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ABSTRACT
Background. Gastrodia elata, known as a rootless, leafless, achlorophyllous and fully
mycoheterotrophic orchid, needs to establish symbionts with particular Armillaria
species to acquire nutrition and energy. Previous research findings had approved that
ethylene (ET) played an important role in plant-fungi interaction and some receptors
of ET had been discovered in microorganisms. However, the molecular mechanisms
underlying the role of ET in the interaction between G. elata and Armillaria species
remain unknown.
Methods. Exiguous ethephon (ETH) was added to agar and liquid media to observe
the morphological features of mycelium and count the biomass respectively. Mycelium
cultured in liquid media with exiguous ETH (0.1 ppm, 2.0 ppm, 5.0 ppm) were chosen
to perform whole-transcriptome profiling through the RNA-seq technology (Illumina
NGS sequencing). The DEGs of growth-related genes and candidate ET receptor
domains were predicted on SMART.
Results. ETH-0.1 ppm and ETH-2 ppm could significantly improve the mycelium
growth of A. gallica 012m, while ETH-5 ppm inhibited the mycelium growth in both
solid and liquidmedia. The number of up-regulated or down-regulated genes increased
alongwith the concentrations of ETH.The growth ofmyceliamight benefit from the up-
regulated expression of Pyr_redox (Pyridine nucleotide-disulphide oxidoreductase),
GAL4 (C6 zinc finger) and HMG (High Mobility Group) genes in the ETH-0.1 ppm
and ETH-2 ppm. Therefore, the growth of mycelia might be impaired by the down-
regulated expression of ZnF_C2H2 and ribosomal protein S4 proteins in the ETH-5
ppm. Seven ET receptor domains were predicted in A. gallica 012m. Based on cluster
analysis and comparative studies of proteins, the putative ETH receptor domains of A.
gallica 012m have a higher homologous correlation with fungi.
Conclusions. The responses of A. gallica 012m to ETH had a concentration effect
similar to the plants’ responses to ET. Therefore, the number of up-regulated or down-
regulated genes are increased along with the concentrations of ETH. Seven ET receptor
protein domains were predicted in the genome and transcriptome of A. gallica 012m.
We speculate that ETH receptors exist in A. gallica 012m and ethylene might play an
important role in the plant-fungi interaction.
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INTRODUCTION
Armillaria species (Basidiomycota, Physalacriaceae) are well-known as plant pathogens
that cause serious root diseases on woody plants in forests and plantations (Sipos et al.,
2017; Gasic et al., 2021). However, several species of Armillaria have been confirmed to
engage in symbiotic associations with various plants, insects and other fungi (Koch & Herr,
2021; Liang et al., 2021). Gastrodia elata, known as a rootless, leafless, achlorophyllous and
fully mycoheterotrophic orchid (Kikuchi & Yamaji, 2010), needs to establish symbionts
with particular Armillaria species to acquire nutrition and energy (Cha & Igarashi, 1995;
Guo et al., 2016; Yuan et al., 2018). The plant-fungi interaction has long attracted the
interest of botanists and microbiologists. Previous research findings had approved that
phytohormones played an important role in plant-fungi interaction (Chanclud & Morel,
2016; Eichmann, Richards & Schäfer, 2021).

ET is often recognized as the senescence hormone involved in many aspects of plant
physiology and development (Carlew, Allen & Binder, 2020). In the same time, ET seems
to be an early plant defense factor in infected plants and influences both the plant and
the plant pathogen (Chague et al., 2006). In addition to plants, several bacteria and fungi
can produce and perceive ET (Arshad & Frankenberger, 1991; North et al., 2017). The
response of fungi to ET is multifarious depending on the characteristics of the species
and ET concentration (Chague et al., 2006). Previous studies showed exogenous ET
improved spore germination and mycelium growth of Alternaria alternate, Penicillium
digitatum, P. italicum and Thielaviopsis paradox, while inhibiting spore germination and
hyphae elongation of Botrytis cinerea (El-Kazzaz, 1983; Flaishman & Kolattukudy, 1994;
Kępczyńska, 1994; Carlew, Allen & Binder, 2020). In other cases, exogenous ET influence
the colonization of mycorrhizal fungi and the formation of nodules (Foo et al., 2016; Bedini
et al., 2018; Carlew, Allen & Binder, 2020).

ETH was used as an ethylene-generating agent (Lee, Holdo & Muzika, 2021). During
our cultivation of A. gallica 012m, a low concentration of exogenous ETH improved the
growth of mycelia, while a high concentration of exogenous ETH inhibited the growth
of mycelia in both solid and liquid media. In our previous work, the draft genome of
Armillaria strain 012m had been investigated (Zhan et al., 2020). This work provides the
genome-wide transcriptional profiling to investigate the responses of A. gallica 012m to
ETH, and discusses the role of ET in the plant-fungi interactions.

MATERIALS AND METHODS
Fungi growth and culture conditions
A. gallica 012m was derived from G. elata in our previous research. The stock strain was
routinely grown on modified Czapek-Dox medium agar (MgSO4, 0.5 g; FeSO4, 0.01 g;
KCl, 0.5 g; NaNO3, 3 g; K2HPO4, 1 g; sucrose, 30 g; malt extract, 10 g; yeast extract, 10 g;
ethanol, 20 g) in the dark at 25 ◦C for 15 days (Zhan et al., 2020). Exiguous ETH (0.1 ppm,
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2.0 ppm, 5.0 ppm) were added to the medium of broth and ager; and set up the BK (blank
control) groups. Setting three parallel repeats for each different treatment condition.

The mycelium of A. gallica 012m was grown on liquid media in a 160 r/min shaker at
25 ◦C for 15 days. Then, the pellets were filtrated with a Buchner funnel, washed with pure
water, collected in beaker and weighted with electronic balance. By utilizing independent
sample T -test, the data analysis was performed with IBM SPSS v23 (Tanner-Smith &
Tipton, 2014). The mycelium was preserved under liquid nitrogen conditions.

RNA extraction and sequencing
The method was as same as our previous work (Cao et al., 2022). RNA was extracted
from fungi pellets using the RNeasy mini kit (Qiagen, Hiden, Germany) following the
manufacturer’s instructions. The cDNA library was sequenced on the Illumina HiSeq
platform (Caporaso et al., 2012) with a double-end sequencing strategy in Novogene
Bioinformatics Technology, Beijing, China. The original data were deposited in the
National Center for Biotechnology Information database with the accession number
PRJNA759758.

Transcriptome sequences data quality control and comparison
To obtain clean transcriptome data, low-quality sequences of RNA-seq were removed with
Trimmomatic v0.36 (Bolger, Lohse & Usadel, 2014). Then, the data quality control was
evaluated with FastQC v0.11.9 (Brown, Pirrung & McCue, 2017). The reads of RNA-Seq
was aligned with the A. gallica 012m genome sequences (https://www.ncbi.nlm.nih.gov/
genome/57439?genome_assembly_id=853036) by using Hisat2 v2.1.0 (Kim et al., 2019) to
obtain the SAM data.

Differentially expressed gene analysis
Gene expression values were performed according to the reads per kilobase per million
mapped reads (RPKM) method. The read count matrix was obtained for expression
qualification with StringTie v2.1.0 (Pertea et al., 2015). The read countmatrix was imported
into R 3.6.3. The read count matrix was imported into R 3.6.3, and the differential gene
analysis was carried out with edgeR of R package under an FDR<0.05 and |log2FC|>2. Next,
RNASeqPower (DOI: http://dx.doi.org/10.18129/B9.bioc.RNASeqPower), a power analysis
calculation software, was used to calculate the statistical power of this experimental design,
and the statistical power is 0.81. Then, all transcripts and their corresponding genes were
compared by emapper v2.1.3 for functional annotation and classification (Huerta-Cepas
et al., 2017). The result of the GO function analysis was performed by using TBtools
V0.66836 (Chen et al., 2020). Go terms visualization of DEGs was executed with WEGO
(https://wego.genomics.cn/).

Functional analysis of growth-related genes of DEGs
To analyze the function of protein domain, the gene sequences involved biological process
functions were extracted and their protein domains were annotated by using the SMART
platform (http://smart.embl-heidelberg.de/).
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Figure 1 Growth status of A. gallica 012 m in ETH (0.1 ppm, 2.0 ppm, 5.0 ppm) and BK.
Full-size DOI: 10.7717/peerj.14714/fig-1

Screened candidate ethylene receptors
Those existing ET receptor protein sequence of fungi were downloaded the from NCBI
(https://www.ncbi.nlm.nih.gov/) and compared with the genome protein sequences of
A. gallica 012m. Those expressed sequences with E-value≤ le-5 were selected and detected
their conserved domain on SMART (Letunic, Khedkar & Bork, 2021).

Construction of receptor sequence evolutionary tree
An evolutionary tree was constructed with downloaded receptor sequences and screened
sequences of A. gallica 012m. ClustalW2 of MEGA7 was used for multiple amino acid
sequences alignment (Kumar, Stecher & Tamura, 2016). The phylogenetic tree was
constructed by neighbor-joining method and the number of calculations was 1,000.

RESULTS
Morphological characteristics of A. gallica grown under ETH
As shown in Fig. 1, ETH stimulated the mycelial growth of A. gallica 012m in solid media.
Moreover, lower concentrations of ETH present better effect on mycelium elongation of A.
gallica 012m. The order of influence of mycelium elongation were ETH−0.1 ppm>ETH-2
ppm>ETH-5 ppm.

Effects of plant growth substances on the biomass of A. gallica 012m
The liquid culture was carried out to explore whether or not ETH affected the biomass
of A. gallica 012m. As shown in Fig. 2 and Table S1, the biomass of mycelium increased
by 88.0 ± 9.1% under ETH−0.1ppm, the biomass of mycelium increased by 66.1 ± 7.9%
under ETH-2ppm, the biomass of mycelium decreased by 86.8± 5.0% under ETH-5ppm.
By utilizing independent sample T -test, it can be considered that the biomass of A.
gallica 012m were increased extremely significant (p< 0.01) under ETH−0.1 ppm and
ETH-2ppm, while decreased extremely significant (p< 0.01) under ETH-5ppm.

Evaluation of transcriptome sequencing data
Above 10.0 Gb of raw data per sample was obtained by transcriptome sequencing on
the Illumina HiSeq platform and could be used to further expression level analysis after
quality control. In addition, twelve transcriptome samples of ETH and BK were sequenced
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Figure 2 Effects of ETH on biomass of A. gallica 012m. The error line represents the standard deviation.
Full-size DOI: 10.7717/peerj.14714/fig-2

Table 1 Summary of sequencing data for 12 samples of ETH and BK.

Sample_name Clean_reads Read
mapped
(%)

Total mapped Multiple
mapped

Uniquely
mapped

ETH-0.1 ppm-1 21,016,459 92.73 20,029,878 763,543 19,266,335
ETH-0.1 ppm-2 25,437,814 92.85 24,371,998 735,341 23,636,657
ETH-0.1 ppm-3 22,314,980 92.89 21,296,185 611,455 20,684,730
ETH-2 ppm-1 26,576,772 93.64 25,535,583 686,444 24,849,139
ETH-2 ppm-2 24,979,536 93.82 23,963,179 670,682 23,292,497
ETH-2 ppm-3 23,865,405 92.58 22,673,985 729,855 21,944,130
ETH-5 ppm-1 30,433,600 93.76 29,253,416 872,677 28,380,739
ETH-5 ppm-2 21,398,103 93.64 20,536,212 670,720 19,865,492
ETH-5 ppm-3 22,659,153 93.69 21,758,215 703,163 21,055,052
BK-1 27,395,065 93.06 25,970,049 871,066 25,098,983
BK-2 28,784,179 93.24 27,459,809 780,605 26,679,204
BK-3 24,916,601 93.27 23,812,273 645,411 23,166,862

by Illumina HiSeq platform to obtain 21,016,459; 25,437,814; 22,314,980; 26,576,772;
24,979,536; 23,865,405; 30,433,600; 21,398,103; 22,659,153; 22,659,153; 27,395,065;
28,784,179 and 26,125,609 pairs of PE reads (Table 1).

After removing the reads with adapter sequences of low quality, an average of 21,916,601
to 30,433,600 pairs of clean reads were retained from ETH and BK, respectively. Read
mapped percentage of clean data from all sample were higher than 92.73%, and reads
mapped percentages of ETH-2ppm-2 was the highest. What’s more, 92.73% ∼93.82%
pure readings were successfully mapped to the reference genome of A. gallica 012m.

Enriched GO terms of up-regulatedand down-regulated at DEGs
In the ETH−0.1 ppm vs. BK comparison, a total of 118 genes were differentially expressed,
including 15 up-regulated genes and 103 down-regulated genes (Fig. 3, Table S2). In the
ETH-2 ppm vs. BK comparison, a total of 341 genes were differentially expressed, including
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Figure 3 Venn diagram of differentially expressed genes ETH (0.1 ppm, 2.0 ppm and 5.0 ppm). (A)
Venn diagram showing overlapping DEGs up-regulated in response to ETH (0.1 ppm, 2.0 ppm and 5.0
ppm). (B) Venn diagram showing overlapping DEGs down-regulated in response to ETH (0.1 ppm, 2.0
ppm and 5.0 ppm).

Full-size DOI: 10.7717/peerj.14714/fig-3

224 up-regulation genes and 117 down-regulation genes (Table S3). In the ETH-5 ppm
vs. BK comparison, a total of 696 genes were differentially expressed, including 314 up-
regulated genes and 382 down-regulated genes (Table S4). Interestingly, the total number
of DEGs in the experimental group increased along with ETH concentration.

The gene expression of A. gallica 012m with ETH−0.1 ppm vs. BK, ETH−2.0 ppm and
ETH−5.0 ppm vs. BK was analyzed. In the up-regulated genes, the results showed that
there were three differential genes shared by ETH−0.1 ppm and ETH−2.0 ppm, and 58
differential genes shared by ETH−2.0 ppm and ETH−5.0 ppm, 11 DEGs in ETH−0.1 ppm
group alone, 163 DEGs in ETH−2.0 ppm group alone, and 255 DEGs in ETH−5.0 ppm
group alone. In down-regulation genes, the DEGs of the ETH−0.1 ppm group were the
same as the ETH−2.0 ppm group more than 15% (Fig. 4).

Enriched GO terms of up-regulated and down-regulated at DEGs
Comparing with the GO database, classification and functional analysis of DEGs were
performed for better visualization. The result of the annotation of Level 2 for the GO
database was shown in Fig. 5.

At ETH−0.1 ppm vs BK, a total of 90 DEGs were categorized into 22 functional
groups under CC (10 functional groups), MF (three functional groups) and BP (nine
functional groups). In the CC category, the major terms included ‘cell’ (upregulation:
downregulation = 3: 14), ‘cell part’ (upregulation: downregulation = 3: 14), ‘organelle’
(upregulation: downregulation = 3: 14), ‘organelle part’ (upregulation: downregulation =
3:11) and ‘membrane’ (upregulation: downregulation = 2: 9). In the MF category, the GO
terms only included three functional groups, which were ‘catalytic activity (upregulation:
downregulation = 2: 6), ‘transporter activity (upregulation: downregulation = 0: 4) and
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Figure 4 (A–C) Volcanomap of differentially expressed genes.Differentially expressed genes (DEGs)
were defined by edgeR with an FDR < 0.05 and —log2FC—>2 and corrected p value (padj) < 0.05.

Full-size DOI: 10.7717/peerj.14714/fig-4

‘binding’ (upregulation: downregulation = 1: 0). In the BP category, the representative
GO terms included ‘cellular process’ (upregulation: downregulation = 3: 10), ‘metabolic
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Figure 5 (A–C) Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs).
Full-size DOI: 10.7717/peerj.14714/fig-5

process’ (upregulation: downregulation= 3: 7), ‘biological process’, ‘response to stimulus’
(upregulation: downregulation= 3: 2) and ‘regulation of biological process’ (upregulation:
downregulation = 3: 2).
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At ETH-2 ppm vs BK, a total of 269 DEGs were categorized into 34 functional groups
under CC (10 functional t groups), MF (nine functional groups) and BP (15 functional
groups). In the CC category, the dominant GO terms included ‘cell’ (upregulation:
downregulation = 18: 10), ‘cell part’ (upregulation: downregulation = 18: 10), ‘organelle’
(upregulation: downregulation = 14: 9), ‘organelle part’ (upregulation: downregulation =
4: 7) and ‘membrane’ (upregulation: downregulation= 6: 7). In theMF category, themajor
GO terms included ‘catalytic activity (upregulation: downregulation = 19: 6), ‘transporter
activity’ (upregulation: downregulation = 4: 1), ‘binding’ (upregulation: downregulation
= 9: 1) and ‘antioxidant activity’ (upregulation: downregulation = 3: 0). In the BP
category, the major GO terms included ‘metabolic process’ (upregulation: downregulation
= 21: 7), ‘cellular process’ (upregulation: downregulation = 22: 7), ‘response to stimulus’
(upregulation: downregulation= 11: 4), ‘localization’ (upregulation: downregulation= 5:
4) and ‘biological regulation’ (upregulation: downregulation = 7: 3).

At ETH-5 ppm vs. BK, a total of 534 DEGs were categorized into 41 functional groups
underCC (11 functional groups),MF (10 functional groups) andBP (20 functional groups).
In the CC category, the major GO terms included ‘cell’ (upregulation: downregulation
= 48: 31), ‘cell part’ (upregulation: downregulation = 48: 31), ‘organelle’ (upregulation:
downregulation = 33: 26), ‘organelle part’ (upregulation: downregulation = 16: 13)
and ‘membrane’ (upregulation: downregulation = 24: 18). In the MF category, the
representative GO terms included ‘catalytic activity (upregulation: downregulation = 34:
21), ‘transporter activity’ (upregulation: downregulation = 4: 7), ‘binding’ (upregulation:
downregulation = 11: 9) and ‘antioxidant activity’ (upregulation: downregulation = 2:
1). In the BP category, the main GO terms included ‘metabolic process’ (upregulation:
downregulation = 45: 22), ‘cellular process’ (upregulation: downregulation = 47: 22),
‘biological regulation’ (upregulation: downregulation= 19: 9) and ‘regulation of biological
process’ (upregulation: downregulation = 14: 5). These result demonstrated that the main
biological functions of the genes expressed in the A. gallica 012m transcriptome.

Identification of genes involved in the growth of A. gallica 012m
To further explore the mechanism of effects on the growth of A. gallica 012m, we
respectively compared the biological regulation process of DEGs. The result can be
shown as follows: in the ETH−0.1 ppm vs BK, Pyr_redox (pyridine nucleotide-disulphide
oxidoreductase) domain was predicted in Armga012mGene24786 which showed up-
regulation expressed. This domain is actually a small NADH binding domain within a
larger FAD binding domain. This domain exists in NADH oxidases, peroxidases, class I
and class II oxidoreductases. In the ETH-2 ppm vs. BK, HMG (High Mobility Group) and
GAL4 (C6 zinc finger)/Fungal_trans domain were predicted in Armga012mGene25682
and Armga012mGene16364, respectively and showed up-regulation expressed. HMG-
box domains form a large, diverse family involved in the regulation of transcription,
replication and strand repair. Gal4 is a positive regulator for the gene expression of
the galactose-induced genes of S. cerevisiae. This domain is found in various fungal
transcription factors, which regulate cellular and metabolic processes. In the ETH-5 ppm
vs. BK, ZnF_C2H2 (C2H2 zinc finger) and ribosomal protein S4 domain were predicted
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in Armga012mGene07208 and Armga012mGene07627 which showed down-regulation
expressed. Znf-containing proteins function in gene transcription, translation, mRNA
trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein
folding, chromatin remodelling and zinc sensing. Ribosomal protein S4 is a kinds of small
proteins that may be involved in translation regulation.

Prediction and expression of ET receptors in A. gallica 012m
ET receptor is the first element of the ethylene biological effect, and its binding with
ethylene can activate downstream ethylene signal transduction. We downloaded the
sequence information of ET receptors of fungi from GenBank with a total of 54 sequences,
compared it with the genome protein sequence of A. gallica 012m. A total of seven
speculated ET receptor domains of A. gallica 012m were predicted by using SMART
(Table 2) and expressed. The predicted ET receptor proteins were annotated, and only
Armga012mGene13219 has transmembrane region domains. Those predicted ET proteins
have similar domain as determined ethylene receptor proteins, and the expression levels
of candidate ethylene receptor protein sequences were different (Fig. 6) in A. gallica 012m.
Thus, we speculated that exogenous ethylene affected the growth of A. gallica 012 m
through ET receptors.

Genes containing ET receptor domain in A. gallica 012m
We downloaded the sequence information of ET receptors in fungi, bacteria, Arabidopsis
thaliana fromGenBankwith a total of 10 sequences (File S3). Finally, by comparing 7 species
with the ET receptor domain ofA. gallica 012m, an analysis of the phylogenetic relationship
is shown in Fig. 7. The result showed that A. gallica 012m (Armgao012mGene04732)
had a high homology correlation with Verticillium alfalfae VaMs.102 (GenBank:
XP_003000814.1, EEY23199.1). What’s more, A. gallica 012m (Armgao012mGene00417)
had homology with Purpureocillum lilacinum (GenBank: XP_018174038.1). The
phylogenetic tree analysis inferred thatA. gallica 012mmight possess ET receptor domains.

DISCUSSION
ET is generally considered as the senescence plant hormone, and inhibits the growth
process of plants (Chague et al., 2006; Pierik et al., 2006). However, ET has inhibitory and
stimulatory effects on plant growth depending on the concentration (Iqbal et al., 2017). ET
is reported to inhibit root elongation through interaction with auxins (Muday, Rahman &
Binder, 2012), while root elongation of some plants including rice, rye, tomato and white
mustard were stimulated by low levels of ET. Abts etc. reported that ET regulated early
root growth in a dose-dependent manner (Abts et al., 2014). Khan etc. reported that ETH
could increase the leaf area of mustard at a lower concentration, while inhibiting at higher
concentration (Khan et al., 2008). In the liquid culture of A. gallica 012m, ETH-5 ppm
decreased the biomass of mycelium extremely significantly, while ETH−0.1 ppm enhanced
the biomass of mycelium extremely significantly and ETH-2 ppm enhanced the biomass of
mycelium significantly. On the solid plate, ETH−0.1 ppm and ETH-2 ppm improved the
mycelial growth, while ETH-5 ppm inhibit it. Altogether A. gallica 012m showed similar
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Table 2 ET receptor protein and domain of A. gallica 012m.
Table. 2: ET receptor protein and domain of A. gallica 012m

Gene Domain diagram

Armga012mGene00417

Armga012mGene00474

Armga012mGene02366

Armga012mGene04732

Armga012mGene07235

Armga012mGene10275

Armga012mGene13219

Arabidopsis thaliana

Rhizophagus irregularis

Verticillium alfalfae

Note: ER, endoplasmic reticulum; HisKA, Histidine Kinase A (dimerisation and phosphoacceptor ) domain; HATPase_c, 

Histidine kinase-like ATPase catalytic (Histidine kinase-, DNA gyrase B-, phytochrome-like ATPases) domain; GAF, cGMP-

phosphodiesterase, adenylyl cyclase, FhIA domain; P, PAS/PAC (Per-period circadian protein; Arnt-Ah receptor nuclear 

translocator protein; Sim-single minded protein/PAS C terminus); REC, Receiver domain; GGDEF, diguanylate cyclase 

domain; EAL, c-di-GMP phosphodiesterase; STYKc, protein kinase � unclassified specificity.

1

PeerJ reviewing PDF | (2022:09:77213:1:1:NEW 9 Dec 2022)

Manuscript to be reviewed

Notes.
ER, endoplasmic reticulum; HisKA, Histidine Kinase A (dimerisation and phosphoacceptor) domain; HATPase_c, His-
tidine kinase-like ATPase catalytic (Histidine kinase-, DNA gyrase B-, phytochrome-like ATPases) domain; GAF, cGMP-
phosphodiesterase, adenylyl cyclase, FhIA domain; P, PAS/PAC (Per-period circadian protein; Arnt-Ah receptor nuclear
translocator protein Sim-single minded protein/PAS C terminus); REC, Receiver domain; GGDEF, diguanylate cyclase do-
main; EAL, c-di-GMP phosphodiesterase; STYKc, protein kinase–unclassified specificity..

dose-dependent responses to ET like the way of plants above. Different transcriptional
profiles of mycelia cultured in exiguous ETH and non-ETH media were carried out. The
results showed that the number of up-regulated or down-regulated genes are increased
along with the concentrations of ETH. Half of up-regulated or down-regulated genes of
ETH−0.1 ppm and ETH-2 ppm coincided with ETH-5 ppm. However, it is hard to explain
the great difference of DEGs between ETH−0.1 ppm and ETH-2 ppm.

Several DEGs related to the growth of A. gallica 012mwere predicted by by using SMART
platform. The up-regulated Pyr_redox gene had been found in bacteria, fungi and yeast
as TRX (thioredoxin) system, which is one of the main antioxidant systems responsible
for maintaining cellular redox homeostasis and essential for cellular viability (Missall
& Lodge, 2005; Oliveira et al., 2010; Marshall et al., 2019). Budding yeast contains TRR1,
which encodes the cytoplasmic thioredoxin reductase that reduces the oxidized disulfide
form of TRX for the protection of yeast cells against oxidative and reductive stress (Singh,
Kang & Park, 2008). The up-regulated HMG domains are known as members of the HMG
superfamily and typically bind to DNA (Štros, Launholt & Grasser, 2007). Some HMG box
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Figure 6 Expression pattern of selected clusters of genes containing ET receptor domain. The color in-
tensity of each gene is based expression of genes containing ET receptor domain in BK samples and ETH
(0.1 ppm, 2.0 ppm and 5.0 ppm) samples.

Full-size DOI: 10.7717/peerj.14714/fig-6

proteins have been identified in fungi, including Saccharomyces cerevisiae (Ray & Grove,
2012), Aspergillus nidulans (Karácsony et al., 2014), Schizosaccharomyces pombe (Albert et
al., 2013) and Podospora anserine (Dequard-Chablat & Alland, 2002), which have various
functions. Yoshihara etc. had proposed that the new N. crassa KO strain mhg1KO, which is
a protein with HMG domain, showing a short-lifespan. Therefore, its hyphal growth ceased
after about two weeks of cultivation, while the wild-type continuing for over two years
(Yoshihara et al., 2017). The results implied up-regulated HMG gene might improve the
growth of mycelia. GAL4p (C6 zinc finger proteins) belong to the zinc cluster family, which
is the largest fungal-specific TF (transcription factors) family (Ekaterina, 2017; Cho & Park,
2022). AflR, as a Gal4p, plays essential roles in fungal development and regulates secondary
metabolism in A. flavus. RosA, a GAL4-like Zn2Cys6 transcription factor, inhibits sexual
development in A. nidulans (Vienken, Scherer & Fischer, 2005). In the ETH−0.1 ppm and
ETH-2ppm, the growth of mycelia might benefit from the up-regulated expression of
Pyr_redox, GAL4P and HMG genes.

ZnF_C2H2 (C2H2 zinc finger) proteins, as a major class of transcription factors, have
been functionally validated in fungal growth, development, stress responses, metabolism,
sexual reproduction and virulence (Xiong et al., 2015). In Metarhizium acridum, MaNCP1
(metarhizium acridum nitrate-related conidiation pattern shift regulatory factor 1), as a
C2H2 zinc finger protein, was involved in governing nitrogen utilization and conidial yield
(Li, Xia & Jin, 2022). Ribosomal protein S4 is a protein of the small ribosomal subunit
involved in protein synthesis (Lu et al., 2015). In S. cerevisiae, mutant of S4 ribosomal
proteins lead to telomere length (Askree et al., 2004), hydrogen peroxide sensitivity and
modified neomycin sulfate sensitivity (Parsons et al., 2006). In the research of Candida
albicans, cDNAmicroarray analysis of null mutants showed that carbohydrate and nitrogen
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Figure 7 Phylogenetic tree of genes containing ET receptor domain in A. gallica 012mwith other
seven species. The topology of the phylogenetic tree was constructed by the maximum likelihood
method.

Full-size DOI: 10.7717/peerj.14714/fig-7

metabolic processes were repressed. In the ETH-5 ppm, the growth of mycelia might be
impaired by the down-regulated expression of ZnF_C2H2 protein which affects the
transcription process and ribosomal protein S4 protein which inhibits the carbohydrate
and nitrogen metabolic processes.

Those DEGs aremore likely to explain the significant effect with different concentrations
of ETH on the growth of A. gallica 012m to some extent. We still feel regrettable that the
mechanism of A. gallica 012m response to ET could not be fully elucidated because many
top 10 DEGs cannot be annotated properly. What is the role ET in the interaction between
G. elata and A. gallica 012m? It was presumed that G. elata need some kinds of signaling
molecules to guide the A. gallica growth towards itself for energy and nutrition. We
speculated that ET is a kind of signaling molecule, which help A. gallica capture mycelia.
On the other hand, ET is the signaling molecule, which guides A. gallica to live plant.

The RNA-seq analysis indicated that ETH treatment influenced the gene expression ofA.
gallica 012 m significantly, and implied that ET could be the signaling molecule of A. gallica
012m. As signaling molecule, ET receptors and its signaling pathway in plants had been
well studied (Merchante, Alonso & Stepanova, 2013; Shakeel et al., 2013; Bakshi et al., 2015).
In bacteria, most of the researches concerning ethylene receptors were obtained from
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studies on the Cyanobacterium synechocytis (Bidon et al., 2020; Carlew, Allen & Binder,
2020). Lacey & Binder (2016) first demonstrated that Synechocystis Ethylene Response1
(SynEtr1) from Synechocystis sp. PCC6803, as a biofunctional receptor responses to light
and ethylene, contains ET binding domains. Recent genomic data revealed many putative
ET receptors in nonplant species including bacteria, fungi and animals (Carlew, Allen &
Binder, 2020). There were three transmembrane helices with seven conserved amino-acids
including GAF, HK, HA, PAS/PAC, R, P, and STYKc (Papon & Binder, 2019). ET receptors
homologs were also predicted in genomes of early diverging fungi which used to be
symbiont with plant or colonize decaying plant (Herivaux et al., 2017). Seven ET receptors
of A. gallica 012m were predicted based on RNA-seq and genome. There were 7 conserved
amino-acids including GAF, Hiska, HATPase_c, PAS, HAMP, REC and STYKc. However,
only Armga012mGene13219 possessed five transmembrane helices. We speculated that
there were ET receptors in A. gallica 012m.

It had been demonstrated that ET involved in the plant-fungi interaction. Therefore,
some early diverging fungi, known to behave as plant symbionts, were found in ET receptors
homologs (Papon & Binder, 2019). Our work provided a new perspective of the hormonal
communication that might operate in these symbioses, and ET might play an important
role in the process.

CONCLUSIONS
In conclusion, a low concentration of exogenous ETH improved the growth of mycelia,
while a high concentration of exogenous ETH inhibited the growth of mycelia in both
solid and liquid media. The RNA-seq analyses showed that the number of up-regulated or
down-regulated genes are increased along with the concentrations of ETH. Based on the
structure prediction of DEGs, the growth of mycelia might benefit from the up-regulated
expression of Pyr_redox, GAL4 and HMG genes in the ETH−0.1 ppm and ETH-2 ppm.
Therefore, the growth of mycelia might be impaired by the down-regulated expression of
ZnF_C2H2 and ribosomal protein S4 proteins. Those DEGs are more likely to explain the
significant effect with different concentrations of ETH on the growth of A. gallica 012m
to some extent.We speculated that A. gallica 012m contains seven ET receptor protein
domains. Based on cluster analysis and comparative studies of proteins, the result showed
that putative ET receptor domains of A. gallica 012m have a higher homologous correlation
with fungi. Eventually, we speculate that ET receptors exist in A. gallica 012m.
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