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ABSTRACT
Background. Alzheimer’s disease (AD) and type 2 diabetes mellitus (DM2) are
chronic degenerative diseases with complex molecular processes that are potentially
interconnected. The aim of this work was to predict the potential molecular links
between AD and DM2 from different sources of biological information.
Materials andMethods. In this work, data mining of nine databases (DisGeNET,
Ensembl, OMIM, Protein Data Bank, The Human Protein Atlas, UniProt, Gene
Expression Omnibus, Human Cell Atlas, and PubMed) was performed to identify gene
and protein information that was shared in AD and DM2. Next, the information was
mapped to human protein-protein interaction (PPI) networks based on experimental
data using the STRING web platform. Then, gene ontology biological process (GOBP)
andpathway analyseswith EnrichR showed its specific and shared biological process and
pathway deregulations. Finally, potential biomarkers and drug targets were predicted
with the Metascape platform.
Results. A total of 1,551 genes shared in AD and DM2 were identified. The highest
average degree of nodes within the PPI was for DM2 (average = 2.97), followed by
AD (average degree = 2.35). GOBP for AD was related to specific transcriptional
and translation genetic terms occurring in neurons cells. The GOBP and pathway
information for the association AD-DM2 were linked mainly to bioenergetics and
cytokine signaling. Within the AD-DM2 association, 10 hub proteins were identified,
seven of which were predicted to be present in plasma and exhibit pharmacological
interaction with monoclonal antibodies in use, anticancer drugs, and flavonoid
derivatives.
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Conclusion. Our data mining and analysis strategy showed that there are a plenty of
biological information based on experiments that links AD and DM2, which could
provide a rational guide to design further diagnosis and treatment for AD and DM2.

Subjects Bioinformatics, Cognitive Disorders, Diabetes and Endocrinology, Neurology, Metabolic
Sciences
Keywords Alzheimer, Diabetes, Bioinformatics, Biomarker, Drug target

INTRODUCTION
Alzheimer’s disease (AD) and type 2 diabetes mellitus (DM2) are chronic degenerative
human diseases with complex molecular processes (Chornenkyy et al., 2019). Worldwide,
AD affects around 3% of the population with an age range of 65 to 74 years, while DM2
is the fastest growing metabolic disease in the world in adults older than 50 years (Chen,
Magliano & Zimmet, 2012; Mayeux & Stern, 2012). Patients with DM2 have been shown
to be around 50% more likely to have a decrease in cognitive ability, leading to dementia
where AD is the most common cause (Ryan, Fine & Rosano, 2014; Moheet, Mangia &
Seaquist, 2015).

The relationship of DM2with AD has attracted the attention of the scientific community
due to its possible link derived from epidemiological research (Curb et al., 1999). Other
studies showed that the main relationship between these two diseases is a process of insulin
resistance in the brain (Nicolls, 2004; Arnold et al., 2018), which has led to the proposed
association known as ‘‘type 3 diabetes mellitus’’, (DM3) (Kandimalla, Thirumala & Reddy,
2017). In fact, evidence showed that patients with DM2 may have up to 3 times the risk of
suffering from AD compared to people without DM2 (Li, Song & Leng, 2015).

To date, several research groups are working to understand how these two diseases
are connected. Experimental research has produced valuable information on how AD
and DM2 could be linked. Liu et al. (2011) found that the levels and activity of various
components of Insulin—phosphoinositide 3 kinase (PI3K)—AKT serine/threonine kinase
pathway decreased in cases of AD and DM2, and the decrease in this pathway is more
serious in cases of AD-DM2 association than in DM2 or AD alone. The use of systems
biology tools such as protein-protein interactions (PPI) predictions could provide valuable
information on biological processes shared between different diseases (Sharan & Ideker,
2006). PPI data can now be extracted from repositories or databases and analyzed to obtain
new information on the functions or relationships of proteins using bioinformatic tools,
which can thus be used to make new predictions of signaling networks on a large scale
(Stelzl et al., 2005). This approach has been used to study the AD and DM2 association
(Mittal, Mani & Katare, 2016). In this study were identified shared cellular and molecular
mechanisms alterations such as beta (β) cell development, negative regulation of PI3K/AKT
signaling pathway, β-amyloid and insulin degradation. Other studies have used these tools
to identify new genes and possible pharmacological targets in AD (Rahman et al., 2019a).
Similarly, the application of these tools has been carried out in other related diseases such as
type 1 diabetes mellitus (DM1). The results have led to the identification of genes involved
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in important biological processes in this disease DM1 (Chen et al., 2021), or even in other
related diseases such as heart disease and related complications in diabetic patients (Kumar
et al., 2020).

In the present study, several databases were mined to identify molecular information
shared by AD and DM2. The obtained information was analyzed with the help of gene
ontology biological process (GOBP), signaling pathways, and hub proteins that potentially
connect both diseases. The molecular interactions described here could contribute to the
elucidation of the pathophysiological processes underlying the AD—DM2 association.
Furthermore, potential biomarkers and drug targets for its diagnosis and treatment were
identified.

MATERIALS & METHODS
Gene and protein data mining
The workflow for gene and protein data mining is shown in Fig. 1. Genes and
proteins related to AD and DM2 were obtained from nine databases: DisGeNET
(https://www.disgenet.org/), Ensembl (https://www.ensembl.org/index.html), OMIM
(https://omim.org/), Protein Data Bank (https://www.rcsb.org/), The Human Protein Atlas
(http://www.proteinatlas.org/), UniProt (https://www.uniprot.org/), Human Cell Atlas
(https://www.humancellatlas.org/), PubMed (https://pubmed.ncbi.nlm.nih.gov/), and Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). The key words ‘‘AD’’,
‘‘DM2’’, ‘‘Alzheimer’’, ‘‘type 2 Diabetes Mellitus’’ were used to search on each database.
Further data processing was performed for the following databases: The PubMed
gene information (https://pubmed.ncbi.nlm.nih.gov/) was retrieved with the PubTator
application (https://www.ncbi.nlm.nih.gov/research/pubtator/) (Wei et al., 2019) and the
related PMID was recorded in our local database. In the Human Cell Atlas, the genes
determined in single-cell sequencing on AD peripheral blood (Xu & Jia, 2021), with a
log2 Fold Change (FC)≥1, and adjusted p-values <0.05 applying the Benjamini–Hochberg
correction (BHC)were considered. InGEO, the data sets GSE5281, GSE122063were chosen
for AD, and the GSE7014, GSE29221 for DM2. Those files comprise 297 patients for AD and
60 for DM2; the differentially expressed genes (DEGs) were determined with the GEO2R
tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/) (Barrett et al., 2013). DEG selection was also
based on log2 FC≥1 and adjusted p-values <0.05 using the BHCmethod. The information
obtained was organized into the gene and protein lists according to the disease information.
These lists were curated by eliminating duplicates and synonymous names with the help
of the HUGO Gene Nomenclature Committee (http://www.genenames.org, accessed on
January 2022) (Bruford et al., 2021). The final lists were compared with the help of Venn
diagrams (http://bioinformatics.psb.ugent.be/beg/) to identify the genes shared between AD
and DM2. The intersected information was considered as the AD-DM2 association.

Generation of protein-protein interactions (PPI) networks
PPI manages important biological processes (Rao et al., 2014). To produce PPI for each
study group, the gene lists were submitted to the STRING platform (STRING; v11.0;
http://string-db.org) to determine PPI in humans. The parameters to predict PPI were
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Figure 1 The workflow of the methodology used.
Full-size DOI: 10.7717/peerj.14738/fig-1

experimental evidence which include only biochemical or biophysical data produced from
yeast two-hybrid experiments, and a minimum required interaction score >0.900, which
represents the approximate probability that a link exits between two proteins in the same
metabolic map in the KEEG database to reduce the rate of false positives (Timalsina,
Charles & Mondal, 2014; Szklarczyk et al., 2019). Nodes that did not have a connection in
the PPI were discarded.

PPI Gene Ontology (GO) and pathway enrichment analysis
The edge lists of the PPI file were submitted to Gene Ontology Biological Process
(GOBP) and KEGG 2021 pathway analysis through the EnrichR platform (https:
//maayanlab.cloud/Enrichr/) (Chen et al., 2013). These analyses were carried out for each of
the disease study groups with an BHC adjusted value of p< 0.05 derived from a Fisher’s
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Table 1 Total genes and proteins names mined by database for AD and DM2.

DisGeNET Ensembl OMIN Protein
atlas

PDB Uniprot Gen expression
omnibus

Cell
atlas

PubMed

AD 3342 37 185 107 86 85 221 436
DM2 2727 77 177 20 204 237 26

77

Total 6069 114 362 127 290 322 247 436 77

exact test, and additionally to exclude the false positives associated with gene category
enrichment analysis (Fulcher, Arnatkeviciute & Fornito, 2021), only the ten most significant
GOBP and pathway terms were retained for analysis.

PPI hub analysis
To determine the proteins of high biological value within the PPI networks groups (hub
proteins), the hub option from the EnrichR platform (https://maayanlab.cloud/Enrichr/) was
used. The Expression2Kinases program (Clarke et al., 2018) was used to identify regulatory
proteins (mainly transcription factors (TFs) and kinases) involved in important signaling
pathways that potentially regulate a PPI network based on the gene list submitted (Chen
et al., 2012). Only proteins with adjusted p< 0.05 were considered significant, and the 10
most significant proteins for each study group (AD, DM2, and AD –DM2 association)
were taken for analysis, as previously did for GOBP.

Prediction of biomarkers and drug targets
To determine if the hub proteins could be possible biomarkers or drug targets, the
protein names were submitted to the Metascape platform to match our data with the
available options ‘‘plasma’’ (protein atlas) and ‘‘drug bank’’ (Zhou et al., 2019). The
obtained data was plotted as a drug-target network with the Cytoscape platform v 3.9.0
(https://apps.cytoscape.org/).

RESULTS
A plenty of biological information shared between AD and DM2
To identify data shared by both AD and DM2, nine databases were mined (Table S1). After
eliminating duplicate gene and protein name records in the databases (Table S2), most
of the information available for AD and DM2 was from the DisGeNET (n= 6,069) and
the information in the scientific literature (PubMed) was scarce (n= 77) (Table 1). Venn
diagram analysis showed that data for AD was muchmore abundant than for DM2 (Fig. 2),
but both diseases shared considerable biological information (n= 1,551). The shared data
was considered as the AD-DM2 association group.

Molecular complexity revealed by Protein-Protein Interaction (PPI)
network analysis
The gene lists for the AD, DM2 and AD-DM2 groups were assigned to PPI in humans on
the STRING platform (Table S3). Because only experimental information was considered,
the number of interacting nodes in the predicted PPI networks was reduced but significant
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2306 13851551

AD

DM2

AD-DM2 Association

Figure 2 Distribution of unique and shared number of gene and protein information for AD and
DM2.

Full-size DOI: 10.7717/peerj.14738/fig-2

(Adj. p value < 0.05). The whole networks for each group of analysis showed similar
interconnections (Figs. 3A–3C). The highest average connections were for the DM2
(average node degree = 2.97), followed by AD (average node degree = 2.35), and the
AD-DM2 association (average node degree = 2.03).

Shared biological process and pathways between AD and DM2 and
specific to each of them
To understand the biological significance of the PPI data, analysis of GOBP and signaling
pathways were performed for each group. The most significant (Adj. p value < 0.05)
GOBP associated with AD was related to the ‘‘nuclear-transcribed mRNA catabolic process
(GO:0000184)’’, followed by transcriptional and translation processes related to the
neuron’s cells. On the other hand, GOBP for DM2 were associated with ‘‘mitochondrial
respiratory chain complex I assembly (GO:0032981)’’, followed by related bioenergetics
terms. For DM2 the most significant pathway was ‘‘Thermogenesis’’. The GOBP analysis
for the AD-DM2 association was related to the ‘‘cellular response to cytokine stimulus
(GO:0071345)’’, followed by the ‘‘cytokine-mediated signaling pathway (GO:0019221)’’
that connects all group information (Fig. 4A). The signaling pathways for the AD-DM2
association were ‘‘pathways in cancer’’ ‘‘PI3K-Akt signaling pathway’’, and ‘‘Lipid and
atherosclerosis’’ (Figs. 4B, Table S4). AD and DM2 shared pathways related to neurological
diseases such as prion disease, Parkinson’s, and amyotrophic lateral sclerosis.

The main proteins (hubs) connecting AD and DM2
Hub analysis was performed to identify the main proteins that interact within the PPI
networks. EnrichR showed SRC (a tyrosine-protein kinase) shared with the DM2 and
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Figure 3 PPI networks for the study groups. The PPI images were produced on the string platform and
the panels created on Inkscape (https://inkscape.org/).

Full-size DOI: 10.7717/peerj.14738/fig-3
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(in purple), and AD-DM2 (in orange). In yellow and green are shown the shared ontologies and path-
ways respectively.

Full-size DOI: 10.7717/peerj.14738/fig-4

AD-DM2 data (Fig. 5, Table S5). Two proteins involved in the cell cycle proliferation
(BRCA1) and a glucose transporter (SLC2A4) were shared between DM2 and AD. ESR1,
a receptor of estrogens located at the center of the hub network, was shared with the three
groups of study, underlining its potential importance.

Potential biomarkers and drug targets for the AD-DM2 association
The Metascape platform showed that of the ten hub proteins identified in the association
AD-DM2, seven (STAT3, EGFR, IRS1, MAPK1, SRC, HSP90AA1, PIK3R1) were matched
as proteins present in plasma, except UBC, MAPK3, and ESR1. All of them could be
inhibited by multiple drugs (Fig. 6). For example, EGFR is targeted by various monoclonal
antibodies (mAbs). STAT3, SRC, and HSP90AA1 are targeted by several anticancer agents.
HSP90AA1 is targeted also by the flavonoid Quercetin (DB04216), which also targets the
ESR1 protein, which is not present in plasma but is shared by the study groups. This could
be a novel drug target option to direct further treatments for AD-DM2 comorbidity. Those
plasma-predicted proteins could also be good candidates to evaluate as biomarkers in the
AD-DM2 association (Fig. 6, Table S6).

DISCUSSION
AD and DM2 are complex diseases for which a link have been suggested (Michailidis et
al., 2022). The large amount of data available for these diseases can be explored to identify
novel patterns that could explain its pathogenic relation. In this work, through a data
mining strategy of several databases, we found gene and protein information shared by
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AD and DM2, demonstrating that there are potential molecular links for both diseases. A
recent bioinformatic study based on gene expression data sets for AD and DM2 identified
241 deregulated in common for both diseases that could be implicated in the pathogenesis
of its association (Chung & Lee, 2021). In contrast to the previous study, we focus our
research on the integration of multiple sources of biological information for AD and DM2,
which was then assigned to PPI experimental confirmed data on humans, in an effort to
reduce the inclusion of false positives associated with this type of studies (Mahdavi & Lin,
2007). To better understand this information, we studied these diseases by considering
three conditions: AD, DM2, and the AD-DM2 association. The networks were similarly
interconnected in each study group, revealing their molecular complexity, especially for
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the DM2 (Fig. 3). This complexity could be explained by its specific GOBP and pathway
deregulations.

Functional analyses based on GOBP for AD were found related to specific terms
that affect the vital genetics processes of the cells. For example, the most significant
were transcriptional and translation terms, which were also observed in gene expression
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studies specific to AD (Xue et al., 2020), indicating that our method of multiple data
integration is proper. In an epidemiological and pathological context, it is known
that there are two main types of AD (Tanzi, 2012; Reitz & Mayeux, 2014). Early-onset
Alzheimer’s disease (EOAD) is the least common, with an estimated incidence of 10 cases
per 100,000 people, affecting < 65 years of age, and associated with hereditary genetic
factors (Alzheimer’s Association, 2016; Cacace, Sleegers & Van Broeckhoven, 2016). As our
analysis showed specific genetic terms, it suggests a logic connection with the genetic
fact for the EOAD. On the other hand, late-onset Alzheimer’s disease (LOAD) is the most
common type in the world, appears at older ages (>65 years) and is not related to hereditary
alterations (Del Ser et al., 2001). Meanwhile, the prevalence of DM at ages > 65 is higher
(Laiteerapong & Huang, 2018), and in this age stage cognitive impairment is also known
to start (van den Berg et al., 2005). In the same logic, GOBPs for DM2 were found to be
restricted to the mitochondrial bioenergetics, which is known to be altered in this disease
(Pinti et al., 2019). Interesting mitochondrial alterations in neurons are a consequence
of DM2 (Sato & Morishita, 2014). Then again, the AD-DM2 association shares cytokine
deregulation that connects both diseases (AD and DM2), suggesting that inflammation is
the potential link. Indeed, evidence showed that in the pathophysiology of AD andDM2 the
dysregulation of inflammation plays a key role (de Nazareth, 2017). Neuroinflammation
produces accumulation of β-amyloids and consequently the release of cytokines by the
activation of microglial cells (Rosenberg, 2005; Michailidis et al., 2022). Likewise, in DM2
are evidence of accumulation of amyloid beta protein (Aβ) and hyperphosphorylated
tau protein in pancreatic tissue (Miklossy et al., 2010), a similar histopathological feature
occurring in AD brains. Thus, if these two pathologies connect at some point, it could be
due to that DM2pathological processes lead in the long term to LOAD. Further longitudinal
studies may clarify whether these molecular mechanisms are associated with the AD-DM2
link.

The hub proteins within the networks showed that some TFs, kinases, and ubiquitin
proteins are shared between the study groups. Among the most relevant were UBC, SRC,
ESR1, BRCA1, and SLC2A4. UBC, also known as ubiquitin C, has been associated with
protein ubiquitination processes (Zheng & Shabek, 2017). This protein in patients with
DM2 causes an accumulation of polyubiquitinated proteins in pancreatic tissue and leads
to the apoptosis process, probably due to an increase in islet amyloid polypeptide (IAPP)
oligomers (Bishoyi et al., 2021). In AD, there is also an accumulation of polyubiquitinated
proteins similar to IAPP that leads to neuronal apoptosis and can potentially cross the
blood–brain barrier, contributing to the development of AD (Qosa et al., 2014). SRC,
a kinase, has been proposed as a therapeutic target in AD and DM2 (Taniguchi et
al., 2013; Beirute-Herrera et al., 2020). ESR1, which is located in the center of the hub
network map (Fig. 5), is an estrogenic receptor with risk polymorphisms for AD and
DM (Elcoroaristizabal Martín et al., 2011; Yang et al., 2018). In women, the decrease in
estrogen levels during menopause is associated with AD (Mosconi et al., 2021). This is
also of particular importance because two-thirds of the cases of most prevalent LOAD
are related (Rahman et al., 2019b). The tumor suppressor gene BRCA1 related with breast
cancer in women is also involved in the pathogenesis of AD due to its accumulation in the
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brain (Nakamura et al., 2020). Information on the role of BRCA1 in DM2 is scarce, but
is associated with an increased risk of developing DM2 (Bordeleau et al., 2011). SLC2A4
or GluT4 participates in cognitive impairment, its production is reduced due to insulin
resistance that also occurs in DM2 (McNay & Pearson-Leary, 2020). Although the literature
information for these proteins is disease-specific, the connection found in our data analysis
approach could be helpful to direct the further in-depth experimental studies to confirm
or reject their role in the association AD and DM2.

Among the hub proteins related to the AD-DM2 association, some of those were targets
of drugs already in use. The EGFR protein is a target of mAbs. This class of immunotherapy
has been proposed for the treatment of AD; for example, mAbs against the A β-amyloid has
been used (van Dyck, 2018). In DM1 and DM2, this type of therapy has also been devised;
however, such therapy is ineffective (Ke et al., 2021;Heymsfield et al., 2021; Shi et al., 2022).
For example, the mAbs ganterumab and solanezumab failed to slow cognitive decline in
AD patients on phase II/III trials (Salloway et al., 2021). Moreover, the recent editorial
notice of concern about the β-amyloid as the cause of Alzheimer’s (Lesné et al., 2006; Piller,
2022) obligates the quest for new drug targets. Consequently, our finding that potential
drugs and targets that could be used in the treatment of AD and DM2 is valuable. For
example, the targets STAT3 and the hypoxia inducible factor-1 α (HIF-1) found related
to the AD-DM2 association (Figs. 4B, 5) are inhibited by the ENMD-1198 (DB05959)
(Fig. 6), a microtubule inhibitor (Moser et al., 2008). In the pathophysiology of AD, the
microtubule-associated proteins (MAP/Tau) play an important role (Dehmelt & Halpain,
2005). In relation to DM2, microtubules regulate insulin delivery to the membrane for
secretion, and its function is altered by abnormal glucose levels (Trogden et al., 2019).
As microtubules participate in important physiologic aspects of AD and DM2, they are
considered potential pharmacological targets (Varidaki, Hong & Coffey, 2018; Ho et al.,
2020). Another interesting example is the flavonoid quercetin, a phytochemical found in
diets of fruits and vegetables, that have shown neuroprotective effects against AD (Khan
et al., 2019) as well as antidiabetic effects (Eid & Haddad, 2017). Therefore, since these
identified drugs and targets are already being used, they could be used in drug repurposing
efforts to guide the rational search for disease-modifying treatments for the AD-DM2
association. Additionally, the seven proteins could also be potential biomarkers, because
they were predicted to be plasma proteins.

CONCLUSIONS
In conclusion, we found considerable biological information that links AD and DM2.
Prediction of PPI guided the inference of the potential dysregulated GOBP and pathways
shared for both diseases or specific to each of them, highlighting the inflammatory
deregulation for the AD-DM2 association. Analysis of hub proteins allows the identification
of anticancer drugs and flavonoid nutraceuticals already in use, underlining potential drugs
and targets for further drug repurposing efforts. In addition, those hub plasma-predicted
proteins could be potential blood biomarkers that could lead to improved diagnostic
strategies. Also, our data mining strategy to study the complex interactions underlying AD
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and DM2 could be adapted to other diseases where an epidemiological or molecular link
has been recognized.
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