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ABSTRACT
Hepatitis C remains a major public health problem in the world. The host immune
system plays a key role in viral clearance. This study aimed to investigate the connection
between retinoic acid-inducible gene I-like (RIG-I-like) receptor gene polymorphism
and hepatitis C chronicity in the Chinese Han population. The current study genotyped
three SNPs (IFIH1 rs10930046 and DHX58 rs2074158, rs2074160) to assess their
association with the chronicity of hepatitis C virus (HCV) infection among 1,590
participants (590 spontaneous HCV clearance cases and 1,000 persistent infection
patients). Our research shows that DHX58 rs2074158-G allele (dominant model:
adjusted OR = 1.53, 95% CI [1.20–1.95], P = 0.001; additive model: adjusted OR =
1.50, 95% CI [1.27–1.78], P < 0.001) and IFIH1 rs10930046-C allele (additive model:
adjusted OR = 1.26, 95% CI [1.07–1.49], P = 0.005) were associated with chronic
hepatitis C (CHC). And the risk of CHC increased in people carrying more unfavorable
genotypes (rs2074158-AG/GG or rs10930046-CC), with the chronic rates for genotypes
number from zero to two in 60.69%, 57.33%, and 85.93%, respectively (adjusted OR
= 3.64, 95% CI [2.18–6.08]; P < 0.001). Genetic polymorphism of IFIH1 and DHX58
may be related to CHC in the Chinese Han population. Furthermore, the risk of CHC
increases as the number of unfavorable genotypes carried by the HCV-infected person
increases. IFIH1 rs10930046, DHX58 rs2074158, age, ALT, and AST levels were all
independent predictors of CHC.
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INTRODUCTION
As estimated by the World Health Organization, 71 million people are under chronic HCV
infection worldwide (Stasi, Silvestri & Voller, 2020). More than half of individuals living
with HCV reside in Asia and the Pacific area (29.6 million), with China having the largest
HCV epidemic (9.8million) (Hill, Nath & Simmons, 2017). There are twomanifestations of
HCV infection: acute infection (the virus clears within six months) and chronic infection
(the immune system is unable to clear the virus) (Chigbu et al., 2019). Approximately
30% of patients could achieve spontaneous clearance during the acute infection period
(Chigbu et al., 2019), whereas the remaining 70% would develop a chronic infection. HCV
genotype 1b is more common in hepatitis C patients, and this study population was no
exception. After recurrent liver damage, chronic HCV infection frequently results in poor
life outcomes such as liver failure, cirrhosis, and hepatocellular carcinoma (HCC) (Chigbu
et al., 2019). HCV infection is an urgent problem to be solved in reducing deaths from
liver-related diseases, which account for approximately 700,000 deaths annually (Rowe,
2017; Stasi, Silvestri & Voller, 2020). However, more resources and innovation are needed
to achieve the 2030 elimination target (Thomas, 2019; Thomas, 2020).

HCV is a member of the Flaviviridae family, which is a positive-sense single-stranded
RNA virus with a highly structured genome that is 9.6 kb in length (Adams, Pirakitikulr
& Pyle, 2017). During the replication process, viral RNA polymerase generates a negative
RNA that encodes a single polyprotein that is the target of the host’s innate immune system
(Adams, Pirakitikulr & Pyle, 2017). The recognition of viral infection and induction of the
innate antiviral immune response is activated by the recognition of pathogen-associated
molecular patterns present in the viral genome through binding to pattern recognition
receptors (PRRs). Following that, a series of signal cascades are activated, resulting in the
production and secretion of type I interferons for viral defense and immune regulation (Li et
al., 2014; Ireton, Wilkins & Gale, 2017). Retinoic acid-inducible gene-I-like receptor (RLRs)
is the main PRRs for RNA viruses (International Committee on Taxonomy of Viruses, 2000;
Adams, Pirakitikulr & Pyle, 2017; Chigbu et al., 2019). RLRs contain retinoic acid-inducible
gene I (RIG-I), melanoma differentiation antigen 5 (MDA5), and laboratory of genetics
and physiology 2 (LGP2), belonging to the RNA helicase superfamily (Loo & Gale, 2011),
which are encoded by DHX58, IFIH1, and DHX58 respectively, and expressed in most cell
types in the human body and play an important role in the immune response to RNA
virus infection (Ireton, Wilkins & Gale, 2017). Hence, the ability to eliminate HCV may be
closely related to RLRS.

Host factors like gender and genetic variants, as well as viral factors such as HCV
RNA levels, have been related to clearance and chronicity. Studies have associated
higher chronicity rates with allele polymorphisms of Human leukocyte antigen class
II and Interleukin 28 (Rauch et al., 2010; Lingala & Ghany, 2015). This further suggests
that the host immune system may play a key role in viral clearance. However, there is
limited knowledge about these variants according to current research (Vergara et al.,
2019). Therefore, it is necessary to study the relationship between RLRs family gene
polymorphisms and HCV chronic infection.
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MATERIALS & METHODS
Study participants
This study included three types of high-risk groups of HCV infection, including a person
who uses drugs from the compulsory rehabilitation center of Nanjing Public Security
Bureau from May 2006 to December 2006 (N = 311), hemodialysis patients from nine
hospital dialysis centers in Jiangsu Province from October 2008 to December 2009
(N = 184), former paid-blood donors from nine natural administrative villages in a
certain area of Zhenjiang from April 2011 to April 2015 (N = 1095). All of the research
objects had HCV antibody positive for more than 6 months and voluntarily signed an
informed consent form. The inclusion criteria of the research subjects are as follows:
(1) The patient was diagnosed with HCV by an experienced doctor based on clinical
symptoms and strict compliance with the international standard biochemical examination
indicators; (2) patients with complete baseline information (age, gender, and biochemical
markers) and HCV antibody and viral load information. The exclusion criteria of the
research subjects are as follows: (1) Han population patients under the age of 18; (2)
patients with interferon treatment history; (3) patients co-infected with HBV and HIV;
(4) patients who suffer from autoimmune disease or malignant tumor; (5) patients with
other types of liver disease (including liver-related genetic diseases such as hepatolenticular
degeneration which is a single-gene hereditary liver disease). All Patients were divided into
categories based on their HCV antibodies and viral load. HCV antibody-positive and HCV
RNA-negative spontaneous HCV clearance were identified. Persistent HCV infection was
defined as anti-HCV positive and HCV-RNA positive. The study was conducted following
the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of
Nanjing Medical University (2017445).

Data and blood sample collection
The patient’s demographic and clinical baseline data are collected through the electronic
medical record system. Professional medical personnel who had undergone standardized
training through formal procedures collected 5 ml of EDTA anticoagulant blood from
each participant. Blood samples were centrifuged and separated into red blood cells,
serum, and white blood cell parts within 24 h and stored at −20 ◦C. The serum samples
were used to detect HCV antibodies and biochemical indicators of liver function (alanine
aminotransferase and aspartate aminotransferase).

SNP selection and genotyping
First, the genotype information of the target genes of the Chinese Han population was
downloaded from the 1,000 Genome Project website (http://www.1000genomes.org/)
Single-nucleotide polymorphisms (SNPs) were selected with the help of Haploview 4.2
software. r2 (linkage disequilibrium coefficient) higher than 0.8 (Kim & Kirkpatrick, 2009),
and MAF ≥0.1 is defined as tag SNP. Secondly, the potential functions of tag SNPs were
explored based on bioinformatics databases (NCBI, GTEx Portal, HaploReg v4.1 and
SNP Function Prediction, etc.). Combining GTEx Portal to analyze quantitative traits of
different genotypes of SNPs with the SNP Function Prediction database to see if SNPs
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have miRNA binding functions, for example, allows us to further investigate potential
functions. Thirdly, the search results were explored for potential SNPs in the existing
research literature. Previous studies have shown that mutations at IFIH1 rs10930046 and
DHX58 rs2074158 rs2074160 were associated with infectious and autoimmune diseases
(Zhang et al., 2018; Yao et al., 2021), both of which were closely related to the body’s
immune function. Therefore, we select these three interesting SNPs for this study for
further analysis.

To extract genomic DNA from white blood cells, the phenol-chloroform extraction
method was used, and the NanoDrop2000 was utilized to detect DNA purity and
concentration. Samples with a concentration of TaqMan allelic discrimination assay on the
ABI 7900HT sequence detection system were used to analyze the gene polymorphism. The
information on primers and probes is shown in Table S1. The operator was uninformed
of the participants’ clinical data. Each 384-well format is programmed with two blank
controls. The polymerase chain reaction (PCR) program was set at 50 ◦C for 2 min, 95 ◦C
for 10 min, 95 ◦C for 45 cycles for 15 s, and 60 ◦C for 1 min. 10% of the samples were
randomly selected to repeat experiments, and 100% consistency was achieved. The success
rates of SNPs genotyping were above 90%.

Statistical analysis
Study participants’ characteristics were described as the mean ± standard deviation or as
counts and proportions. Differences in selected variables were compared between HCV
spontaneous clearance group and the persistent infection group using Student’s t -test
or Chi-square test. The association between candidate SNP genotypes and CHC risk was
investigated using multivariate logistic regression analysis, and the results were given as
odds ratios and 95% confidence intervals. In this study, the dominant (heterozygote +
mutational homozygote versuswild homozygote), recessive (heterozygote versusmutational
homozygote +wild homozygote), and additive (wild homozygote versus heterozygote versus
mutational homozygote) geneticmodels were utilized to explore the exact patterns in which
a genetic variation works. The trend analysis was assessed with the Cochran–Armitage trend
test. HaploView was used to calculate LD parameters (i.e., r2 and D’), and PHASE software
(version 2.1; UW TechTransfer Digital Ventures, University of Washington, Seattle, WA,
USA) was used to reconstruct the haplotype block and estimate the frequencies. Then,
stratified analysis was performed to explore the underlying factors which may influence the
outcome. Cochran’s Q test was used to estimate the heterogeneity between the subgroups.
All statistical analyses were performed by Stata (version 12.0, STATA Corp, College Station,
TX, USA). All tests were two-sided, P values < 0.05 were considered statistically significant,
and multiple comparisons were corrected by FDR.

RESULTS
Demographic and clinical characteristics of participants
A total of 1,590 patients were enrolled, including 590 spontaneous clearance patients (215
males, 375 females) and 1,000 persistent infection cases (337males, 663 females). Themean
age of the persistent infection group (54.03 ± 11.58) was higher than the spontaneous
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Table 1 Baseline characteristics of HCV spontaneous clearance and persistent infection populations.

Variables Spontaneous HCV
clearance (%)
N = 590

Persistent HCV
infection (%)
N = 1000

P-value

Age (years) 49.66± 13.51 54.03± 11.58 <0.001
≤50 162 (27.46) 136 (13.60)
>50 428 (72.54) 864 (86.40)

Gender 0.267
Male 215 (36.44) 337 (33.70)
Female 375 (63.56) 663 (66.30)

ALT (U/L) 22 (14,37) 27 (16,50) <0.001
<40 460 (77.97) 605 (60.50)
≥40 130 (22.03) 395 (39.50)

AST (U/L) 26 (19,35) 32 (23,49) <0.001
<40 466 (78.98) 566 (56.60)
≥40 124 (21.02) 434 (43.40) <0.001

Notes.
Abbreviations: ALT, alanine transaminase; AST, aspartate aminotransferase.
Bold font indicates that the data is statistically significant.

clearance group (49.66 ± 13.51) (P < 0.001). In addition, the serum levels of alanine
aminotransferase (ALT) and aspartate transaminase (AST) were higher in the persistent
infection group (P < 0.001). The basic characteristics of the two groups were presented in
Table 1.

Association of candidate genes polymorphisms with HCV chronicity
Table 2 shows the genotype distributions of the three potential SNPs (IFIH1 rs10930046,
DHX58 rs2074158, rs2074160) and their relationships withHCV chronicity. After adjusting
for age, gender, serum ALT, and AST levels, multivariate logistic regression showed that
DHX58 rs2074158 (Dominant model: adjusted OR= 1.53, 95% CI [1.20–1.95], P = 0.001;
Additivemodel: adjustedOR= 1.50, 95%CI [1.27–1.78], P < 0.001) and IFIH1 rs10930046
(Additive model: adjusted OR =1.26, 95% CI [1.07–1.49], P = 0.005) were significantly
associated with CHC risk. A significant correlation was found between candidate SNPs
and CHC risk after FDR correction (P = 0.003 and 0.008, respectively) (Table S2).
Subsequently, the combined impact of rs2074158 and rs10930046 was evaluated depending
on the number of unfavorable genotypes (Table 3). The results demonstrated that the risk
of CHC increased with the number of unfavorable rs2074158-AG/GG and rs10930046-CC
genotypes increased (Ptrend<0.001). Compared with patients not carrying risk genotypes,
CHC patients with two risk alleles have a 3-fold higher risk of chronic disease than those
without risk genotypes (adjusted OR = 3.64, 95% CI [2.18–6.08], P < 0.001).

Two-locus haplotypes consisting of rs2074158 and rs10930046 variant alleles were
reconstructed using HaploView software and PHASE software (Table 4). Compared
with participants with the most frequent AT haplotype, those with the AC haplotype
showed significantly higher persistent infection risk (OR = 1.295, 95% CI [1.070–1.566],
P = 0.008), while GT and GC haplotypes showed no significant associations (P > 0.05).
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Table 2 Association of selected SNPs with chronic hepatitis C.

SNPs(genotype) Spontaneous HCV
clearance
N = 590

Persistent HCV
infection
N = 1000

OR (95% CI) P-value

rs2074158
AA 429 (75.53) 650 (67.22) 1.00 –
AG 104 (18.31) 153 (15.82) 1.03 (0.77–1.37) 0.865
GG 35 (6.16) 164 (16.96) 2.99 (2.01–4.44) <0.001

Dominant model
AA 429 (75.53) 650 (67.22) 1.00 –
AG/GG 139 (24.47) 317 (32.78) 1.53 (1.20–1.95) 0.001

Recessive model
AA/AG 533 (93.84) 803 (83.04) 1.00 –
GG 35 (6.16) 164 (16.96) 2.97 (2.03–4.46) <0.001

Additive model 1.50 (1.27–1.78) <0.001
rs10930046

TT 385 (67.54) 594 (63.26) 1.00 –
TC 150 (26.32) 211 (22.47) 0.87 (0.67–1.12) 0.285
CC 35 (6.14) 134 (14.27) 2.32 (1.54–3.48) <0.001

Dominant model
TT 385 (67.54) 594 (63.26) 1.00 –
TC/CC 185 (32.46) 345 (36.74) 1.14 (0.91–1.44) 0.259

Recessive model
TT/TC 535 (93.86) 805 (85.73) 1.00 –
CC 35 (6.14) 134 (14.27) 2.41 (1.63–3.65) <0.001

Additive model 1.26 (1.07–1.49) 0.005
rs2074160

GG 446 (79.93) 762 (80.55) 1.00 –
GA 98 (17.56) 152 (16.07) 0.96 (0.72–1.29) 0.793
AA 14 (2.51) 32 (3.38) 1.70 (0.87–3.34) 0.121

Dominant model
GG 446 (79.93) 762 (80.55) 1.00 –
GA/AA 112 (20.07) 184 (19.45) 1.05 (0.80–1.37) 0.748

Recessive model
GG/GA 544 (97.49) 914 (96.62) 1.00 –
AA 14 (2.51) 32 (3.38) 1.72 (0.89–3.45) 0.115

Additive model 1.10 (0.88–1.38) 0.410

Notes.
Abbreviations: HCV, hepatitis C virus; OR, odds ratio; CI, confidence interval.
The P value of persistent HCV infection versus spontaneous HCV clearance was calculated based on the logistic regression
model, adjusted by age, gender, ALT and AST.
Bold font indicates that the data is statistically significant.

Stratified analysis
According to the combined variant genotypes of two SNPs (rs2074158 and rs10930046),
a stratified analysis was performed to assess whether genetic associations are consistent
across subgroups and explore how potential confounders may disorder the observed
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Table 3 Association of the number of dangerous genotypes with chronic hepatitis C.

Risk alleles Spontaneous HCV
clearanceN = 590

Persistent
HCV infection
N = 1000

OR, 95% CI P-value

0 401 (72.78) 619 (67.95) 1.00 –
1 131 (23.77) 176 (19.32) 0.94 (0.72–1.23) 0.643
2 19(3.45) 116 (12.73) 3.64 (2.18–6.08) <0.001
Trend Pa=2.929× 10-5
0 401 (72.78) 619 (67.95) 1.00 –
1–2 150 (27.22) 292 (32.05) 1.30 (1.02–1.66) <0.001

Notes.
Abbreviations: HCV, hepatitis C virus; OR, odds ratio; CI, confidence interval.
The risk alleles is the number of unfavorable genotypes (rs2074158-AG/GG, rs10930046-CC).
The P value of persistent HCV infection versus spontaneous HCV clearance was calculated based on the logistic regression
model, adjusted by age, gender, ALT and AST.
Pa-value was from Cochran–Armitage trend test.
Bold font indicates that the data is statistically significant.

Table 4 Haplotype analysis of rs2074158 and rs10930046 in the study population.

Haplotype Spontaneous
HCV clearance

Persistent
HCV infection

OR (95% CI) P

(rs2074158–rs10930046)
AT 841 1322 1 1
AC 213 462 1.295 (1.070–1.566) 0.008
GT 119 199 1.140 (0.888–1.464) 0.304
GC 7 17 1.664 (0.662–4.186) 0.279

genetic (Table 5). The combined effects of these independent SNPs and CHC were more
significant among female patients (adjusted OR = 1.49, 95% CI [1.10–2.03], P = 0.011)
and patients whose serum AST level was less than 40 U/L (adjusted OR = 0.73, 95% CI
[0.55–0.97] P = 0.032) and more than 40U/L (adjusted OR = 1.68, 95% CI [1.10–2.57],
P = 0.016). AST subgroup was significant heterogeneity with CHC risk, but the remaining
subgroups were not. Therefore, the interaction between AST levels and the combination
of these two SNPs was investigated, and the findings revealed that the interaction was not
statistically significant (Table S3).

Bioinformatics analysis of IFIH1-DHX58 SNPs
TheRegulomeDB rank for rs2074158 and rs10930046were 1f and 7, respectively. It indicates
that rs2074158 may be related to the potential function, such as expression Quantitative
Trait Loci, TF binding, or DNase peak. The results of the UCSC database suggest that
the positive SNP exerts its effect on HCV infection by affecting the transcription function
(Figs. 1A, 1B). To further study the impact of mutations on transcription changes. The
RNA fold web server was also used to further predict the secondary structure of mRNA and
obtain its minimum free energy. The changes in mRNA structure caused by the rs2074158
polymorphism are depicted in Fig. 2. The MFE of the centroid mRNA secondary structure
of the mutant G allele is −43.2 kcal/mol, which is higher than that of the wild-type A
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Table 5 Stratified analysis on combined variant genotypes and chronic hepatitis C.

Subgroups Spontaneous HCV clearance Persistent HCV infection OR (95% CI) Pa Pb

CHC riskc,0 CHC riskc,1-2 CHC riskc,0 CHC riskc,1-2

Age (years) 0.828
<50 109 (71.24) 44 (28.76) 86 (68.25) 40 (31.75) 1.230 (0.729–2.076) 0.437
≥50 292 (73.97) 106 (26.63) 533 (67.90) 252 (32.10) 1.315 (0.998–1.739) 0.052

Gender 0.138
Male 140 (69.65) 61 (30.35) 213 (70.76) 88 (29.24) 1.013 (0.674–1.525) 0.949
Female 261 (74.57) 89 (25.43) 406 (66.56) 204 (33.44) 1.492 (1.096–2.031) 0.011

ALT (U/L) 0.446
<40 304 (70.86) 125 (29.14) 356 (65.32) 189 (34.68) 0.881 (0.667–1.161) 0.371
≥40 97 (79.51) 25 (20.49) 263 (71.86) 103 (28.14) 1.099 (0.705–1.712) 0.677

AST (U/L) 0.015
<40 309 (71.20) 125 (28.80) 355 (69.47) 156 (30.53) 0.734 (0.553–0.974) 0.032
≥40 92 (78.63) 25 (21.37) 264 (66.00) 136 (34.00) 1.683 (1.100–2.573) 0.016

Notes.
This table illustrates the effects of adverse alleles on HCV chronicity between groups of confounding factors.
Abbreviations: ALT, alanine transaminase; AST, aspartate aminotransferase; HCV, hepatitis C virus; OR, odds ratio; CI, confidence interval.

aThe P-value of persistent HCV infection versus spontaneous HCV clearance was calculated by the logistic regression model, adjusted by sex, age, ALT, and AST.
bThe P-value was the result of the heterogeneity test.
cCHC risk: The number of unfavorable genotypes (0 vs 1–2).

allele. The changes in mRNA structure due to the rs10930046 polymorphism are shown in
Fig. 3. The MFE of the centroid mRNA secondary structure of the mutant C allele is−16.5
kcal/mol, which is lower than that of the wild-type T allele.

DISCUSSION
HCV is a major global threat. Until 2040, deaths from chronic hepatitis are projected to
exceed the combined mortality associated with HIV infection, tuberculosis, and malaria
(Foreman et al., 2018). Therefore, it is necessary to study the mechanism of HCV chronic
infection.

RIG-I-like receptors play a very important role in the establishment of innate immunity
against viruses. Our research showed that the rs2074158 polymorphism of the DHX58
gene and the rs10930046 polymorphism of the IFIH1 gene are risk factors for chronic
HCV infection. A GWAS analysis also revealed that the rs76398191 polymorphism of the
ARL5B gene is related to the chronicity of HCV infection (Vergara et al., 2020). Variants
in MHC, IFNL4–IFNL3, and GPR158 increase the odds of HCV clearance in patients of
European and African ancestry (Vergara et al., 2019). The polymorphism of rs3747517
in the IFIH1 gene is also related to the chronicity of HCV (Hoffmann et al., 2015). These
suggest that genetic variants correlated with interferon may influence the chronicity of
HCV possibly through regulation of gene expression. The outcome of HCV infection (i.e.,
the persistence of the virus) and the presentation and extent of liver disease are the results
of a complex interplay between the virus and the host immune response (Gremion & Cerny,
2005). Several studies have shown that the HLA gene, TLR gene, and NK gene variants are
related to HCV chronic disease (Wang et al., 2011; Spengler et al., 2013).
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Figure 1 Functional annotation of (A) DHX58 rs2074158 and (B) IFIH1 rs10930046 based on EN-
CODE data in UCSC functional website. Note: the red line with an asterisk (*) in the middle of the pic-
ture marks the location of (A) DHX58 rs2074158 and (B) IFIH1 rs10930046.

Full-size DOI: 10.7717/peerj.14740/fig-1

Regarding the connection between both the IFIH1 rs10930046-C mutation and chronic
HCV infection, MDA5 is a dsRNA helicase that is encoded by the IFIH1 gene. MDA5
binds to the viral RNA in the cytoplasm to activate the downstream immune cascade and
release cytokines to exert the host’s antiviral effect. Even in cancer cells, MDA5 can interact
with cellular RNA to induce an immune response (Dias Junior, Sampaio & Rehwinkel,
2019). MDA5 is the main PRR that recognizes HCV. Cellular experiments showed that
the activation of interferon caused by HCV infection mainly depends on the induction of
MDA5 (Cao et al., 2015). Several studies have shown that genetic polymorphisms of IFIH1
are associated with autoimmune-related diseases (Smyth et al., 2006; Looney et al., 2015)
and AGS (a rare progressive encephalopathy) (Oda et al., 2014). Some studies have found
that IFIH1 rs10930046 is related to the occurrence of systemic lupus erythematosus and
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Figure 2 The influence of rs2074158 onmRNA centroid secondary structures of DHX58. Changes in
the local structure were illustrated by the RNAfold Web Server. The arrow indicates the position of the
mutation (50 bases upstream and 50 bases downstream from the mutation). The minimum free energy of
the mRNA centroid secondary structure (a structure with minimal base pair distance) for wild type and
mutant rs10930046 were estimated to be−42.60 kcal/mol (A) and−43.20 kcal/mol (B), respectively. The
wild-type and mutant-type sequences are listed on the right. The bold and underlined font indicates the
nucleotide difference between the wild and mutant allele.

Full-size DOI: 10.7717/peerj.14740/fig-2
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Figure 3 The influence of rs10930046 onmRNA centroid secondary structures of IFIH1. Changes in
the local structure were illustrated by the RNAfold web server. The arrow indicates the position of the mu-
tation (50 bases upstream and 50 bases downstream from the mutation). The minimum free energy of the
mRNA centroid secondary structure (a structure with minimal base pair distance) for wild type and mu-
tant rs10930046 were estimated to be−18.0 kcal/mol (A) and−16.50 kcal/mol (B), respectively. The wild-
type and mutant-type sequences are listed on the right. The bold and underlined font indicates the nu-
cleotide difference between the wild and mutant allele.

Full-size DOI: 10.7717/peerj.14740/fig-3
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diabetes (Rodríguez et al., 2015; Silva et al., 2016), which can infer that IFIH1 rs10930046
can affect the immune function disorder of the body, and then lead to the occurrence of
the disease. From this point of view, chronic HCV infection may be a manifestation of
immune disorders. Combined with the bioinformatics analysis of UCSC and RNA fold
Web server, the rs10930046 mutation may affect the transcription function of IFIH1 and
then change the secondary structure of mRNA and affect MDA5 to exert its host immune
and antiviral response function.

However, the effective antiviral response mediated by MDA5 mainly depends on LGP2.
LGP2 is an ATP-dependent RNA helicase. It was found that the DHX58 rs2074158-G
mutation is related to chronic HCV infection. LGP2 can have antiviral effects in several
ways, including upregulating apoptosis regulatory genes to increase cell apoptosis during
viral infection (Takahashi et al., 2020). Different RLR receptors have different recognition
capabilities and signal characteristics for RNA (Yoneyama et al., 2005). The common viral
antagonism supports a positive role for LGP2 and a connection with MDA5 (Rodriguez,
Bruns & Horvath, 2014). Studies have shown that LGP2 acts as a negative feedback regulator
of antiviral signals, which may be due to LGP2 having a stronger affinity for viral RNA
than MDA5 (Rothenfusser et al., 2005). In addition, since LGP2 lacks a signal transduction
domain, it can play a role in viral infection by cooperating with MDA5, and it can act as a
concentration-dependent switch between MDA5-specific enhancement and interference.
LGP2 can regulate the activation ability of MDA5 through concentration changes, which
in turn affects the occurrence of downstream cascades (Rodriguez, Bruns & Horvath, 2014).
Studies have shown that an SNP mutation in the DHX58 gene disrupts the LGP2-PACT
interaction, leading to the loss of LGP2-mediated MDA5 signaling regulation (Sanchez
David et al., 2019). Based on bioinformatics, we found that rs2074158-G is a missense
mutation with a RegulomeDB rank of 1f, which is predicted to affect TF binding and
DNase peak. Based on UCSC and ENCODE database analysis, rs2074158 is located near
the active promoter element (H3K4Me1) in 7 cell lines. Possibly pathogenic SNPs are
enriched in enhancer and regulatory element areas, particularly in the H3K4Me1 region,
indicating that these alterations may impact disease progression through the regulation of
gene transcription and expression. In conclusion, SNP rs2074158 may affect the function
of the DHX58 gene through several possible mechanisms, including regulation of gene
expression, thereby affecting the host immune function by interfering with the effective
antiviral response of MDA5, and ultimately affecting the outcome of HCV infection.

At the same time, the chronicity of HCV is associated with the increase in the number of
unfavorable alleles of DHX58 rs2074158 and IFIH1 rs10930046 (OR = 1.30). This further
indicates that the chronicity of HCV is contributed by the weakened antiviral response
of LGP2 and MDA5. This combined effect was statistically significant between gender
(female) and different subgroups of AST. The test of heterogeneity between genders was
not statistically significant. There is statistical significance between different AST levels,
and the effect is opposite between different AST subgroups. In people with AST<40 U/L,
carrying unfavorable alleles is a protective factor for HCV chronicity (OR = 0.73), while it
is a risk factor in people with AST ≥40 U/L (OR = 1.68). It suggested that the synergistic
effects of LGP2 and MDA5 may be inconsistent in individuals with different levels of AST,
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resulting in an antiviral response that is the opposite. The activity of AST is known to
be involved in the biosynthesis of mitochondrial amino acids (Kirsch et al., 1984; Chang,
Liu & Lee, 2019). Animal experiments show that the liver injury group showed higher
mitochondrial oxygen consumption, higher enzyme activity, and higher ATP levels. AST
also effectively inhibits the inflammatory response in the rat brain and down-regulates
the expression of P2X7R (ATP-gated purinergic receptor). All these suggest that AST
dysfunction and energy metabolism may have a synergistic interaction (Guazzelli et al.,
2019; Er et al., 2020;Wang et al., 2020) which in turn affects the ATP-dependent LGP2 and
MDA5 to play a synergistic antiviral effect, but the specific mechanism is not clear and
further research is needed.

This study also has some limitations. Firstly, this study was analyzed in a specific
population, so the research results may not apply to other populations. Secondly, due to
the limitation of the number of patients, manpower, andmaterial resources, the selection of
SNPs is restricted and we lacked detailed data on viral load and HCV genotypes which is to
be aware of in the next study. Finally, there is no method for validating animal experiments
in this paper. In the future, we plan to perform animal and cell research to confirm our
results.

CONCLUSIONS
In conclusion, genetic polymorphism of IFIH1 and DHX58 may be related to CHC in
the Chinese Han population. Furthermore, the risk of CHC increases as the number of
unfavorable genotypes carried by the HCV-infected person increases. IFIH1 rs10930046,
DHX58 rs2074158, age, ALT, and AST levels were all independent predictors of CHC.
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