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ZFP36 ring ûnger protein like 1 signiûcantly suppresses
human coronavirus OC43 replication
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CCCH-type Zinc ûgure proteins (ZFP) are small cellular proteins that are structurally
maintained by zinc ions. Zinc ions coordinate the protein structure in a tetrahedral
geometry by binding to cystine- cystine or cysteines - histidine amino acids. ZFP9s unique
structure enables it to interact with a wide variety of molecules including RNA; thus, ZFP
modulates several cellular processes including the host immune response and virus
replication. CCCH-type ZFPs have shown their antiviral eûcacy against several DNA and
RNA viruses. However, their role in the human coronavirus is little explored. We
hypothesized that ZFP36L1 also suppresses the human coronavirus. To test our
hypothesis, we used OC43 human coronavirus (HCoV) strain in our study. We
overexpressed and knockdown ZFP36L1 in HCT-8 cells using lentivirus transduction. Wild
type, ZFP36L1 overexpressed, and ZFP36L1 knockdown cells were each infected with
HCoV-OC43, and the virus titer in each cell line was measured over 96 hours post-infection
(p.i.). Our results show that HCoV-OC43 replication was signiûcantly reduced with ZFP36L1
overexpression while ZFP36L1 knockdown signiûcantly enhanced virus replication.
ZFP36L1 knockdown HCT-8 cells started producing infectious virus at 48 hours p.i. which
was an earlier timepoint as compared to wild -type and ZFP36L1 overexpressed cells. Wild-
type and ZFP36L1 overexpressed HCT-8 cells started producing infectious virus at 72 hours
p.i.. Overall, the current study showed that overexpression of ZFP36L1 suppressed human
coronavirus (OC43) production.
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38 Abstract 

39 CCCH-type Zinc figure proteins (ZFP) are small cellular proteins that are structurally maintained 

40 by zinc ions.  Zinc ions coordinate the protein structure in a tetrahedral geometry by binding to 

41 cystine- cystine or cysteines - histidine amino acids.  ZFP�s unique structure enables it to interact 

42 with a wide variety of molecules including RNA; thus, ZFP modulates several cellular processes 

43 including the host immune response and virus replication. CCCH-type ZFPs have shown their 

44 antiviral efficacy against several DNA and RNA viruses. However, their role in the human 

45 coronavirus is little explored. We hypothesized that ZFP36L1 also suppresses the human 

46 coronavirus. To test our hypothesis, we used OC43 human coronavirus (HCoV) strain in our 

47 study. We overexpressed and knockdown ZFP36L1 in HCT-8 cells using lentivirus transduction.  

48 Wild type, ZFP36L1 overexpressed, and ZFP36L1 knockdown cells were each infected with 

49 HCoV-OC43, and the virus titer in each cell line was measured over 96 hours post-infection 

50 (p.i.).

51 Our results show that HCoV-OC43 replication was significantly reduced with ZFP36L1 

52 overexpression while ZFP36L1 knockdown significantly enhanced virus replication.  ZFP36L1 

53 knockdown HCT-8 cells started producing infectious virus at 48 hours p.i. which was an earlier 

54 timepoint as compared to wild -type and ZFP36L1 overexpressed cells. Wild-type and ZFP36L1 

55 overexpressed HCT-8 cells started producing infectious virus at 72 hours p.i.. Overall, the 

56 current study showed that overexpression of ZFP36L1 suppressed human coronavirus (OC43) 

57 production.  

58

59

60

61

62 Keywords: CCCH type Zinc finger protein, ZFP36L1, RNA binding protein, human coronavirus 

63 OC43
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64 Introduction

65 ZFPs are small cellular proteins that are structurally maintained by zinc ions.  Zinc ions coordinate 

66 the protein structure in a tetrahedral geometry (Abbehausen, 2019; Hajikhezri, 2020). There are 

67 over 40 different types of ZFPs that have been annotated so far (Hajikhezri, 2020). ZFP�s unique 

68 structure enables it to interact with a wide variety of molecules such as DNA, RNA, PAR (poly-

69 ADP-ribose), and cellular proteins and thus modulate several cellular processes including host 

70 immune response and virus replication (Müller et al., 2007; Cassandri et al., 2017; Takata et al., 

71 2017; Tang, Wang & Gao, 2017; Meagher et al., 2019;Lal, Ullah & Syed, 2020; Nchioua et al., 

72 2020; Gonzalez-Perez et al., 2021; Wang & Zheng, 2021). Among various ZFPs, the CCCH-type 

73 ZFP family contains zinc ions that coordinate protein structure by binding to cystine-cystine or 

74 cysteines-histidine amino acids (Abbehausen, 2019; Hajikhezri, 2020). The CCCH-type ZFP 

75 family has also been characterized for its antiviral (Hajikhezri, 2020; Tang, Wang & Gao, 2017; 

76 Zhang, et al., 2020; Guo  et al ., 2004; Zhao et al., 2019; Gao, Guo & Goff, 2002; Zhu et al., 2020; 

77 Musah, 2004; Chen, Jeng & Lai, 2017; Scozzafava et al., 2003; Schito et al., 2006; Angiolilli et 

78 al., 2021) and immune modulator activity (Wang et al., 2015; Tu et al., 2019; Haneklaus et al., 

79 2017; Lv et al., 2021; Matsushita et al.,  2009; Wawro, Kochan & Kasza, 2016; Uehata, & Akira, 

80 2013; Chen et al., 2018; Mino et al., 2015; Fu  &   Blackshear,   2017; Stumpo,  Lai & Blackshear, 

81 2010; Shrestha, Pun & Park, 2018; Kontoyiannis, 2018; Chiu et al., 2022). 

82 CCCH-type ZFPs show their antiviral efficacy against several RNA viruses including Influenza A 

83 virus (Tang, Wang & Gao, 2017), retrovirus (Gao, Guo & Goff, 2002; Zhu et al., 2011; Zhu et al., 

84 2017) filoviruses (Müller, 2007), and alphavirus such as Sindbis virus, Semliki Forest virus, Ross 

85 River virus, and Venezuelan equine encephalitis virus (Bick et al., 2003). However, CCCH-type 

86 ZFP�s role on the human coronavirus is little explored. The current study is designed to evaluate 

87 the effect of ZFP36L1, a CCCH-type ZFP, on human coronavirus (HCoV)-OC43 replication. 
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88 Materials & Methods

89

90 Cells, Virus Strains and Virus Propagation

91 HCT-8 cells (ATCC, Manassas, VA) were cultured in Roswell Park Memorial Institute (RPMI) 

92 1640 Medium (Gibco BRL, Grand Island, NY) and supplemented with 10% heat-inactivated 

93 fetal bovine serum (FBS), (ATCC, Manassas, VA), and antibiotic-antimycotic: penicillin 100 

94 units /ml, streptomycin 0.10 mg /ml and amphotericin B 0.25 ¿g /ml (Sigma-Aldrich, St. Louis, 

95 MO). During virus culture, HCT-8 cells were adapted to 1% FBS.  HCT-8 cells cultured with 

96 RPMI 1640 medium supplemented with 1% FBS were used to grow and subsequently titrate the 

97 OC43 human coronavirus (HCoV) stain (ATCC, Manassas, VA). 

98 Overexpression and knockdown of ZFP36L1 

99 HCT-8 cells were stably overexpressed for ZFP36L1 (NCBI reference sequence: 

100 NM_001244701.1) with a green fluorescent protein (GFP) marker using a lentivirus vector. The 

101 ZFP36L1 gene containing both tandem zinc finger domains (TZFD) such as TZFD1 and TZFD2 

102 were cloned in a pLV-eGFP plasmid with the help of Vector Builder Inc, IL. To make the 

103 lentivirus, pLV-eGFP plasmids containing our gene of interest were co-transfected with VSV-G 

104 and packaging plasmids encoding Gag/Pol and Rev in HEK293T cells.  After 48 hours, the 

105 supernatant containing the lentivirus was collected and purified by centrifugation followed by 

106 filtration. Purified lentivirus was concentrated using a sucrose gradient ultracentrifugation and 

107 this concentrated, purified lentivirus was used in the study. 

108 Similar to ZFP36L1 overexpression, HCT-8 cells were knockdown for ZFP36L1 using ZFP36L1 

109 specific shRNA (GTAACAAGATGCTCAACTATA). The ZFP36L1 shRNA was stably 

110 expressed using a lentivirus by cloning it in a pLV-mCherry plasmid. Lentivirus for ZFP36L1-
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111 shRNA was prepared as per the above-mentioned method by co-transfection of pLV-mCherry 

112 containing ZFP36L1 shRNA with VSV-G and packaging plasmids in HEK293T cells. 

113 The prepared lentiviruses were used to either overexpress or knock down ZFP36L1. Successful 

114 lentivirus transduction was measured through GFP or mCherry expression for ZFP36L1 

115 overexpression (GFP) or ZFP36L1knockdown (mCherry), respectively. Transduced HCT-8 cells 

116 were selected with an increased concentration of puromycin (2-3 µg/ml) over 7 days. Selected 

117 cells were further characterized for ZFP36L1 overexpression or knockdown using a western blot 

118 with ZFP36L1-specific antibodies.

119 Western blot analysis for ZFP36L1 expression  

120 To confirm ZFP36L1 overexpression or ZFP36L1 knockdown; wild type, ZFP36L1 

121 overexpressed and ZFP36L1 knockdown HCT-8 cells were individually seeded in T25 flasks. 

122 When cells reached 75-80% confluency, cells were lysed using a radioimmunoprecipitation 

123 assay buffer (RIPA buffer) (Cell Signaling Technology, Danvers, MA) supplemented with 

124 protease-phosphatase inhibitor (Cell Signaling Technology, Danvers, MA). Lysates were then 

125 centrifuged at 3000 X g for 15 minutes at 4 °C. The supernatant was collected and the protein 

126 concentration in each supernatant was measured using the Pierce� BCA Protein Assay Kit 

127 (Thermo Fisher Scientific, Waltham, MA). 40 ¿g cell lysates were separated through 12% 

128 resolving SDS PAGE gel. After separation, proteins were transfected onto a polyvinylidene 

129 difluoride (PVDF) membrane (Thermo Fisher Scientific, Waltham, MA). The PVDF membrane 

130 was blocked with 5% skimmed milk (Sigma-Aldrich, St. Louis, MO) in Tris-buffered saline 

131 (TBS) for 1 hour at room temperature followed by incubation with anti- ZFP36L1 antibody 

132 (1:1000) (Thermo Fisher Scientific, Waltham, MA) and anti- ³actin antibody (1:4000) (Cell 

133 Signaling Technology, Danvers, MA) overnight at 4 °C. After overnight incubation, membranes 
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134 were washed with tris-buffered saline +0.1% Tween 20 (TBST) and incubated with HRP 

135 conjugated secondary antibodies (1:2000) for 1 hour at room temperature. After washing, 

136 membranes were developed using the Pierce ECL Western Blotting Substrate (Thermo Fisher 

137 Scientific, Waltham, MA). Images of the western blot were taken by the Odyssey XF Imaging 

138 System (LI-COR Biosciences, Lincoln, NE). Band intensity for ZFP36L1 proteins was 

139 normalized with ³  actin using ImageJ software (Schneider, Rasband & Eliceiri, 2012) A 

140 significant difference in ZFP36L1 expression in ZFP36L1 overexpressed and knockdown cells 

141 compared to wild-type cells was estimated using a paired T-test.  

142 Determining ZFP36L1�s effect on HCT-8 cells viability 

143 The effect of ZFP36L1 overexpression and its knockdown on cell viability was measured by 

144 trypan blue exclusion assay (Strober, 2015). Wild type, ZFP36L1 overexpressed and ZFP36L1 

145 knockdown cells were individually seeded in 6 well plates (1.5 x106 cell/well) in triplicate. 96 

146 hours post-seeding, cells were washed with sterilized phosphate-buffered saline (PBS) and 

147 detached with 0.25% trypsin-EDTA (ATCC, Manassas, VA). Detached cells were washed with 

148 PBS by centrifugation at 500x g for 5 minutes at 4 °C, and then cells were stained with 0.4% 

149 trypan blue for 3 minutes and examined for cell. Changes in cell viability following ZFP36L1 

150 overexpression or its knockdown compared to wild-type cells was estimated by paired t-test. 

151 Measuring the effect of ZFP36L1 expression on virus titration 

152 Wild type, ZFP36L1 overexpressed and ZFP36L1 knockdown HCT-8 cells were infected with 

153 HCoV-OC43 with 0.1 multiple of infection (MOI) individually. The supernatant from these cells 

154 was collected at 24 hours, 48 hours, 72 hours, and 96 hours p.i. Collected cell supernatants were 

155 then centrifuged at 1000Xg at 4°C for 15 minutes to remove cell debris and stored at -80 ° C 

156 until used. Once samples from all time points were collected, the HCoV-OC43 virus titer was 
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157 determined as per the aforementioned method (Reed & Muench, 1938). Changes in virus titer in 

158 ZFP36L1 overexpressed or ZFP36L1 knockdown cells were compared to wild-type cells and 

159 statistically analyzed by a paired T-test. 

160 Measuring the effect of ZFP36L1 expression on HCoV-OC43 replication. 

161 To measure the effect of ZFP36L1 overexpression or ZFP36L1 knockdown on HCoV-OC43 

162 replication, we infected ZFP36L1 overexpressed, ZFP36L1 knockdown or wild type HCT-8 cells 

163 with HCoV-OC43 (MOI: 0.1). Infected cells were collected at 72 and 96 hours p.i. Viral RNA 

164 was isolated from infected cells using the QIAamp Viral RNA Mini kit (Qiagen, Valencia, CA, 

165 USA). The viral nucleocapsid was quantified using qPCR (Stratagene MX3000P Real-Time 

166 Thermocycler, Stratagene Inc., La Jolla, USA) in 25 ¿l reaction using syber green dye.  Primer 

167 sequence for nucleocapsid (F: 5�-: GCTGTT TWTGTTAAG TCYAAA GT-3�, R: 5�- 

168 ATTCTGATAGAGAGTGCYTAT Y-3�) were used (Al-Khannaq, et al., 2016) with qPCR 

169 amplification cycle at 95°C/ 2 minutes, 40 cycles of (95 °C/15 and 60 °C/ 1 minutes) followed 

170 by melting curve cycle at: 95°C/ 15 seconds, 60°C/ 1 minute and 95°C/ 15 seconds. Fold change 

171 in HCoV nucleocapsid expression in each cell was estimated by paired -test. 

172 Statistical analysis

173 The significant change in HCoV-OC43 titer and virus replication in wild-type, ZFP36L1 

174 overexpressed, or ZFP36L1 knockdown cells was estimated using a paired T-test with 95% 

175 degree of freedom. Virus titer in wild-type, ZFP36L1 overexpression or ZFP36L1 knockdown 

176 cells was repeated at least three times with calculations for average, standard deviation, and 

177 standard error. 

178

179 Results

180

181 ZFP36L1 was overexpressed or knockdown in HCT-8 cells.
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182 A stable ZFP36L1 overexpression with an upstream GFP marker in HCT-8 cells was generated 

183 using a lentivirus system. GFP expression in HCT-8 cells was considered positive for ZFP36L1 

184 overexpression (Figure 1B), which was further confirmed by western blot (Figure 2 and Figure 

185 3). Similarly, ZFP36L1 was knockdown using ZFP36L1-specific shRNA. The shRNA was 

186 located downstream to mCherry and expression of ZFP36L1-specific shRNA was determined by 

187 mCherry expression (Figure 1C) and ZFP36L1 knockdown was confirmed by western blot 

188 analysis (Figure 2 and Figure 3).   Our results showed that lentivirus significantly overexpressed 

189 or knockdown ZFP36L1 in HCT-8 cells (p<0.05) (Figure 2 and Figure 3).

190

191 ZFP36L1 overexpressing or its knockdown did not affect HCT-8 cells� viability

192 The effect of ZFP36L1 overexpression or its knockdown was measured on HCT-8 cells� viability 

193 using trypan blue exclusion assay. Results showed that overexpression or knockdown of 

194 ZFP36L1 in HCT-8 cells did not affect its viability. Wild type, ZFP36L1 overexpressed and 

195 ZFP36L1 knockdown cells showed viability as 94.83±1.01%, 94.16±0.71%, and 95.83±0.43% at 

196 96 hours post seeding, respectively These values were non-significant different to each other 

197 (p<0.05) (Figure 4). Additionally, no apparent morphological changes were observed among 

198 these cells. 

199  ZFP36L1 overexpression significantly suppressed while ZFP36L1 knockdown significantly 

200 enhanced the HCoV-OC43 production.

201 Wild type,ZFP36L1 overexpressed, and ZFP36L1 knockdown HCT-8 cells were infected 

202 individually with HCoV-OC43 with MOI of 0.1. Cell supernatants were collected at 24 hours, 48 

203 hours, 72 hours, and 96 hours p.i. and analyzed for virus titer. 
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204 Results showed that ZFP36L1 overexpression in HCT-8 cells significantly reduced virus titer 

205 (p<0.05) (Figure 5).  Virus titer in ZFP36L1 overexpressed cells ion was 2.24±1.28 log10/ml and 

206 4.32±0.00 log10/ml at 72 hours and 96 hours p.i. respectively. These titer values were 

207 significantly lower than virus titers in wild-type cells at same time points, such as 72 hours p.i. 

208 (4.08±0.11 log 10/ml) and 96 hours p.i. (5.42±0.10 log 10/ml) (p<0.05) (Figure 5).

209 Results with ZFP36L1 knockdown HCT-8 cells showed that ZFP36L1 knockdown significantly 

210 enhanced virus titer (p<0.05) (Figure 5). Knocking down ZFP36L1 facilitated the infectious 

211 virus production as early as 48 hours p.i. while wild-type cells produced infectious viruses at 72 

212 hours p.i. The virus titer in ZFP36L1 knockdown cells was recorded as 00.00±0.00 log 10/ml, 

213 2.86±0.00 log 10/ml, 4.52±0.22 log 10/ml, and 5.85±0.01 log 10/ml at 24 hours, 48 hours, 72 

214 hours and 96 hours p.i., respectively. While wild-type HCT-8 cells have virus titer of 0.00±0.00 

215 log 10/ml, 0.00±0.00 log 10/ml, 4.08±0.11 log 10/ml, and 5.42±0.10 log 10/ml at 24 hours, 48 

216 hours, 72 hours and 96 hours p.i., respectively. Virus titer in ZFP36L1 knockdown cells was 

217 significantly higher at 48 hours and 96 hours p.i compared to wild-type cells (p<0.05) (Figure 5). 

218 Results also showed a lower cytopathic effect in ZFP36L1 overexpressed or wild-type HCT-8 

219 cells compared to ZFP36L1 knockdown cells at 72 hours p.i. (Figure 6)

220 ZFP36L1 overexpression significantly suppressed while ZFP36L1 knockdown significantly 

221 enhanced the HCoV-OC43 RNA replication.

222 To further confirm ZFP36L1�s effect on HCoV-OC43 RNA replication, wild type, ZFP36L1 

223 overexpressed and ZFP36L1 knockdown HCT-8 cells were individually infected with HCoV-

224 OC43 (MOI: 0.1). Infected cells were collected at 72 and 96 hours p.i. Viral RNA was isolated 

225 from infected cells and viral nucleocapsid transcription (RNA concentration) was analyzed using 

226 qPCR.  Results did not show any significant difference in HCoV-OC43 nucleocapsid RNA 
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227 concentration among these cells at 72 hours p.i. However, at 96 hours p.i. ZFP36L1 knockdown 

228 HCT-8 cells showed significantly higher HCoV-OC43 nucleocapsid transcription compared to 

229 wild type HCT-8 cells (p<0.05). ZFP36L1 knockdown HCT-8 cells displayed an 11.14±2.21-

230 fold increase in HCoV-OC43 nucleocapsid RNA compared to wild-type HCT-8 cells. While 

231 ZFP36L1 overexpressed cells displayed a significantly lower HCoV-OC43 nucleocapsid RNA 

232 (0.37±0.13 fold) compared to wild-type cells at 96 hours p.i. (p<0.05) (Figure 7).

233 Discussion

234 The current study was designed to determine the role of ZFP36L1 (a CCCH type ZFP) on 

235 HCoV-OC43 replication. Our results showed that overexpression of ZFP36L1 significantly 

236 reduced infectious HCoV-OC43 production while ZFP36L1 knockdown significantly enhanced 

237 virus titer compared to wild-type cells.  ZFP36L1 overexpression also reduced the RNA 

238 replication of HCoV-OC43 and suppressed the apparent cytopathic effect in infected cells. 

239 ZFPs are one of the most abundant proteins in humans which can make up to 5% of total human 

240 proteins (Vilas et al., 2018).  ZFPs have an extremely high binding ability. They can bind to cellular 

241 DNA, RNA, lipids, proteins, and PAR (poly-ADP-ribose); therefore, ZFPs can modulate several 

242 cellular types of machinery (Müller et al., 2007; Cassandri et al., 2017; Takata et al., 2017; Tang, 

243 Wang & Gao, 2017; Vilas et al., 2018; Meagher et al., 2019; Lal, Ullah & Syed, 2020; Nchioua et 

244 al., 2020, Wang & Zheng, 2021; Gonzalez-Perez et al., 2021). The diverse binding properties of 

245 ZFPs make it difficult to characterize their functional effect in cells (Vilas et al., 2018). However, 

246 such a challenge is overcome by classifying the ZFPs and then identifying their functional 

247 characteristics (Cassandri et al., 2017). Classification of ZFP is based on zinc ion, zinc ion 

248 interaction with specific amino acids, and the protein�s folded structure (Krishna, Majumdar & 

249 Grishin, 2003). Based on such classification, CCCH-type ZFP is characterized to interact with 
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250 RNA and thus modulate RNA metabolism in the cell (Maeda & Akira, 2017). including interfering 

251 with RNA virus replication (Gao, Guo & Goff, 2002; Cassandri et al., 2017). 

252 The known mechanisms by which CCCH-type ZFPs exhibit these antiviral or immunomodulatory 

253 activities is by limiting the total mRNA turnover in the cell. CCCH-type ZFPs such as ZFP36L1 

254 have two tandem zinc finger (TZF) domains that are known to bind with adenyl and uracyl 

255 nucleotides-rich (AU-rich) elements (AREs) in mRNA. This interaction facilitates RNA 

256 degradation by CCR4-NOT complex-mediated deadenylation, followed by 5� decapping and 

257 exonuclease-mediated nucleotide cleaving (Blackshear, 2002; Lai, Kennington & Blackshear, 

258 2003; Lykke-Andersen & Wagner, 2005; Suk et al., 2018; Lai et al., 2019; Lai et al., 2000; Chiu 

259 et al., 2022). 

260 Coronavirus genome, including HCoV-OC43�s genome is 52-capped with a 32 poly(A) tail of 

261 variable length (Fehr & Perlman, 2015). The length of the poly (A) tail varies at different stages 

262 of the virus replication cycle and viruses with longer poly (A) tails replicate at a faster rate (Wu et 

263 al., 2013). Therefore, the effect of ZFP36L1 on viral poly (A) may explain reduced virus 

264 production with ZFP36L1 overexpression in the current study. Our study not only showed that 

265 ZFP36L1 suppressed the infectious HCoV-OC43 production, but also reduced HCoV-OC43 

266 nucleocapsid transcription indicating that ZFP36L1 mediates its antiviral effect by limiting the 

267 viral RNA in infected cells. 

268 However, there is the possibility that ZFP36L1 can reduce virus replication with different 

269 mechanisms other than poly A tail interaction. A study showed that CCCH Type ZFP also targets 

270 the non-ARE sequence of 3� and 5� (untranslated region) UTR in mRNA (Li et al., 2015). While 

271 another study showed that CCCH Type ZFP targets CG-rich viral sequences (Meagher et al., 

272 2019). The study also showed that ZFP36 (ZFP36L1) suppressed the virus production (influenza 
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273 A virus) by interfering with viral protein translation/ export from the nucleus to the cytoplasm 

274 without affecting viral RNA replication (Lin et al., 2020). Therefore, a detailed study to determine 

275 ZFP36L1�s mechanism of action for suppressing coronavirus replication needs to be explored. 

276

277 Conclusions

278 The current study showed that overexpression of ZFP36L1, a CCCH type ZFP significantly 

279 reduced HCoV-OC43 RNA (nucleocapsid) and infectious virus production. A reduced viral 

280 production was in correlation with reduced cytopathic effect in the infected cells. Furthermore, 

281 ZFP36L1 knockdown significantly enhanced the HCoV-OC43 replication and infectious virus 

282 production. However, additional mechanisms employed to reduce virus replication still need to 

283 be explored.  
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Figure 1
Overexpression and knockdown of ZFP36L1 in HCT-8 cells

Wild type HCT8 wells (A), ZFP36L1 overexpressed HCT-8 cells with GFP marker (B), and
ZFP36L1 knockdown HCT-8 cells with mCherry marker (C). Overexpression and knockdown of
ZFP36L1 were performed by lentivirus transduction.
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Figure 2
Western blot for conûrming ZFP36L1 overexpression and knockdown in HCT-8 cells

Cell lysate for wild type HCT-8 cell (A), ZFP36L1 overexpressed (B) and ZFP36L1 knockdown
(C) were separated with 12% resolving SDS PAGE gel and transferred to PVDF membrane.
Proteins on the membrane were detected with an anti-ZFP36L1 antibody and anti- ³actin
antibody with HRP-conjugated secondary antibodies.
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Figure 3
Relative quantiûcation of ZFP36L1 expression in HCT-8 cell following its overexpression
and knockdown

Cell lysate for wild-type HCT-8 cell, ZFP36L1 overexpressed and ZFP36L1 knockdown was
analyzed for ZFP36L1 and ³ actin using western blot. Band intensity for ZFP36L1 proteins
was normalized with ³ actin using ImageJ software. A signiûcant diûerence in ZFP36L1
expression in ZFP36L1 overexpressed and knockdown cells compared to wild-type cells was
estimated using a paired T-test. Asterisks are showing signiûcant diûerences in ZFP36L1
expression.
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Figure 4
Eûect of ZFP36L1 on HCT-8 cells viability

The eûect of ZFP36L1 overexpression and its knockdown on cell viability was measured by
trypan blue exclusion assay. Wild type, ZFP36L1 overexpressed and ZFP36L1 knockdown
cells were individually seeded in 6 well plates. After 96 hours post-seeding, cells were
detached and stained with 0.4% trypan blue to determine the percent viability. Changes in
cell viability following ZFP36L1 overexpression or its knockdown compared to wild-type cells
was estimated by paired T-test.
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Figure 5
Human coronavirus-OC43 titer in HCT-8 cells.

Wild type, ZFP36L1 overexpressed and ZFP36L1 knockdown HCT-8 cells were infected
individually with HCoV-OC43 with 0.1 MOI. Supernatant from these cells was collected at 24
hours, 48 hours, 72 hours, and 96 hours p.i. and analyzed for virus titer. Asterisks are
showing signiûcant diûerences in virus titer.
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Figure 6
Eûect of ZFP36L1 expression on Human coronavirus-OC43 induced cytopathic eûect in
HCT-8 cells

Wild type, ZFP36L1 overexpressed and ZFP36L1 knockdown HCT-8 cells were infected
individually with HCoV-OC43 with 0.1 MOI. Cytopathic eûect was observed at 72 hours p.i. at
40X magniûcation
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Figure 7
Eûect of ZFP36L1 expression on Human coronavirus-OC43 replication

Wild-type, ZFP36L1 overexpressed and ZFP36L1 knockdown HCT-8 cells were infected
individually with HCoV-OC43 with 0.1 MOI. Viral RNA was isolated from infected cells at 72
and 96 hours p.i. Isolated RNA was quantiûed using qPCR (for viral nucleocapsid). Fold
change in nucleocapsid RNA in ZFP36L1 overexpressed and knockdown cells as compared to
wild-type HCT-8 cells were estimated using paired T-test. Asterisks are showing signiûcant
diûerences in viral RNA.
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