle et al., 2009; Boter et al., 2015). NOZZLE (NZZ) was confirmed to
bind FIL, YAB3 and INO, in which INO was one of reproductive AtYABs (Sieber et al.,
2004). In rice, OsSEU3 was indicated as OsYABBY5 interaction protein, co-regualting the
development of rice floral organs (Tanaka, Toriba & Hirano, 2017). And interacting
proteins with other OsYABBYs are rarely reported. In this study, 17 non-YABBY proteins
in the STRING database were predicted to be OsYABBY interacting proteins. No rice
homologs of reported AtYABBY interacting proteins that had been reported were found in
the 17 proteins, which suggested that difference of YABBY interacting proteins might be
responsible for function divergence between monocotyledonous and dicotyledonous
YABBYs. Among predicted interacting proteins of OsYABBYs, members of OsWOX
family accounted for a relatively high proportion, and shared similar expression pattern
and function with OsYABBYs, such as severely defective in tillering and flower
development in oswus mutant (Tanaka et al., 2015), and narrow-curly leaves, increased
tillers, abnormal development of floral organs in oswox3a mutant (Cho et al., 2013; Yoo,
Cho & Paek, 2013). In addition, the assay of OsYABBY-OsWOX docking suggests the
possibility of interaction between them (Fig. 5). And the evidence of interaction between
DoYABBY and DoWOX in Dendrobium candidum further supports our prediction (Zeng
et al., 2022). Based on these results, we speculated that the interaction between OsYABBY
and OsWOX family members might be a major regulatory pathway for its function.
Furthermore, we found that the OsYABBYs of different groups exhibited different
interacting network by interacting with different proteins. The YAB2 group (OsYABBY1/
2/6) and the FIL/YAB3 group (OsYABBY3/4/5) could interact with OsWOX3A, but only
the FIL/YAB3 group members (OsYABBY3/5) could interact with OsWUS, and the CRC
group (DL) and the INO group (OsYABBY7) had no or weak ability to interact with
OsWUS and OsWOX3A (Fig. 6). The difference in interaction results suggested that
OsYABBYs of different groups might achieve their functions through different pathways,
which also hinted that it might be another reason for OsYABBY’s function divergence and
paved the way for our next step in studying the function of OsYABBYs.

As a plant-specific TR, the regulatory mechanism of OsYABBYs have not been analyzed
in detail. In previous reports, WOX family members were thought to be downstream of
YABBYs (Nakata et al., 2012), but our study reveals OsWOXmaybe improtant interacting
proteins of OsYABBYs, which laid foundation for explaining the regulatory network of
YABBY. Furthermore, YABBY domain was regarded as high similarity with HMG-box
domain (Filyushin et al., 2017; Gross, Broholm & Becker, 2018), and whether OsYABBYs
could function as chromatin proteins also need further study. Overall, our study provides
guidance and direction for future research of OsYABBYs.

CONCLUSIONS
Eight OsYABBYs were classified into four groups based on protein sequences. Gene
structure, domain analysis and expression pattern demonstrated the structural and
functional differentiation of OsYABBYs. Public microarray datasets and RT-qPCR data
revealed that OsYABBYs had tissue/organ-specific expression profiles. Importantly, PPIs
analysis revealed OsYABBYs could interact with OsWUS and OsWOX3A, which would
provide a theoretical basis for further analysis of OsYABBYs.
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