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Flood induced phenotypic plasticity in amphibious genus Elatine (Elatinaceae) 1 
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Abstract 25 

Vegetative characters are widely used in the taxonomy of the amphibious genus Elatine. 26 

However, these usually show great variation not just between species but between their aquatic 27 

and terrestrial forms. In the present study we examine the variation of seed and vegetative 28 

characters in nine Elatine species (E. brachysperma, E. californica, E. gussonei, E. hexandra, E. 29 

hungarica, E. hydropiper, E. macropoda, E. orthosperma and E. triandra) to reveal the extension 30 
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of plasticity induced by the amphibious environment, and to test character reliability for species 32 

identification. Cultivated plant clones were kept under controlled conditions exposed to either 33 

aquatic or terrestrial environmental conditions. Six vegetative characters (length of stem, length 34 

of internodium, length of lamina, width of lamina, length of petioles, length of pedicel) and four 35 

seed characters (curvature, number of pits / lateral row, 1st and 2nd dimension) were measured on 36 

50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the same clone. MDA, 37 

NPMANOVA Random Forest classification and cluster analysis were used to unravel the 38 

morphological differences between aquatic and terrestrial forms. Aquatic and terrestrial forms of 39 

the species differed significantly in all characters studied. Despite nearly all traits showed 40 

significant differences between aquatic and terrestrial forms, the results of MDA cross-validated 41 

and Random Forest classification clearly indicated that only seed traits are stable within species 42 

(i.e. different forms of the same species keep similar morphology). Consequently, only seed 43 

morphology is valuable for taxonomic purposes since vegetative traits are highly influenced by 44 

environmental factors. 45 

 46 

Keywords: adaptation, cultivation experiments, macrophyte, morphological variability, seed-47 

morphology, seed characters, vegetative characteristics, wetland ephemerophytes, water depth 48 

 49 

Introduction 50 

Environmentally induced phenotypic change plays a key role in the adaptation of organisms to 51 

rapidly changing environmental conditions (Bradshaw, 1965; Schlichting, 1986). This 52 

phenomenon is especially important for aquatic and semi aquatic plants (Wells & Pigliucci, 2000; 53 

Kaplan, 2002; Dorken & Barret, 2004), which enables them to survive and reproduce in 54 

heterogeneous and temporarily highly variable environments. Water depth is a temporally and 55 

spatially changing dynamic factor in wetlands and littoral communities (Rea & Ganf, 1994). 56 

Although the morphological (Nielsen & Sand-Jensen, 1997), ecological (Volder, 1997; Warwick 57 

& Brock, 2003; Lin et al., 2012), and physiological (Valanne et al., 1982; Laan & Blom, 1990; 58 

Robe & Griffiths 1998; Mommer & Visser 2005; Klančnik et al. 2012) aspects of phenotypic 59 

plasticity are well studied among the aquatics, its importance has been underestimated in 60 

taxonomical and evolution studies on plants (Davis & Heywood, 1963; Kaplan, 2002). 61 
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Phenotypic plasticity maximises plants' fitness in a variable environment (Bradshaw, 1965; 65 

Wright & McConnaughay, 2002), thus, can play an important role in adaptation to amphibious 66 

environment. When cultivated under moist conditions, many of the freshwater angiosperms can 67 

be induced to transform into small terrestrial form. It has been recorded that this phenomenon 68 

sometimes appears in certain cases of aquatic species like Nymphaea alba, Nuphar lutea, 69 

Myriophyllum and Utricularia spp. In nature the production of terrestrial form from these aquatic 70 

species can greatly contribute to their survival over periods of temporal drought in less humid 71 

areas (Hejný, 1960; den Hartog & Segal, 1964). 72 

Amphibious aquatics are adapted to a dual-life; under submerged conditions they develop aquatic 73 

form, whereas the same individual can have different terrestrial form on open air. This duality in 74 

life history can involve surprising physiological alterations (Ueno et al., 1988; Ueno, 1998; 75 

Agarie et al., 2002); all of the amphibious species have the ability to photosynthesize on air by 76 

developing air leaves or terrestrial shoots (Maberly & Spence, 1989). Hence these species are 77 

exposed to extreme conditions of temperature, availability of gases and solar radiation (Germ et 78 

al., 2002). They usually live in the littoral zone of lakes, wetlands and rivers or ephemeral 79 

wetlands, where their phenotypic plasticity is a key factor for survival in their temporal and fast 80 

changing environment (Deil, 2005). 81 

Amphibious habit occurs in several genera of aquatic plants but a whole genus is very rarely 82 

adapted to live in temporal waters. Such is the genus Elatine that contains ca.15–25 ephemeral, 83 

amphibious species (Heywood et al., 2007) widespread in temperate region of both hemispheres. 84 

Surprisingly, there is only a few studies dealing with the causal relationship between their 85 

morphology and environmental variables and its effect on their taxonomy (Popiela & Łysko, 86 

2010; Popiela et al., 2011, 2012) – a telling fact is that the last worldwide monograph on Elatine 87 

was published more than 140 years ago (Dumortier, 1872). Amongst the main causes of this 88 

obscurity are probably their enigmatic rarity, erratic temporal appearance that depends mainly on 89 

environmental factors like the amount of precipitation and the extent of inundation (Takács et al., 90 

2013). Unquestionably, the high degree of the morphological variability of Elatine also 91 

contributes to the taxonomic uncertainties, which is evidently connected to their amphibious life-92 

history. The clonal nature of Elatine also contributes to their morphological variability, because 93 
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large clonal plants are especially exposed to variation in water depth over time and space (Vretare 94 

et al., 2001). 95 

The main distinguishing characters of Elatine species are related to flower and seed morphology 96 

(Cook, 1968a; Brinkkemper et al., 2008; Uotila, 2009, 2010; Molnár V. et al., 2013a, 2013b), but 97 

vegetative traits (i. e., relative length of pedicel, sepals or petals, form of leaves, etc.) are also 98 

frequently used in descriptions of Elatine taxa (Wight, 1830; Albrecht, 2002; Lægaard 2008).  An 99 

example is the length of pedicel, which has great importance in separation of some species-pairs 100 

(e.g.: E. ambigua and E. triandra; E. hungarica and E. campylosperma; E. gussonei and E. 101 

hydropiper), but the taxonomic value of such characters are generally disregarded. Even though 102 

the unusual degree of morphological variability and the crucial importance of in vitro cultural 103 

studies in the genus were pointed out more than 60 years ago by Mason (1956: 239): ‘The 104 

differences between aquatic and terrestrial forms of the same species often seem greater than the 105 

differences between species’ and ‘The genus is in need of a thorough cultural study designed to 106 

test the nature of characters and their validity as criteria of species’. According to the best of our 107 

knowledge, such experiments have not been accomplished and published yet. 108 

As part of our ongoing researches aiming at the taxonomic clarification of the genus Elatine in 109 

Europe, we examine the level of phenotypic plasticity in the genus in order to lay down the basis 110 

of a comprehensive taxonomic study. More specifically, we provide here a study of seed and 111 

vegetative traits concerning the aquatic and terrestrial form of nine Elatine species studied in a 112 

laboratory culture system. Our aims were to (i) quantify the degree of phenotypic plasticity in 113 

case of vegetative organs and seeds, and (ii) to examine the phenotypic overlap among the 114 

species, and then (iii) determine which type of traits could be used to differentiate the species in 115 

practical identification. This is done in hope of serving as a base for future taxonomic works in 116 

the genus Elatine, including practical guide to the thoughtful usage of morphological variation in 117 

this genus. 118 

 119 

Material and methods 120 

Plant material and cultivation 121 

We set up a cultivation experiment to study the plastic variation of Elatine species in waterlogged 122 

and submerged conditions. To eliminate the effect of genetic variation within the studied species 123 
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we used only clones of the same individual for any comparison of morphological differences. 129 

Seeds of nine annual, clonal Elatine species collected from indigenous populations were included 130 

for the present study (Table 1). Elatine hungarica, E. hydropiper and E. triandra are protected 131 

species and sampled in Hungary with the permission of the Hortobágy National Park Directorate 132 

(Permission id.: 45-2/2000, 250-2/2001). We collected seeds only from one aquatic form 133 

specimen in all Elatine species, due to submerged condition enables only autogamy and ensure 134 

that different capsules contains seeds with the same genetic information. Seeds were sown in 12.5 135 

× 8.5 cm plastic boxes on sterilised (autoclaved for 3 hours, 180ºC) soil, which was continuously 136 

wetted and germinated in the laboratory of the Department of Botany at University of Debrecen. 137 

Plantlets were grown in climate controlled rooms (with 14h/day light and 30 µmol m-2 sec-1 light 138 

intensity, temperatures: under light 22±2 ºC and under darkness 18±2 ºC). Two specimens of one 139 

week old plantlets from each species were transplanted, then one specimen was grown under 140 

continuous water cover to develop into aquatic form, while the another one (terrestrial forms) was 141 

grown on wet mud until they both reached fruiting stage and form a clone bed with minimum 50 142 

fruiting stems, between 45 and 70 days (Fig. 1.). For the morphological study six traits (length of 143 

stem, length of internode, length of lamina, width of lamina, length of petioles, length of pedicel) 144 

were measured on 50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the 145 

same clone using calliper (0.1 mm accuracy). Leaf traits and internodes were measured on 3 146 

leaves of each specimens. 3 capsules were collected from each sample. Then seed were pooled 147 

and 50 randomly collected seeds were photographed from each clone and four traits [curvature 148 

(°), number of pits / lateral row, 1st dimension (mm), 2nd dimension (mm)] were measured on 149 

digital images (Fig. 2). Curvature of seeds was measured following the method of Mifsud (2006). 150 

 151 

Data analyses 152 

Multivariate and univariate statistical analyses were applied to determine the validity of 153 

vegetative and seed traits. Multiple Discriminant Analysis (Linear Discriminant Analysis for 154 

more than two groups) was used to reveal morphological differences between terrestrial and 155 

aquatic forms based on vegetative and seed traits using SPSS 16. 156 

In the analyses the predefined groups were the two ecological forms of the studied species. Mean 157 

scores of our predefined groups were plotted to illustrate the pattern of morphological 158 
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differentiation. Wilks’s λ was used to measure the discriminatory power of the model. Its values 166 

change from 0 (perfect discrimination) to 1 (no discrimination). For visualise the relationship 167 

between the different species and forms based on vegetative and seed characters Mahalanobis 168 

distance based UPGMA trees were constructed. 169 

To test the statistical significance of the visible pattern obtained by MDA and UPGMA trees, we 170 

used Mahalanobis distance based Permutational Multivariate Analysis of Variance 171 

(NPMANOVA), since some of our variables do not show normal distribution. The number of 172 

permutations was set to 10000. Linear discriminant analysis frequently achieves good 173 

performances in the tasks of face and object recognition, even though the assumptions of 174 

common covariance matrix among groups and normality are often violated (Duda et al., 2001, Li 175 

et al., 2006). 176 

Classification of our groups was made using the cross-validated grouping function in SPSS. In 177 

this method, one known specimen is left out at a time, and assigned using the discriminant 178 

function which is calculated based on all the cases except the given case. The numbers of correct 179 

assignments were used to evaluate the usefulness of the discriminant function. High numbers of 180 

correct assignments indicate diagnostic differences between the surveyed groups. 181 

Random Forest was also used to determine variable importance and classification accuracy in 182 

vegetative and seed characters (Liaw & Wiener, 2002). Random Forest is an algorithm (Breiman 183 

2001) for classification that uses an ensemble of classification trees. Each of the classification 184 

trees is built using a bootstrap sample of the data, and at each split the candidate set of variables 185 

is a random subset of the variables. The results of MDA and Random Forest classification have 186 

been presented as a confusion matrix. 187 

The most discriminative traits were also tested independently by the non-parametric Kruskal-188 

Wallis test using R computing environment (R Development Core Team 2014). The results are 189 

interpreted by the kruskalmc function in pgirmess package. kruskalmc makes multiple 190 

comparisons of treatments. 191 

 192 

Results 193 

Vegetative traits 194 
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The vegetative traits of the aquatic or terrestrial forms of the nine Elatine species were different 199 

with high discriminatory power (Wilks's λ= 0.0001, p<0.001). The first two axes explained 67% 200 

of variance (43% of axis 1 and 24% of axis 2, respectively). The length of the 3rd lamina (-0.593), 201 

length of the 1st lamina (-0.591), length of stem (0.505), and length of the 2nd lamina (-0.477) had 202 

the highest relative importance in the first function based on the standardized canonical 203 

discriminant function coefficients values. In the second function the most important variables are 204 

length of stem (0.401), length of the 2nd lamina (0.782), and width of the 1st lamina (-0.823). The 205 

scatter plot of group mean scores on the first two canonical axes showed a relatively large 206 

distance between the aquatic and the terrestrial forms of the same species (Fig. 3B). These 207 

distances are sometime larger than the distance between the different species (Fig. 3D). The 208 

cross-validated classification correctly assigned 77.7% of the specimens. The lowest assignment 209 

success was in case of E. hexandra (aquatic) (38%) and E. hungarica (terrestrial) (30%) (see: 210 

Table 2). The Random Forest variable importance analysis also indicate the importance of the 211 

length of pedicel, the 1st lamina, the stem and the 1st petiole (Fig. 4). The success rate of Random 212 

Forest classification was 82.33% (Table 3). The variation of important vegetative traits indicated 213 

substantial differences between the terrestrial and aquatic forms within the species, however the 214 

variation of each forms has high overlaps between the species (Fig. 5). 215 

The results of the NPMANOVA indicated all predefined groups were significantly different from 216 

each other (p<0.05). On the UPGMA tree the different forms of the same species clustered to 217 

different branches with the exception of E. macropoda and E. gussonei (Fig. 3D). 218 

Univariate analysis on the measured vegetative traits indicated significant differences between 219 

the different ecological forms of the same species. None of the vegetative traits were alone 220 

suitable for species identification (see Table 4, Fig. 3B, 3D). 221 

 222 

Seed traits 223 

The seed traits of the aquatic or terrestrial forms of the nine Elatine species were differed 224 

significantly (Wilks’s λ= 0.001, p<0.001). The first two axes explained more than 83% of the 225 

total variance between groups (52% of axis 1 and 31% of axis 2, respectively). Curvature (0.873) 226 

and the 2nd dimension (0.47) showed the largest loadings in the first discriminant function based 227 

on the standardized canonical discriminant coefficient values, while in the second discriminant 228 
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function the number of pits on the testa in a lateral row (0.832) and the 1st dimension (0.62) had 244 

notable loadings. The group centroids of the aquatic and terrestrial forms of the same species are 245 

positioned very close to each other, and at the same time the species are well separated with the 246 

exception of Elatine hungarica and E. californica (Fig. 3C). 247 

 248 

The cross-validated classification could assign only 50.2 % of the specimens correctly to the 249 

predefined groups, although the success of assignments at the species level is usually high 83.8% 250 

(Table 5). The lowest level of correct assignments occurred between E. californica (62%) and E. 251 

hungarica (57%). 252 

The Random Forest variable importance indicate that the curvature and the number of pits are the 253 

most useful characters in classification. (Fig. 6). The success rate of Random Forest classification 254 

was 49.78% (Table 6). The average classification success is 87.5% in species level. The within 255 

species variation of important seed traits did not differ between the terrestrial and aquatic forms, 256 

and the variation of each forms had only small overlaps between the species (Fig. 7). 257 

The seed trait based NPMANOVA indicated significant differences (p<0.05) between the species 258 

but difference between the two ecological forms of the same species were not significant with 259 

three exceptions. The two forms of E. gussonei (p=0.03) and the aquatic and terrestrial forms of 260 

E. hungarica and E. hydropiper (p<0.05) proved to be different. We also tested the usefulness of 261 

the measured seed traits independently. The Kruskall-Wallis test found none of the seed traits to 262 

be suitable for perfect discrimination of all species alone, although different forms of the same 263 

species are not significantly separable (Table 7 and Fig. 5). 264 

 265 

Discussion 266 

Phenotypic plasticity is the ability of an organism to change its phenotype in response to 267 

relatively rapid changes of its environment (Price et al. 2003). This was documented for several 268 

aquatic plants, e.g. Potamogeton (Idestam-Almquist & Kautsky, 1995; Kaplan 2002) and 269 

Batrachium (Cook 1968b; Garbey et al., 2004, 2006). An important type of potentially adaptive 270 

plasticity involves differences in morphological, anatomical and physiological characteristics of 271 

leaves along environmental gradients such as light and/or water availability (Wells & Pigliucci, 272 

2000). Nonetheless, if distinctive morphological features of taxa depend on environmental 273 
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conditions, phenotypic plasticity may cause taxonomic errors. Plant taxonomy is sensible of 281 

errors when forms of a species are erroneously named as distinct taxa (Kaplan, 2002; Sultan 282 

2004). Understanding this issue in such threatened and vulnerable genus as Elatine can contribute 283 

to a clarified taxonomy what is essential for an effective conservation. Mason (1956) highlighted 284 

that the taxonomy of Elatine suffers from the high levels of phenotypic plasticity. According to 285 

his opinion several Elatine species or ecotypes of a species had classified into wrong taxa due to 286 

the phenotypic variation displayed. For example Elatine hungarica, which is listed on IUCN Red 287 

List as data deficient taxon (Bilz et al., 2011), was merged to Elatine hydropiper (Cook, 1968a; 288 

Casper & Krausch, 1980) based on shared vegetative characteristics. Additionally, Elatine 289 

gussonei, which is an enigmatic plant of the Mediterranean was firstly described as a variety of 290 

Elatine hydropiper and was later classified as a separate species based on the shape of the seed 291 

and the length of flowers pedicels (Brullo et al., 1988). 292 

The results and method applied in this study provide much evidence to explain why seed traits 293 

are better than vegetative traits in taxonomy of Elatine. Although some students of the genus 294 

were arguing for the taxonomic importance of pedicel length (Seubert, 1845; Moesz, 1908, Cook, 295 

1968a), others had expressed doubts about its relevance, and clearly attributed morphological 296 

variation to response to environmental differences (Margittai, 1939; Soó, 1974). Our results 297 

indicate that vegetative characters have less taxonomic relevant information than what was 298 

usually considered before. It suggest that it is not appropriate to use vegetative traits in species 299 

identification within the Elatine genus. 300 

The investigation of the extent of phenotypic plasticity of seed and vegetative traits in nine 301 

Elatine species grown in different environmental circumstances gave a clear answer to the above 302 

debate. Although only one clone of each field-collected specimen was investigated, this assured 303 

that the reported difference between the different ecotypes of the same clone stands for 304 

phenotypic plasticity and it is not influenced by genotypic difference. The similar placement of 305 

different ecotypes of the same species in the seed trait based multivariate analyses (Fig. 3) 306 

indicates clearly the stability of seed characters. Secondly, we consider this relatively limited 307 

sampling is still the most comprehensive experimental study in the genus, thus we regard our data 308 

and conclusions as pioneering in the genus. 309 
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Different species boundaries were indicated by the statistical analysis of different set of 316 

vegetative and seed traits. On one hand our results clearly demonstrate that aquatic or terrestrial 317 

conditions can induce morphological alteration (i.e. different appearance of the same species), 318 

thus, we can conclude that vegetative traits are highly influenced by environmental factors. 319 

Moreover, we found various morphological distances between the different ecological forms of 320 

the same species according to vegetative traits. The morphological distance between the different 321 

ecological forms showed a large heterogeneity and nearly all was statistically significant. For 322 

example the aquatic and terrestrial forms of E. macropoda, E. californica and E. gussonei were 323 

only slightly different and the two forms clustered to the same branch in the UPGMA tree, 324 

whereas the morphological distance between the two forms of E. triandra is bigger than the 325 

difference between species. Because of the previously described instability, the vegetative trait 326 

based identification is not reliable and could lead to erroneous species identification. 327 

Consequently, the usage of vegetative traits in some literature sources (e.g. Moesz 1908) to 328 

separate species needs careful re-evaluation and highly cautious use. In fact the total ignorance of 329 

phenotypic plasticity in Elatine taxonomy might lead to much narrower species concepts then 330 

what would be necessary to apply in such a genus. An example can be the report of E. ambigua 331 

from Europe (Moesz 1908). We suspect this plant was a form of E. triandra with elongated 332 

pedicels, what is otherwise the distinguishing character between the two species. If a more wide 333 

species concept would have been applied, the specimen could have been correctly identified as E. 334 

triandra. 335 

Vegetative and regenerative traits are affected by different selection forces (Grime, 2001). Vegetative 336 

organs play an important role in photosynthesis and the physical maintenance of the whole plant in 337 

various and often changing environment. Phenotypic plasticity (i.e. the morphological alteration of plants 338 

vegetative organs) is the most important adaptation of plants to temporal and spatial environmental 339 

variability (Sultan, 2000). Plasticity gives opportunity for plants to improve their resource acquisition, 340 

their resistance and adaptability to stress and disturbance (Grime et al., 1986). The significant vegetative 341 

variability of the amphibious genus Elatine therefore plays a key role in adaptation to starkly different 342 

environmental conditions. Seed traits belong to regenerative traits with the basic role of propagation, and 343 

could similarly vary under different habitat characteristics (i.e. aquatic or terrestrial). Nevertheless, we 344 

found seed traits to be more stable. Although different environmental conditions can influence some 345 

reproductive traits in aquatic plants, but this phenomenon recognized only in seed numbers (Garbey et al., 346 
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2004), seed mass (Fenner & Thompson, 2005) and seed size (Westoby et al., 1992), and not in seed 347 

morphology. Most probably reproductive traits are under a selective pressure that favors stability even in 348 

different habitat characteristics. Disregarding the reason behind the stability of seed traits in the 349 

amphibious genus Elatine – similar to other plant species – reproductive characteristics are favorable in 350 

species identification. 351 

Based on our analyses aquatic and terrestrial forms of the same species were not statistically 352 

different from each other, except in few cases, when we suspect phylogenetically independent 353 

occurrence of the same character. Contrary to our findings based on the vegetative traits, the 354 

morphological distance between seeds of two ecological forms of the same species were very 355 

small as seen on the UPGMA tree (Fig. 3C). Thus, seed traits show more stability under different 356 

environmental influence than vegetative traits. Among the measured seed traits the curvature and 357 

the number of pits had the biggest standardised loadings on the first and the second discriminant 358 

function, thus proved to be useful for identifying species. Based on seed characteristics, all 359 

European species form distinct groups. There is only one species pair where the separation is not 360 

possible based on seed traits: the Eurasian E. hungarica and North-American E. californica, 361 

which have similar seeds. Whether this shared morphology is due to phylogenetic relatedness or 362 

simple morphological homoplasy warrants for further research. 363 
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