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2 MTA-DE, “Lendület” Behavioural Ecology Research Group, University of Debrecen, Debrecen,

Hungary
3 MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
4 Department of Botany and Nature Conservation, University of Szczecin, Szczecin, Poland
5 Department of Botany, University of West-Hungary, Sopron, Hungary
6 Department of Tisza Research, MTA Centre for Ecological Research, Debrecen, Hungary
∗ These authors contributed equally to this work.

ABSTRACT
Vegetative characters are widely used in the taxonomy of the amphibious genus
Elatine L. However, these usually show great variation not just between species but
between their aquatic and terrestrial forms. In the present study we examine the
variation of seed and vegetative characters in nine Elatine species (E. brachysperma,
E. californica, E. gussonei, E. hexandra, E. hungarica, E. hydropiper, E. macropoda,
E. orthosperma and E. triandra) to reveal the extension of plasticity induced by the
amphibious environment, and to test character reliability for species identification.
Cultivated plant clones were kept under controlled conditions exposed to either
aquatic or terrestrial environmental conditions. Six vegetative characters (length of
stem, length of internodium, length of lamina, width of lamina, length of petioles,
length of pedicel) and four seed characters (curvature, number of pits / lateral row,
1st and 2nd dimension) were measured on 50 fruiting stems of the aquatic and on 50
stems of the terrestrial form of the same clone. MDA, NPMANOVA Random Forest
classification and cluster analysis were used to unravel the morphological differ-
ences between aquatic and terrestrial forms. The results of MDA cross-validated and
Random Forest classification clearly indicated that only seed traits are stable within
species (i.e., different forms of the same species keep similar morphology). Conse-
quently, only seed morphology is valuable for taxonomic purposes since vegetative
traits are highly influenced by environmental factors.

Subjects Ecology, Plant Science
Keywords Adaptation, Macrophyte, Seed-morphology, Cultivation experiments, Seed characters,
Vegetative characteristics, Water depth, Wetland ephemerophytes, Morphological variability

INTRODUCTION
Environmentally induced phenotypic change plays a key role in the adaptation of

organisms to rapidly changing environmental conditions (Bradshaw, 1965; Schlichting,

1986). This phenomenon is especially important for aquatic and semi aquatic plants (Wells

& Pigliucci, 2000; Kaplan, 2002; Dorken & Barrett, 2004) which enables them to survive and
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reproduce in heterogeneous and temporarily highly variable environments. Water depth is

a temporally and spatially changing dynamic factor in wetlands and littoral communities

(Rea & Ganf, 1994). Although the morphological (Nielsen & Sand-Jensen, 1997), ecological

(Volder, Bonis & Grillas, 1997; Warwick & Brock, 2003; Lin, Alpert & Yu, 2012), and

physiological (Valanne, Aro & Rintamäki, 1982; Laan & Blom, 1990; Robe & Griffiths,

1998; Mommer & Visser, 2005; Klančnik, Mlina & Gaberščik, 2012) aspects of phenotypic

plasticity are well studied among the aquatics, its importance has been underestimated in

taxonomical and evolution studies on plants (Davis & Heywood, 1963; Kaplan, 2002).

Phenotypic plasticity maximises plant fitness in a variable environment and (Bradshaw,

1965; Wright & McConnaughay, 2002), thus, can play an important role in adaptation

to amphibious environments. When cultivated under moist conditions, many of the

freshwater angiosperms can be induced to transform into small terrestrial forms. It has

been recorded that this phenomenon sometimes appears in certain cases of aquatic

species like Nymphaea alba, Nuphar lutea, Myriophyllum and Utricularia spp. In nature,

the production of terrestrial form from these aquatic species can greatly contribute to their

survival over periods of temporal drought in less humid areas (Hejný, 1960; Den Hartog &

Segal, 1964).

Amphibious aquatics are adapted to a dual-life; under submerged conditions they

develop aquatic forms, whereas the same individual can have a different terrestrial form in

open air. This duality in life history can involve surprising physiological alterations (Ueno

et al., 1988; Ueno, 1998; Agarie et al., 2002); all of the amphibious species have the ability

to photosynthesize on air by developing air leaves or terrestrial shoots (Maberly & Spence,

1989). Hence these species are exposed to extreme conditions of temperature, availability

of gases and solar radiation (Germ et al., 2002). They usually live in the littoral zone of

lakes, wetlands and rivers or ephemeral wetlands, where their phenotypic plasticity is a key

factor for survival in their temporal and fast changing environment (Deil, 2005).

Several genera of aquatic plants have amphibious habits but it is rare for a whole genus

to be adapted to live in temporal waters. The genus Elatine contains ca. 15–25 ephemeral,

amphibious species (Heywood et al., 2007) that are widespread in the temperate regions

of both hemispheres. Surprisingly, there is only a few studies dealing with the causal

relationship between their morphology and environmental variables and its effect on their

taxonomy (Popiela & Łysko, 2010; Popiela et al., 2011; Popiela et al., 2012)—a telling fact

is that the last worldwide monograph on Elatine was published more than 140 years ago

(Dumortier, 1872). Amongst the main causes of this obscurity are probably their enigmatic

rarity, erratic temporal appearance that depends mainly on environmental factors like the

amount of precipitation and the extent of inundation (Takács et al., 2013). Unquestionably,

the high degree of the morphological variability of Elatine also contributes to the

taxonomic uncertainties, which is evidently connected to their amphibious life-history.

The clonal nature of Elatine also contributes to their morphological variability, because

large clonal plants are especially exposed to variation in water depth over time and space

(Vretare et al., 2001).
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The main distinguishing characteristics of Elatine species are related to flower and seed

morphology (Cook, 1968a; Brinkkemper et al., 2008; Uotila, 2009; Uotila, 2010; Molnár

et al., 2013; Molnár, Popiela & Lukács, 2013), but vegetative traits (i.e., relative length of

pedicel, sepals or petals, form of leaves, etc.) are also frequently used in descriptions of

Elatine taxa (Wight, 1831; Albrecht, 2002; Lægaard, 2008). An example is the length of

pedicel, which has great importance in separation of some species-pairs (e.g., E. ambigua

and E. triandra; E. hungarica and E. campylosperma; E. gussonei and E. hydropiper), but

the taxonomic value of such characters are highly questionable. Even though the unusual

degree of morphological variability and the crucial importance of in vitro cultural studies

in the genus were pointed out more than 60 years ago by Mason (1956: 239): ‘The differ-

ences between aquatic and terrestrial forms of the same species often seem greater than the

differences between species’ and ‘The genus is in need of a thorough cultural study designed to

test the nature of characters and their validity as criteria of species’. According to the best of

our knowledge, such experiments have not been accomplished and published yet.

As part of our ongoing researches aiming at the taxonomic clarification of the genus

Elatine in Europe, we examine the level of phenotypic plasticity in the genus in order to

lay down the basis of a comprehensive taxonomic study. More specifically, we provide here

a study of seed and vegetative traits concerning the aquatic and terrestrial form of nine

Elatine species studied in a laboratory culture system. Our aims were to (i) quantify the

degree of phenotypic plasticity in case of vegetative organs and seeds, and (ii) to examine

the phenotypic overlap among the species, and then (iii) determine which type of traits

could be used to differentiate the species in practical identification. This is done in hope

of serving as a base for future taxonomic works in the genus Elatine, including a practical

guide to the thoughtful usage of morphological variation in this genus.

MATERIAL AND METHODS
Plant material and cultivation
We set up a cultivation experiment to study the plastic variation of Elatine species in

waterlogged and submerged conditions. To eliminate the effect of genetic variation within

the studied species we used only clones of the same individual for any comparison of

morphological differences. Seeds of nine annual, clonal Elatine species collected from

indigenous populations were included for the present study (Table 1). Elatine hungarica,

E. hydropiper and E. triandra are protected species and were sampled in Hungary with

the permission of the Hortobágy National Park Directorate (Permission id.: 45-2/2000,

250-2/2001). We only collected seeds from one aquatic form specimen of all Elatine species

because its submerged condition makes it autogamous and ensures that different capsules

contain seeds with the same genetic information. Seeds were sown in 12.5 × 8.5 cm

plastic boxes on sterilised (autoclaved for 3 h, 180 ◦C) soil, which was continuously

wetted and germinated in the laboratory of the Department of Botany at University of

Debrecen. Plantlets were grown in climate controlled rooms (with 14 h/day light and

30 µmol m−2 s−1 light intensity, temperatures: under light 22 ± 2 ◦C and under darkness

18 ± 2 ◦C). Two specimens of one week old plantlets from each species were transplanted,
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Table 1 Taxonomic position, distribution and sample source of nine Elatine species studied.

Species Section Distribution Locality

Elatine brachysperma A. Gray Triandra
Seubert

North-American
(The PLANTS Database, 2014)

USA: Fallbrook (CA) (N33.4◦, W117.4◦)

Elatine californica A. Gray Elatinella
Seubert

North-American
(The PLANTS Database, 2014)

USA: Los Angeles (CA) (N33.8◦, W118.3◦)

Elatine gussonei (Sommier)
Brullo et al.

Elatinella
Seubert

Central Mediterranean
(Molnár, Popiela & Lukács, 2013)

Sicily: Modica (N36◦, E14.7◦)

Elatine hexandra (Lapierre) DC. Elatinella
Seubert

Sub-Atlantic and Central-European
(Popiela et al., 2011)

Poland: Poznan (N51.55◦, E17.35◦)

Elatine hungarica Moesz Elatinella
Seubert

Temperate Eurasian (Takács et al., 2013) Hungary: Konyár (N47.3◦, E21.7◦)

Elatine hydropiper L. Elatinella
Seubert

Euro-Siberian (Popiela et al., 2012) Hungary: Tiszagyenda (N47.4◦, E20.5◦)

Elatine macropoda Guss. Elatinella
Seubert

Mediterranean (Popiela & Łysko, 2010) Sardinia: Olmedo (N40.6◦, E8.4◦)

Elatine orthosperma Düben Elatinella
Seubert

Northern European (Uotila, 1978) Finland: Oulu (N65.0◦, E25.4◦)

Elatine triandra Schkuhr Triandra
Seubert

Cosmopolitan (Popiela et al., 2015) Hungary: Kisköre (N47.5◦, E20.5◦)

Figure 1 Aquatic (continuously flooded) and terrestrial (growing on wet mud) forms with same age
of three central European Elatine species cultivated in plastic boxes. Scale bars represent 10 mm.

then one specimen was grown under continuous water cover to develop into aquatic form,

while another one (terrestrial forms) was grown on wet mud until they both reached the

fruiting stage and formed a clone bed with minimum 50 fruiting stems, between 45 and 70

days (Fig. 1). For the morphological study six traits (length of stem, length of internode,

length of lamina, width of lamina, length of petioles, length of pedicel) were measured on

50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the same clone

using calliper (0.1 mm accuracy). Leaf traits and internodes were measured on 3 leaves

of each specimens. 3 capsules were collected from each sample. Then seeds were pooled

and 50 randomly collected seeds were photographed from each clone and four traits

(curvature (◦), number of pits/lateral row, 1st dimension (mm), 2nd dimension (mm))

were measured on digital images (Fig. 2). Curvature of seeds was measured following the

method of Mifsud (2006).
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Figure 2 Seed traits measured as examplified by three Elatine species studied.
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Data analyses
Multivariate and univariate statistical analyses were applied to determine the validity of

vegetative and seed traits. Multiple Discriminant Analysis (Linear Discriminant Analysis

for more than two groups) was used to reveal morphological differences between terrestrial

and aquatic forms based on vegetative and seed traits using SPSS 16.

In the analyses the predefined groups were the two ecological forms of the studied

species. Mean scores of our predefined groups were plotted to illustrate the pattern of

morphological differentiation. Wilks’s λ was used to measure the discriminatory power of

the model. Its values change from 0 (perfect discrimination) to 1 (no discrimination). For

visualise the relationship between the different species and forms based on vegetative and

seed characters Mahalanobis distance based UPGMA trees were constructed.

To test the statistical significance of the visible pattern obtained by MDA and UPGMA

trees, we used Mahalanobis distance based Permutational Multivariate Analysis of Variance

(NPMANOVA), since some of our variables do not show normal distribution. The number

of permutations was set to 10,000. Linear discriminant analysis frequently achieves good

performances in the tasks of face and object recognition, even though the assumptions of

common covariance matrix among groups and normality are often violated (Duda, Hart &

Stork, 2001; Li, Zhu & Ogihara, 2006).

Classification of our groups was made using the cross-validated grouping function in

SPSS. In this method, one known specimen is left out at a time, and assigned using the

discriminant function which is calculated based on all the cases except the given case. The

numbers of correct assignments were used to evaluate the usefulness of the discriminant

function. High numbers of correct assignments indicate diagnostic differences between the

surveyed groups.

Random Forest was also used to determine variable importance and classification

accuracy in vegetative and seed characters (Liaw & Wiener, 2002). Random Forest is an

algorithm (Breiman, 2001) for classification that uses an ensemble of classification trees.

Each of the classification trees is built using a bootstrap sample of the data, and at each split

the candidate set of variables is a random subset of the variables. The results of MDA and

Random Forest classification have been presented as a confusion matrix.

The most discriminative traits were also tested independently by the non-parametric

Kruskal–Wallis test using R computing environment (R Core Team, 2014). The results

are interpreted by the kruskalmc function in pgirmess package. kruskalmc makes multiple

comparisons of treatments.

RESULTS
Vegetative traits
The vegetative traits of the aquatic or terrestrial forms of the nine Elatine species were

different with high discriminatory power (Wilks’s λ = 0.0001, p < 0.001). The first two

axes explained 67% of variance (43% of axis 1 and 24% of axis 2, respectively). The length

of the 3rd lamina (−0.593), length of the 1st lamina (−0.591), length of stem (0.505),

and length of the 2nd lamina (−0.477) had the highest relative importance in the first
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function based on the standardized canonical discriminant function coefficients values. In

the second function the most important variables are length of stem (0.401), length of the

2nd lamina (0.782), and width of the 1st lamina (−0.823). The scatter plot of group mean

scores on the first two canonical axes showed a relatively large distance between the aquatic

and the terrestrial forms of the same species (Fig. 3B). These distances are sometimes

greater than the distance between the different species (Fig. 3D). The cross-validated

classification correctly assigned 77.7% of the specimens. The lowest assignment success

was in case of E. hexandra (aquatic) (38%) and E. hungarica (terrestrial) (30%) (see:

Table 2). The Random Forest variable importance analysis also indicate the importance of

the length of pedicel, the 1st lamina, the stem and the 1st petiole (Fig. 4). The success rate of

Random Forest classification was 82.33% (Table 3). The variation of important vegetative

traits indicated substantial differences between the terrestrial and aquatic forms within the

species, however the variation of each forms has high overlaps between the species (Fig. 5).

The results of the NPMANOVA indicated all predefined groups were significantly

different from each other (p < 0.05). On the UPGMA tree the different forms of the same

species clustered to different branches with the exception of E. macropoda and E. gussonei

(Fig. 3D).

Univariate analysis on the measured vegetative traits indicated significant differences

between the different ecological forms of the same species. None of the vegetative traits

were alone suitable for species identification (see Table 4, Figs. 3B and 3D).

Seed traits
The seed traits of the aquatic or terrestrial forms of the nine Elatine species differed

significantly (Wilks’s λ = 0.001, p < 0.001). The first two axes explained more than

83% of the total variance between groups (52% of axis 1 and 31% of axis 2, respectively).

Curvature (0.873) and the 2nd dimension (0.47) showed the largest loadings in the first

discriminant function based on the standardized canonical discriminant coefficient values,

while in the second discriminant function the number of pits on the testa in a lateral row

(0.832) and the 1st dimension (0.62) had notable loadings. The group centroids of the

aquatic and terrestrial forms of the same species are positioned very close to each other,

and at the same time the species are well separated with the exception of Elatine hungarica

and E. californica (Fig. 3C).

The cross-validated classification could assign only 50.2% of the specimens correctly

to the predefined groups, although the success of assignments at the species level is

usually high 83.8% (Table 5). The lowest level of correct assignments occurred between

E. californica (62%) and E. hungarica (57%).

The Random Forest variable importance indicate that the curvature and the number of

pits are the most useful characters in classification. (Fig. 6). The success rate of Random

Forest classification was 49.78% (Table 6). The average classification success is 87.5% in

species level. The within species variation of important seed traits did not differ between

the terrestrial and aquatic forms, and the variation of each form had only small overlaps

between the species (Fig. 7).
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Figure 3 Morphological relationships among the surveyed Elatine species as displayed by MDA
scatterplots (A, B) and UPGMA cluster diagrams (C, D). Symbols indicate the group based on seed traits
(A, C) and on vegetative traits (B, D).

The seed trait based NPMANOVA indicated significant differences (p < 0.05) between

the species but differences between the two ecological forms of the same species were

not significant with three exceptions. The two forms of E. gussonei (p = 0.03) and the

aquatic and terrestrial forms of E. hungarica and E. hydropiper (p < 0.05) proved to be

different. We also tested the usefulness of the measured seed traits independently. The
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Figure 4 Dotchart of variable importance as measured by a Random Forest for vegetative traits (Liaw
& Wiener, 2002).

Kruskall–Wallis test found none of the seed traits to be suitable for perfect discrimination

of all species alone, although different forms of the same species are not significantly

separable (Table 7 and Fig. 5).

DISCUSSION
Phenotypic plasticity is the ability of an organism to change its phenotype in response to

relatively rapid changes of its environment (Price, Qvarnström & Irwin, 2003). This was

documented for several aquatic plants, e.g., Potamogeton (Idestam-Almquist & Kautsky,

1995; Kaplan, 2002) and Batrachium (Cook, 1968b; Garbey, Thiébaut & Muller, 2004; Gar-

bey, Thiébaut & Muller, 2006). An important type of potentially adaptive plasticity involves

differences in morphological, anatomical and physiological characteristics of leaves along

environmental gradients such as light and/or water availability (Wells & Pigliucci, 2000).

Nonetheless, if distinctive morphological features of taxa depend on environmental

conditions, phenotypic plasticity may cause taxonomic errors. Plant taxonomy is sensible

of errors when forms of a species are erroneously named as distinct taxa (Kaplan, 2002;

Sultan, 2004). Understanding this issue in a threatened and vulnerable genus such as

Elatine can contribute to a clarified taxonomy that is essential for an effective conservation.

Mason (1956) highlighted that the taxonomy of Elatine suffers from the high levels of

phenotypic plasticity. According to his opinion several Elatine species or ecotypes of a

species were classified into wrong taxa due to the phenotypic variation displayed. For

example Elatine hungarica, which is listed on IUCN Red List as data deficient taxon (Bilz et

al., 2011),was merged to Elatine hydropiper (Cook, 1968a; Casper & Krausch, 1980) based
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Figure 5 Boxplots of the most discriminative vegetative traits among the nine Elatine species stud-
ied. Terrestrial (T) and aquatic (A) forms significantly differed in all the species; the aquatic forms are
relatively larger than terrestrial ones. Notations: Boxes mean 25–75 percentiles, lines are medians, squares
are means, whiskers are standard deviations.
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Table 2 MDA Cross validated classification based on vegetative traits. Rows: given group; columns: predicted groups. The 77.7% of the specimens are correctly
assigned.

braAq braTe hydTe hydAq triTe triAq ortTe ortAq hexTe hexAq macTe macAq gusTe gusAq calTe calAq hunTe hunAq Total

braAq 46 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 50

braTe 0 40 1 0 0 0 1 0 8 0 0 0 0 0 0 0 0 0 50

hydTe 0 4 28 0 0 0 2 1 3 1 0 0 0 0 3 0 8 0 50

hydAq 5 0 2 41 0 0 0 1 0 1 0 0 0 0 0 0 0 0 50

triTe 0 0 0 0 45 0 0 0 2 3 0 0 0 0 0 0 0 0 50

triAq 0 0 0 1 0 46 0 0 0 3 0 0 0 0 0 0 0 0 50

ortTe 0 6 0 0 0 0 36 0 2 0 0 0 0 0 0 0 6 0 50

ortAq 0 0 2 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 50

hexTe 0 9 1 0 0 0 3 1 32 0 0 0 0 0 1 0 3 0 50

hexAq 6 7 1 0 6 0 0 0 6 19 0 0 0 0 3 0 2 0 50

macTe 0 0 0 0 0 0 0 1 0 0 42 4 0 0 0 3 0 0 50

macAq 0 0 0 0 0 0 0 3 0 0 0 46 0 1 0 0 0 0 50

gusTe 0 0 0 0 0 0 0 0 0 0 0 0 40 9 0 1 0 0 50

gusAq 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0 1 0 0 50

calTe 0 0 1 0 0 0 2 0 0 0 0 0 0 0 41 5 1 0 50

calAq 0 0 1 0 0 0 0 1 0 0 0 2 0 0 9 37 0 0 50

hunTe 0 6 7 0 0 0 5 5 9 0 0 0 0 0 3 0 15 0 50

hunAq 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 48 50

Total 57 73 44 44 51 46 49 61 62 27 42 52 40 59 62 48 35 48 900

Notes.
bra, Elatine brachysperma; hyd, E. hydropiper; tri, E. triandra; ort, E. orthosperma; hex, E. hexandra; mac, E. macropoda; gus, E. gussonei; cal, E. californica; hun, E. hungarica; T, Terrestrial; A,
Aquatic.
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Table 3 Confusion matrix from Random Forest classification based on vegetative traits.

braAq braTe calAq calTe gusAq gusTe hexAq hexTe hunAq hunTe hydAq hydTe macAq macTe ortAq ortTe triAq triTe Classification
error

braAq 38 0 0 1 0 0 3 3 0 2 0 0 0 0 0 3 0 0 0.24

braTe 0 43 1 1 0 0 2 1 0 0 1 0 0 0 1 0 0 0 0.14

calAq 0 0 37 7 0 0 0 0 0 0 0 1 1 0 4 0 0 0 0.26

calTe 0 0 6 40 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0.20

gusAq 0 0 0 0 47 2 0 0 0 0 0 0 0 1 0 0 0 0 0.06

gusTe 0 0 1 0 2 47 0 0 0 0 0 0 0 0 0 0 0 0 0.06

hexAq 0 5 0 1 0 0 27 2 0 3 3 2 0 0 0 0 2 5 0.46

hexTe 4 0 0 1 0 0 0 33 0 3 0 4 0 0 1 3 0 1 0.34

hunAq 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0.00

hunTe 0 0 0 2 0 0 0 1 0 31 0 9 0 0 1 5 0 1 0.38

hydAq 0 3 0 0 0 0 0 0 0 0 43 0 0 0 3 0 0 1 0.14

hydTe 0 2 0 3 0 0 2 2 0 11 0 28 0 0 2 0 0 0 0.44

macAq 0 0 0 0 1 0 0 0 0 0 0 0 48 1 0 0 0 0 0.04

macTe 0 0 2 0 1 0 0 0 0 0 0 0 1 46 0 0 0 0 0.08

ortAq 0 0 1 0 0 0 0 0 0 0 0 3 0 0 46 0 0 0 0.08

ortTe 3 0 0 0 0 0 0 2 0 1 0 1 0 0 0 43 0 0 0.14

triAq 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 47 0 0.06

triTe 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 47 0.06

Notes.
Abbreviations as in Table 2.
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Table 4 Kruskal–Wallis groups based on vegetative characters. The significance level set to
0.05. Unique letters indicate significance different groups while the same letters mean statistically not
different subsets.

Stem Pedicel 1st petiole 1st leaf

braAq a a a a

braTe bcd a bc bcd

calAq bef ab b efgh

calTe cd bc cde efg

gusAq eg de bcd ae

gusTe g d de efgh

hexAq cdh c bcd bci

hexTe ah c cde fgh

hunAq ch ce f bd

hunTe a c bcd efg

hydAq bdf a f bd

hydTe ah a bcd fhi

macAq bef d f a

macTe efg de f aeg

ortAq bcd a f chi

ortTe a a ae a

triAq bcd a b d

triTe a a de bcd

Notes.
Abbreviations as in Table 2.

on shared vegetative characteristics. Additionally, Elatine gussonei, which is an enigmatic

plant of the Mediterranean was firstly described as a variety of Elatine hydropiper and was

later classified as a separate species based on the shape of the seed and the length of flowers

pedicels (Brullo et al., 1988).

The results and method applied in this study provide much evidence to explain why

seed traits are better than vegetative traits in taxonomy of Elatine. Although some students

of the genus were arguing for the taxonomic importance of pedicel length (Seubert, 1845;

Moesz, 1908; Cook, 1968a), others had expressed doubts about its relevance, and clearly

attributed morphological variation to response to environmental differences (Margittai,

1939; Soó, 1974). Our results indicate that vegetative characters have less taxonomic

relevant information than what was usually considered before. It suggests that it is not

appropriate to use vegetative traits in species identification within the genus Elatine.

The investigation of the extent of phenotypic plasticity of seed and vegetative traits

in nine Elatine species grown in different environmental circumstances gave a clear

answer to the above debate. Although only one clone of each field-collected specimen

was investigated, this assured that the reported difference between the different ecotypes

of the same clone stands for phenotypic plasticity and it is not influenced by genotypic

difference. The similar placement of different ecotypes of the same species in the seed

trait based multivariate analyses (Fig. 3) indicates clearly the stability of seed characters.

Secondly, we consider this relatively limited sampling to be still the most comprehensive
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Table 5 Cross validated classification based on seed traits. Rows: given group; columns: predicted groups. Only 50.7% of the specimens are correctly assigned.

braTe braAq calTe calAq gusTe gusAq hexTe hexAq hunTe hunAq hydTe hydAq macTe macAq ortTe ortAq triTe triAq Total

braTe 10 29 0 0 0 0 0 0 0 0 0 0 1 0 0 0 7 3 50

braAq 9 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50

calTe 0 0 15 16 0 0 0 0 11 8 0 0 0 0 0 0 0 0 50

calAq 0 0 16 14 0 0 0 0 12 8 0 0 0 0 0 0 0 0 50

gusTe 0 0 0 0 38 10 0 0 1 0 0 0 1 0 0 0 0 0 50

gusAq 0 0 0 0 14 30 0 0 2 2 0 0 2 0 0 0 0 0 50

hexTe 0 0 0 0 0 0 24 21 0 0 0 0 1 4 0 0 0 0 50

hexAq 0 0 0 0 0 0 19 26 0 1 0 0 3 1 0 0 0 0 50

hunTe 0 0 10 6 0 7 0 0 23 3 0 0 1 0 0 0 0 0 50

hunAq 0 0 8 3 7 3 0 0 6 23 0 0 0 0 0 0 0 0 50

hydTe 0 0 2 0 0 0 0 0 0 0 31 17 0 0 0 0 0 0 50

hydAq 0 0 1 0 0 0 0 0 0 0 16 33 0 0 0 0 0 0 50

macTe 0 0 0 0 0 0 3 2 0 0 0 0 29 16 0 0 0 0 50

macAq 0 0 0 0 0 0 7 7 0 0 0 0 22 13 0 0 1 0 50

ortTe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 21 0 0 50

ortAq 0 0 0 0 0 0 0 2 0 0 0 0 0 0 26 22 0 0 50

triTe 7 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 23 18 50

triAq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 28 50

Total 26 70 52 39 59 50 53 58 55 45 47 50 62 34 55 43 53 49 900

Notes.
Abbreviations as in Table 2.
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Figure 6 Dotchart of variable importance as measured by a Random Forest for seed traits.

Figure 7 Boxplots of the most discriminative seed traits among the nine Elatine species studied.
Terrestrial (T) and aquatic (A) forms are not significantly different in all the species. Notations: Boxes
mean 25–75 percentiles, lines are medians, squares are mean, whiskers are standard deviations.
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Table 6 Confusion matrix from Random Forest classification based on seed traits.

braAq braTe calAq calTe gusAq gusTe hexAq hexTe hunAq hunTe hydAq hydTe macAq macTe ortAq ortTe triAq triTe Class.
error

braAq 29 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.42

braTe 26 19 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 2 0.62

calAq 0 0 18 19 0 0 0 0 4 8 0 1 0 0 0 0 0 0 0.64

calTe 0 0 20 20 0 0 0 0 3 7 0 0 0 0 0 0 0 0 0.60

gusAq 0 0 0 0 34 13 0 0 0 1 0 0 0 2 0 0 0 0 0.32

gusTe 0 0 0 0 16 32 0 0 1 1 0 0 0 0 0 0 0 0 0.36

hexAq 0 0 0 0 0 0 18 21 1 0 0 0 7 2 0 0 0 1 0.64

hexTe 0 0 0 0 0 0 19 24 1 0 0 0 5 1 0 0 0 0 0.52

hunAq 0 0 3 5 3 2 0 0 25 12 0 0 0 0 0 0 0 0 0.50

hunTe 0 0 8 7 4 2 0 0 6 23 0 0 0 0 0 0 0 0 0.54

hydAq 0 0 0 0 0 0 0 0 0 0 37 13 0 0 0 0 0 0 0.26

hydTe 0 0 0 0 0 0 0 0 0 0 20 30 0 0 0 0 0 0 0.40

macAq 0 1 0 0 0 0 5 3 0 0 0 0 20 21 0 0 0 0 0.60

macTe 0 0 0 0 1 0 4 1 0 0 0 0 24 20 0 0 0 0 0.60

ortAq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 27 0 0 0.54

ortTe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 25 0 0 0.50

triAq 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 26 22 0.48

triTe 1 2 0 0 0 0 1 0 0 0 0 0 0 1 1 0 27 17 0.66

Notes.
Abbreviations as in Table 2.
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Table 7 Kruskal–Wallis groups based on seed traits. The significance level set to 0.05. Unique letters
indicates significantly different groups while the same letters mean significantly not different subsets.

ID Number of pits Curvature

braAq abc ab

braATe abcd a

calAq efg cde

calTe defg cde

gusAq h c

gusTe h cde

gusAq abcde bf

hexTe abc abf

hunAq adef c

hunTe abde cd

hydAq ij e

hydTe i de

macAq bch f

macTe ch f

ortAq ij abf

ortTe i abf

triAq gj ab

triTe fg abf

Notes.
Abbreviations as in Table 2.

experimental study in the genus, thus we regard our data and conclusions as pioneering in

the genus.

Different species boundaries were indicated by the statistical analysis of different set

of vegetative and seed traits. On one hand our results clearly demonstrate that aquatic or

terrestrial conditions can induce morphological alteration (i.e., different appearance of the

same species), thus, we can conclude that vegetative traits are highly influenced by environ-

mental factors. Moreover, we found various morphological distances between the different

ecological forms of the same species according to vegetative traits. The morphological

distance between the different ecological forms showed a large heterogeneity and nearly all

was statistically significant. For example the aquatic and terrestrial forms of E. macropoda,

E. californica and E. gussonei were only slightly different and the two forms clustered to the

same branch in the UPGMA tree, whereas the morphological distance between the two

forms of E. triandra is bigger than the difference between species. Because of the previously

described instability, the vegetative trait based identification is not reliable and could lead

to erroneous species identification. Consequently, the usage of vegetative traits in some

literature sources (e.g., Moesz, 1908) to separate species needs careful re-evaluation and

highly cautious use. In fact the total ignorance of phenotypic plasticity in Elatine taxonomy

might lead to much narrower species concepts then would be necessary to apply in such

a genus. An example can be the report of E. ambigua from Europe (Moesz, 1908). We

suspect this plant was a form of E. triandra with elongated pedicels, what is otherwise the
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distinguishing character between the two species. If a more wide species concept had been

applied, the specimen could have been correctly identified as E. triandra.

Vegetative and generative traits are affected by different selection forces (Grime,

2001). Vegetative organs play an important role in photosynthesis and the physical

maintenance of the whole plant in various and often changing environments. Phenotypic

plasticity (i.e., the morphological alteration of plants vegetative organs) is the most

important adaptation of plants to temporal and spatial environmental variability (Sultan,

2000). Plasticity gives opportunities for plants to improve their resource acquisition,

resistance, and adaptability to stress and disturbance (Grime, Crick & Rincon, 1986).

The significant vegetative variability of the amphibious genus Elatine therefore plays a

key role in adaptation to starkly different environmental conditions. Seed traits belong

to generative traits with the basic role of propagation, and could similarly vary under

different habitat characteristics (i.e., aquatic or terrestrial). Nevertheless, we found seed

traits to be more stable. Although different environmental conditions can influence

some reproductive traits in aquatic plants, but this phenomenon recognized only in seed

numbers (Garbey, Thiébaut & Muller, 2004), seed mass (Fenner & Thompson, 2005) and

seed size (Westoby, Jurado & Leishmann, 1992), and not in seed morphology. Most probably

reproductive traits are under a selective pressure that favors stability even in different

habitat characteristics. Disregarding the reason behind the stability of seed traits in the

amphibious genus Elatine—similar to other plant species—reproductive characteristics

are favorable in species identification.

Based on our analyses seed characters of aquatic and terrestrial forms of the same

species were not statistically different from each other, except in few cases, when we suspect

phylogenetically independent occurrence of the same character. Contrary to our findings

based on the vegetative traits, the morphological distance between seeds of two ecological

forms of the same species were very small as seen on the UPGMA tree (Fig. 3C). Thus, seed

traits show more stability under different environmental influence than vegetative traits.

Among the measured seed traits the curvature and the number of pits had the biggest

standardised loadings on the first and the second discriminant function, thus proved to

be useful for identifying species. Based on seed characteristics, all European species form

distinct groups. There is only one species pair where the separation is not possible based

on seed traits: the Eurasian E. hungarica and North-American E. californica, which have

similar seeds. Whether this shared morphology is due to phylogenetic relatedness or simple

morphological homoplasy warrants for further research.
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Molnár VA, Horváth O, Tökölyi J, Somlyay L. 2013. Typification and seed morphology of Elatine
hungarica Moesz (Elatinaceae). Biologia 68:210–214 DOI 10.2478/s11756-013-0007-7.
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