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Understanding the interplay between environmental conditions and phenotypes is a
fundamental goal of biology. Unfortunately, data that include observations on phenotype
and environment are highly heterogeneous and thus difficult to find and integrate. One
approach that is likely to improve the status quo involves the use of ontologies to
standardize and link data about phenotypes and environments. Specifying and linking data
in this manner will allow researchers to increase the scope and flexibility of large-scale
analyses aided by modern computing methods. Investments in this area would advance
diverse fields such as ecology, phylogenetics, and conservation biology. While several
biological ontologies are well-developed, using them to link phenotypes and environments
is rare because of gaps in ontological coverage and limits to interoperability among
ontologies and disciplines. In this review, we present 1) use cases from diverse disciplines
to illustrate questions that could be answered more efficiently using a robust linkage
between phenotypes and environments, 2) two proof-of-concept analyses that show the
value of linking phenotypes to environments in fishes and amphibians, and 3) two
proposed example data models for linking phenotypes and environments using the
extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO) that
can serve as a starting point for the development of a data model linking phenotypes and
environments.
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58 Abstract

59 Understanding the interplay between environmental conditions and phenotypes is a 

60 fundamental goal of biology. Unfortunately, data that include observations on phenotype and 

61 environment are highly heterogeneous and thus difficult to find and integrate. One approach that 

62 is likely to improve the status quo involves the use of ontologies to standardize and link data 

63 about phenotypes and environments. Specifying and linking data in this manner will allow 

64 researchers to increase the scope and flexibility of large-scale analyses aided by modern 

65 computing methods. Investments in this area would advance diverse fields such as ecology, 
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66 phylogenetics, and conservation biology. While several biological ontologies are well-developed, 

67 using them to link phenotypes and environments is rare because of gaps in ontological coverage 

68 and limits to interoperability among ontologies and disciplines. In this review, we present 1) use 

69 cases from diverse disciplines to illustrate questions that could be answered more efficiently 

70 using a robust linkage between phenotypes and environments, 2) two proof-of-concept analyses 

71 that show the value of linking phenotypes to environments in fishes and amphibians, and 3) two 

72 proposed example data models for linking phenotypes and environments using the extensible 

73 observation ontology (OBOE) and the Biological Collections Ontology (BCO) that can serve as 

74 a starting point for the development of a data model linking phenotypes and environments.
75

76 Introduction

77 Phenotype is the expression of interactions between genotype and environment. This 

78 relationship is fundamental to a wide range of biological research, from large-scale questions 

79 about the effect of climate change on global ecosystems to small-scale questions involving 

80 disease presentation in individual organisms. The urgency of such questions, coupled with the 

81 “data deluge” (Hey, Tansley & Tolle, 2009), has motivated scientists to explore more efficient 

82 ways to aggregate and explore life science data. Traditional methods of data dissemination, 

83 publication, and deposition in stand-alone databases do not support the rapid, automated, and 

84 integrative methods of data exploration needed to efficiently address pressing research priorities. 

85 Two important barriers to understanding interactions between environment and 

86 phenotype are the heterogeneity of terms and their imprecise definitions in data sets and 

87 manuscripts. An ontology has the potential to tame this heterogeneity and allow researchers to 

88 more efficiently query and manipulate, large-scale data sets (Fig. 1); however, several challenges 

89 must be overcome before their benefits are realized. Historically, bio-ontologies first came into 

90 popular use in the biomedical and model organism communities (Côté & Robboy, 1980; 

91 Spackman, Campbell & Côté, 1997; Ashburner et al., 2000), but they are now being applied to 

92 address much broader, comparative problem complexes (Mabee et al., 2007; Deans et al., 2015; 

93 Dececchi et al., in press). A shift towards representing and reasoning over taxonomically diverse 

94 phenotypes in an ontological framework has occurred in a period of less than 10 years and, not 

95 surprisingly, brings about new semantic, computational, and even social challenges (Gerson, 

96 2008). In this paper, we explore the difficulties of automated linking of environments and 
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97 phenotypes, review the current state-of-the-art, present use cases, and propose solutions to 

98 frequently encountered problems.

99 Clearly representing the natural language descriptions of phenotypes and environments 

100 with a set of ontologies is difficult, because natural language, while highly expressive, is often 

101 semantically ambiguous and reliant on context (Sasaki and Putz, 2009; Seltmann et al., 2013). 

102 Despite successes in developing standards within specific disciplines (e.g., Taylor et al., 2008), 

103 standard vocabularies are rare and seldom widely or consistently used (Enke et al., 2012). 

104 Individual scientists often have preferred terms with undocumented and highly nuanced 

105 meanings (Chang & Schutze, 2006; see discussion in Huang et al., 2015). Further, there is a co-

106 evolution between natural language and ontologies, which can complicate the recording  of 

107 provenance and backwards-compatibility (Seppälä, Smith & Ceusters, 2014; Ochs et al., 2015). 

108 Thus, as it stands, a researcher wishing to perform a meta-analysis has to manually integrate data 

109 sets, which often requires discussions with data providers to clarify meaning.

110 In addition to the intricacies of natural language used to describe phenotypes and 

111 environments, the ontological representation of environments requires additional considerations. 

112 Environments are often described using a collection of semantically complex (and often 

113 ambiguous) terms that are applied differently across disciplines. Semantic representation of 

114 terms such as “environment”, “ecosystem”, “habitat”, “ecozone”, “bioregion”, and “biome” must 

115 account for variable biological, ecological, geographic, geopolitical, and historical usage.  As a 

116 result of this complexity, many specialized environmentally-themed terms such as 

117 “Afrotropical”, which are central to fields such as zoogeography and floristic science, are not yet 

118 included in any ontology. Data about species interactions and behavior can be an essential 

119 component in defining an organism’s environment, but current ontological structures do not 

120 include behavior regulation classes that can be tied to ecological processes (e.g., negative 

121 regulation of foraging behavior by predation pressure). Environments can also be defined using a 

122 more data-driven approach where a specific environment is defined as the intersection of 

123 different factors, e.g., defining a desert as having a specific annual precipitation, temperature 

124 range, and solar irradiation. In the field of plant science, some consider field management 

125 practices (including, e.g., frequency irrigation or fertilizer application) to be a component of 

126 environment, whereas others consider field management to differ from the environment because 

127 these changes to conditions are not a part of the natural environment. Because of differences in 
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128 perspective, data are organized in different ways across multiple resources. These inconsistencies 

129 in describing environments complicate analyses that might identify associations among 

130 occurrences, phenotypes and environmental conditions. 

131 In spite of these challenges, understanding relationships between the semantics of 

132 environment and phenotype is fundamental for data integration and scientific progress in the 

133 fields of conservation, agriculture, disease control, organismal development, and numerous 

134 others in biology. Thus, there is a need for a more developed, flexible, and interlinked ontology 

135 framework representing environments, phenotypes, and their interplay. This framework for 

136 environments and phenotypes can allow automated inferencing over large, aggregated data sets, 

137 as demonstrated for gene functions and biological processes (Ashburner et al., 2000). Below, we 

138 present use cases that illustrate research questions that would benefit from semantically linking 

139 environments and phenotypes and describe existing efforts working toward this goal.

140 Background

141 Within the field of informatics, classification strategies range from flat lists of terms, to 

142 vocabularies, and ontologies. For example, a vocabulary might merely contain the terms “bone”, 

143 “leg”, “femur” and their definitions. An ontology would further define these as classes and with 

144 respect to their biological relationships by asserting that a “femur” is a type of “bone” and part of 

145 the “leg”. Moreover, such assertions are encoded in a standardized, machine-readable form. Thus 

146 ontologies empower computers to reliably interpret and reason over these logical relationship 

147 graphs. A well-known example of the technology’s potential is provided by IBM’s Watson 

148 (Gliozzo et al., 2013). Ontologies are typically recorded in a syntax format such as the Web 

149 Ontology Language (OWL; W3C OWL Working Group, 2012) or the Resource Description 

150 Framework (RDF; http://www.w3.org/RDF/) that can be readily distributed and exchanged by 

151 computers, thereby facilitating knowledge integration within a scientific community. For an 

152 ontology to actually be useful to scientists, these same scientists must mutually agree upon, 

153 develop, and nurture a shared collection of ontologies and the processes for maintaining it.

154 Over 40 ontologies and vocabularies have been created to describe environment and 

155 phenotype (Table 1). Some of these resources are extended and refined through incorporation of 

156 user and developer requests for new terms and cross-referencing terms to existing vocabularies. 

157 Like software development, an essential aspect of ontology development is constant evaluation 

158 through active use: describing data sets and asking key biological questions. To this end, a 
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159 number of groups are making the first inroads in the use of ontologies for studying the impact of 

160 environment on phenotypes (e.g., The Encyclopedia of Life; Pafilis et al., 2015). The Minimum 

161 Information for any Sequence (MIxS; Yilmaz et al., 2011) metadata checklist, a product of the 

162 Genomic Standards Consortium (GSC; Field et al., 2011), does not specifically link phenotypes 

163 to environments, but does include fields for describing environments using the Environment 

164 Ontology (ENVO; www.environmentontology.org; Buttigieg et al., 2013) as well as the host 

165 phenotype as part of the host-associated genome/metagenome environmental package. Although 

166 MIxS recommends using terms from the Phenotypic Quality Ontology (PATO; Gkoutos et al., 

167 2004) in the host phenotype field, host phenotypes can be complex and could be described via a 

168 mixture of phenotype ontologies (such as the Human Phenotype Ontology (Köhler et al., 2014) 

169 or Mouse Phenotype Ontology (Gkoutos et al., 2004). The International Consortium for 

170 Agricultural Systems Applications (ICASA) has built an infrastructure for combining genotype, 

171 environment, and management data in agricultural analyses using a hierarchical data dictionary 

172 (Hunt, White & Hoogenboom, 2001; White et al., 2013). This infrastructure is being integrated 

173 in crop and climate modeling efforts, notably through the Agricultural Model Intercomparison 

174 and Improvement Project (AgMIP), which promotes efforts to “simulate yield response to 

175 climatic factors, abiotic factors, and genotypic variables” (http://research.agmip.org/). Oellrich et 

176 al. (2015) recently developed a standardized method for describing and analyzing the phenotypes 

177 associated with characterized mutant genes across species that includes environmental terms 

178 from the Plant Environment Ontology (EO). Despite this progress, the available environment and 

179 phenotype ontologies still contain major gaps in the coverage of their respective domains, and 

180 significant investment is needed before data integration and analytics can be accomplished on a 

181 large scale.

182

183 Use Cases

184 To communicate the importance of investing in environment and phenotype ontologies, 

185 we present use cases drawn from several life science domains. These use cases represent the 

186 types of research questions that either cannot currently be answered or can only be answered 

187 with great difficulty. 
188

189 Using Phenotype and Environment Ontologies in Ecology
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190  
191 Coping with Climate Change in Conservation, Management, and Agriculture 

192 Example Question: Which species or crop varieties are projected to do well in my locality over 

193 the next century?
194

195 Background: 

196 Climate change is anticipated to affect environmental conditions with unprecedented 

197 speed. Knowledge concerning the responses of ecological communities to these changes is very 

198 limited: adaptation and migration are among numerous possibilities that must be considered. 

199 Conservation and agricultural resources are also limited, so identifying and focusing 

200 interventions on taxa that are less able to adapt can be very helpful. Besides commonly-used 

201 projections based on species distributions models, another strategy for identifying at-risk species 

202 is to assess their vulnerability based on their traits (i.e., phenotypes). By linking phenotypes to 

203 specific environmental conditions, taxa or strains that are likely to thrive (or not) under those 

204 conditions can be identified. For example, cataloguing phenotypes that are more prevalent 

205 among organisms that live in hot and wet environments and detecting their presence in 

206 organisms whose environments are warming and becoming more humid, allows some bearing on 

207 the later organisms’ ability to cope with such climate change. In agriculture, this can be used to 

208 identify crop varieties that are likely to give higher or more stable yields under specific 

209 conditions or wild relatives of crops that may possess useful traits. In conservation, similar 

210 analyses can identify species at risk of extinction (Thormann et al., 2014). One system that hints 

211 at performing this type of analysis currently is SemanticWildNET (Henderson, Khan & Hunter, 

212 2007), which links data about birds and snakes to environmental conditions in Australia.
213

214 Current Workflow: 

215 Steve works for a seed company that serves the southern Great Plains in the USA. 

216 General Circulation Models (GCMs) project that over the next 25 to 30 years farmers in the 

217 southern Great Plains will experience drier, warmer, and longer summers. His company wants to 

218 start breeding sorghum hybrids that will perform well in these future conditions. Steve’s 

219 company has developed and phenotyped a wide range of parental lines that differ in yield 

220 response and phenology under different environmental conditions, much of which is proprietary 
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221 data. He is able to find additional data sets that link geolocations and associated environmental 

222 conditions to taxon phenotypes for crops (e.g., GRIN, the Germplasm Resources Information 

223 Network; http://www.ars-grin.gov/npgs/) and link taxa to phenotypes (e.g. the TRY Plant Trait 

224 Database, https://www.try-db.org/; Kattge et al., 2011). Environmental data sets that include 

225 information about weather (NOAA), soil (USGS) and climate projections on a 1 km spatial grain 

226 (WorldClim data set, Hijmans et al., 2005) are publicly available through government sources.

227 Steve decides that the best strategy for finding the top hybrid for a specific future habitat 

228 is to manually link phenotypes to environmental conditions using the taxon name and location 

229 (geographic coordinates) as a metadata bridge (Fig. 2). To work with the data, Steve must 

230 download the files to a local machine. Because he does not have programming skills, he must 

231 manually locate the specific data of interest from each data source and then make decisions about 

232 appropriate integration using written documentation from the data provider. The data preparation 

233 and integration takes six months of full time work. 

234 When Steve finally has his data ready to analyze he must pick a statistical workflow and 

235 software package that can identify phenotypes and environmental conditions that are observed 

236 together. The next step would be to look at the climate projections to find the projected 

237 environmental conditions his customers are likely to be facing and use these to identify the ideal 

238 suite of phenotypes for that future climate regime. The final step would be to identify the taxa 

239 that have the phenotypes in question.
240   
241 Future Workflow: Agriculture

242 Steve works for a seed company that serves the USA. GCMs project that over the next 25 

243 to 30 years farmers in the southern Great Plains will experience drier, warmer, and longer 

244 summers. His company wants to start breeding sorghum hybrids that will perform well in these 

245 future conditions. Steve’s company has developed and phenotyped a wide range of parental lines 

246 that differ in yield response and phenology, and these lines have been annotated using ontology 

247 terms for traits (e.g., TO and PATO, Table 1) and the corresponding growth conditions (EO, 

248 Table 1). Additionally, the habitat of each line (or its source organisms) is described by classes 

249 from an environment ontology (ENVO, Table 1) 

250 Steve queries his company’s internal, semantically aware database for annotated records 

251 corresponding to the lines his company has developed that have high yields under warmer 
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252 climatic conditions and when subject to drought. This gives him a list of candidate lines (i.e., 

253 phenotypes and genotypes) to use in development of new hybrids for the region. If the list of 

254 these candidates does not provide sufficient resistance to high temperatures and drought, he may 

255 choose to query a database containing information on the wild relatives of sorghum, along with 

256 average rainfall and temperature data from the natural habitat of each species and/or annotations 

257 describing their habitat using classes from an environment ontology. If necessary he will be able 

258 to introgress genetic material encoding drought or high temperature tolerance from a wild 

259 relative of sorghum into his breeding lines.
260

261 Future Workflow: Wildlife Conservation

262 Lupita is a park ranger that manages a coastal wildlife sanctuary. Some of the species in 

263 her sanctuary are listed as threatened by the IUCN. According to the latest climate change 

264 projections, her sanctuary is going to be hotter and wetter in 50 years. She has limited resources 

265 to maintain the biodiversity in her sanctuary for the long term. After some thought, she decides 

266 to identify at-risk species by comparing the traits of the organisms in her park with traits of 

267 organisms that do not do well in hot, wet, coastal environments. Lupita searches a semantically 

268 aware, publicly-available biology database and finds a list of traits for vertebrates whose habitats 

269 do not include hot, wet, coastal environments and a list of traits for vertebrates with habitats that 

270 do. Comparing differences between the two data sets gives a list of candidate traits which 

271 suggest a taxon would be vulnerable to the projected climate regime. Searching for these traits 

272 across the species in her sanctuary, Lupita identifies two species that are highly likely to fare 

273 poorly in the projected climate, and she devotes resources to their conservation.
274

275 Challenges Today: 

276 A large proportion of phenotype and environment data are part of the “long tail of dark 

277 data” (Heidorn, 2008) that are not currently digital or discoverable. Although some phenotype, 

278 environment, genotype, and climate projection datasets are available, they are difficult to find 

279 and interrelate. These types of datasets can be cross-linked using space, time, or taxon, but the 

280 formats of the different datasets can pose a challenge to integration (e.g., Reed, White & Brown 

281 2003). In addition, metadata across disciplines, data types, and time periods are rarely consistent. 

282 Key data items used for integration, such as taxonomic names, change over time and lead to 
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283 poorly linked data (Edwards et al., 2011; Giles, 2011; Page, 2008; Franz et al., 2015). 
284

285 Using Phenotype and Environment Ontologies in Taxonomy

286 Connecting Specimen Phenotypes to Environment

287 Example Question: Which traits are common to beetles collected from deserts?
288

289 Background: 

290 Natural history collections worldwide contain approximately two billion specimens 

291 across various taxonomic groups (Ariño, 2010). Tens of millions of these specimens have their 

292 phenomes at least partly described in the form of published taxonomic descriptions and may 

293 have environmental data recorded on the specimen label or in a field notebook. Much of these 

294 data have not been digitized and can be difficult to find and use. Connecting specimen-based 

295 phenotype data to environmental information that describes where the specimen was isolated can 

296 support predictive modeling of diversity and distribution.

297 The current massive digitization effort applied to collections is primarily done manually, 

298 though efforts are being made to automate where possible (Barber, Lafferty & Landrum, 2013). 

299 The environmental data associated with a specimen, typically a note on a specimen label, is 

300 typically transcribed verbatim. If a curator wants to annotate a specimen with an environment or 

301 habitat type or other metadata, the process of reading the information and relating it to an 

302 ontology class is entirely manual. This is a very time-consuming workflow that involves 

303 reconciling synonyms and disambiguating homonyms. Ideally, much of the manual labor of 

304 reconciliation, disambiguation, and assignment would be shifted to a machine with curators 

305 intervening only periodically. 

306 A semantic model for representing specimen phenotypes has been developed (Balhoff, 

307 Yoder & Deans, 2011) and applied to taxonomic descriptions (Mullins et al., 2012; Balhoff et al., 

308 2013). This model applies phenotype statements directly to specimens. Each specimen, residing 

309 in an institutional collection, is associated with collecting event data, including where, when, 

310 how, and by whom it was collected. The “where”-data could be connected to environment types 

311 and other environmental data through semantic annotation using environment ontologies.
312

313 Current Workflow: 
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314 Kate wants to annotate insect specimens in a research collection with phenotypic and 

315 environmental terms. All labels, published reports, and field notebooks concerning this collection 

316 have been digitized and processed via optical character recognition (“OCRed”). She logs in as an 

317 editor into the museum collections database that allows her to virtually access each specimen and 

318 any associated documents. Kate begins working on the first specimen. The interface brings up 

319 the label, an image of the specimen, the published description, and the relevant field notebook 

320 page. An NLP-assisted algorithm within the interface reads the OCRed documents and highlights 

321 environment-related terms in the text. She quickly reads the label and notebook near the 

322 automated highlights, then searches ENVO to find the class that most accurately describes the 

323 environmental conditions described by the collector. The environment listed in the notebook 

324 does not match an existing ENVO class. She creates an issue in the ENVO issue tracker 

325 (https://github.com/EnvironmentOntology/envo-p/issues/) requesting a new class that more 

326 accurately describes the specimen environment. She does research on what the class should be 

327 called and on the suggested definition. Kate will have to wait until someone at ENVO can 

328 consider her request before completing the annotation.

329 After submitting the issue to ENVO, Kate reads the published description and goes back 

330 and forth between PATO and the relevant insect anatomy ontology to find the classes she needs 

331 to describe the specimen phenotypes and double-checks the classes by looking at the specimen 

332 image (when possible). This process is very time consuming. When Kate is finished she adds the 

333 relevant classes to the specimen database.

334 When Kate finally finishes her annotations, any user can query her museum website for 

335 specimens that meet specific phenotypic and environmental constraints.
336

337 Future Workflow: 

338 Kate wants to annotate insect specimens with phenotypic and environmental terms. All 

339 materials concerning this collection have been digitized. Her museum has the cyberinfrastructure 

340 that allows her to virtually access each specimen, bring up the related documents, and assign 

341 relevant phenotypic and environmental terms through a point-and-click interface. Kate begins 

342 working on the first specimen. The interface brings up the label, an image of the specimen, the 

343 published description, and the relevant field notebook page. A text-mining tool highlights 

344 relevant information in these sources and suggests classes from appropriate phenotype and 
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345 environment ontologies (e.g., ENVO). Kate agrees with the suggestions and clicks “approve”. 

346 For the next specimen, Kate agrees with the proposed phenotype classes, but does not see any 

347 appropriate ENVO classes. She rejects the suggestions and is taken to a window that allows her 

348 to browse ENVO for more appropriate classes. Still not satisfied, another click takes her to a 

349 window that allows her to submit a request for a new class for which she suggests a definition 

350 and relevant references. Kate is then taken back to the working environment and is presented 

351 with the next specimen. Kate again agrees with the proposed phenotype classes, but the source 

352 contains only a latitude and longitude for environment. The granularity offered by a lat/long 

353 query does not capture microhabitats the insect may have been exposed to, but she decides that a 

354 high-level description of the environment (by using biome or environmental feature classes in 

355 ENVO) is preferable to providing no metadata. Kate opens a lat/long query window where she is 

356 asked for a latitude, longitude, and date. Altitude is optional and depth is required for a lat/long 

357 over water. This query returns environmental data relevant to the date that the specimen was 

358 collected and the system suggests ENVO classes, some of which Kate agrees with. When Kate 

359 finishes her annotations, any user can query her museum website for specimens that meet 

360 specific phenotypic and environmental constraints.
361

362 Challenges Today: 

363 Inconsistencies in geographic metadata associated with specimens are a major roadblock 

364 in connecting phenotypes and environments (Vollmar, Macklin & Ford, 2010). Specimen 

365 metadata are filled with ambiguous and synonymous terms with inconsistent granularity. For 

366 example, the Plant Bug Inventory project database (http://research.amnh.org/pbi/; Schuh, 2012) 

367 uses thousands of habitat names to describe the localities where insect species were collected, 

368 including “cloud forest”, “cloud forest with bamboo” and “cloud forest: oak trees, fern” (G. 

369 Zhang pers. comm.). The documentation required to relate these terms to each other is currently 

370 absent. In addition, high-level (but imprecise) locality information (e.g., “State College, Penn.”) 

371 is quite common for museum specimens and cannot be associated with fine-grained environment 

372 types. Further, specimen labels often contain somewhat vague terms such as “neotropical” or 

373 “mesohaline” that correspond to broad ecoregional definitions. According to Wikipedia, 

374 mesohaline is defined as water that is between 5 and 18 salinity 

375 (http://en.wikipedia.org/wiki/Salinity), but it is seldom clear whether a collector has intended a 
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376 precise definition such as this when writing the label. Thus, associating many specimens 

377 currently in collections with well-defined environments may not be possible.

378 Some specimen metadata include a latitude and a longitude or a locality name, which 

379 may be used to infer the environment, but environments change over time. For example, a 

380 specimen may have been collected from a desert, which has since been paved over in the 

381 expansion of a metropolitan area. Environments are also subject to cycles such as seasonal, diel, 

382 or tidal. All of these factors make date and time important metadata. Annotating specimens in 

383 more three-dimensional environments, such as the ocean or a mountain plateau, requires yet 

384 another piece of information – depth or altitude. 
385

386 Using Phenotype and Environment Ontologies in Phylogeny

387 Reconstructing Ancestral Features and Habitats

388 Example Question: Do species that have independently reduced or lost their eyes share common 

389 environments now or in the past?
390

391 Background: 

392 To infer the most probable features of a common ancestor given a phylogenetic tree and 

393 the phenotypes of extant species, researchers utilize several well-developed parsimony and 

394 likelihood methods. Similarly, the habitat preference of living species can be used to reconstruct 

395 evolution of ecological niches. Connecting the phenotypic data from species with their habitat 

396 and environmental data allows efficient analysis of these associations, allowing, for example, the 

397 disentangling of evolutionary adaptation from other causes of phenotypic convergence. 

398 Current methods of ancestral reconstruction rely on the uniform identification of a limited 

399 number of environmental traits (e.g., habitats).  Users have parsimony, likelihood, and Bayesian 

400 methods at their disposal for ancestral state reconstruction (e.g., Mesquite, Maddison & 

401 Maddison, 2014; BEAST, BayesTraits, and R packages such as ape). These methods allow for 

402 both discrete and continuous values.  For discrete characters, ancestral states are calculated from 

403 the specific character states (e.g., environmental traits) found in the species.  For example, for a 

404 clade of species that live in either “deep sea” or “underwater cavern” habitats, ancestral state 

405 reconstruction is limited to these discrete habitats, i.e., the ancestor can be hypothesized to have 

406 lived in either one or the other habitat.  However, an ontology can show that “deep sea” and 
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407 “underwater cavern” are both subtypes of an “aphotic marine environment”, and thus this parent 

408 term reveals this as a potential ancestral state for this clade.

409

410 Current Workflow: 

411 Jane examines museum specimens of organisms belonging to a clade of freshwater fishes 

412 which encompasses several hundred species. She discovers that the eyes vary in their level of 

413 development: completely absent in some species, reduced in others, and fully developed in most. 

414 After mapping this trait on a well-supported phylogeny, she concludes that eye reduction and 

415 loss has occurred independently several times in this clade. This leads her to hypothesize that the 

416 changes in eye development are associated with a species’ habitat. She goes to the museum 

417 databases and finds that the original descriptions of the collection sites for these specimens are 

418 recorded as free text in the Darwin Core field “verbatimLocality” 

419 (http://rs.tdwg.org/dwc/terms/verbatimLocality). She enters the “verbatimLocality” data into her 

420 matrix of features mapped onto the phylogeny. Jane notices that several terms might be 

421 synonymous and begins to research the specific definitions of the terms used and does her own 

422 research into conditions at each locality. After one month of reconciling locality terms, she 

423 begins to notice that species with reduced or absent eyes are all from subterranean environments. 

424 She proceeds with her study, now examining other environmental factors or phenotypic traits 

425 that might play a role in their shared habitat type.
426

427 Future Workflow: 

428 While examining several hundred museum specimens of organisms belonging to a clade 

429 of freshwater fishes, Jane discovers that the eyes vary in their level of development.  Mapping 

430 this trait on a well-supported phylogeny shows that eye reduction and loss has occurred 

431 independently several times in this clade. This leads her to hypothesize that the changes in eye 

432 development are associated with a species’ habitat. She goes to the museum databases and finds 

433 that the original description of the place from where these specimens were collected was 

434 recorded as free text in the Darwin Core field “verbatimLocality” 

435 (http://rs.tdwg.org/dwc/terms/verbatimLocality), but the text is mapped to classes in an 

436 environmental ontology such as ENVO.  She downloads these classes for all species and adds 

437 them to the matrix of features that are mapped to the phylogeny.  She sees that species with 
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438 reduced or absent eyes are from localities variously described as “shallow pool in cave”, “deep 

439 water well”, “deep phreatic habitat”, and “swallow hole”. A visualization tool allows her to see 

440 the ontological classes which these descriptions have been mapped to as well as any shared 

441 hierarchies or relations to other classes. She notices that these descriptions share “groundwater” 

442 and an environmental material and “subterranean” as an environmental quality.  She proceeds 

443 with her study, now examining other environmental factors or phenotypic traits that might play a 

444 role in their shared habitat type.  
445

446 Challenges Today: 

447 As in the other use cases, environmental ontologies must be provisioned to include the 

448 classes relevant to a broad range of habitat types. Additionally, and similar to other use cases, 

449 phenotypes of taxa that are represented in a computational format must be readily available. The 

450 challenge unique to this use case is that methods of phylogenetic optimization that utilize 

451 ontological relationships need to be developed. This will require consideration of the hierarchy 

452 of class relationships such that the semantic similarity (Pesquita et al., 2009; Resnik, 1999) 

453 among differing ancestral states at a particular node is taken into account when calculating the 

454 appropriate assignment of a state to that node. Further, visualizations of the distribution of 

455 phenotypic and environmental features on the tree that display, e.g., the most similar ontological 

456 parent classes across nodes, need to be developed. An attempt to create an ancestral phenotype 

457 ontology has previously been made by Ramírez & Michalik (2014). 
458

459 Using Phenotype and Environment Ontologies in Behavioral Ecology
460  
461 Including Species Interactions in Habitat Assessments

462 Example Question: How will this predatory wasp affect the spider population in my vegetable 

463 garden?
464

465 Background: 

466 Behavior is a phenotype that can be influenced by the presence or absence of other 

467 organisms. The presence of other taxa can be just as important as abiotic features for determining 

468 suitability of an environment for habitation by members of given species. An observation of a 
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469 taxon exhibiting a stress behavior is very different from an observation of the same taxon 

470 exhibiting a feeding behavior. Changes in the ranges of organisms due to climate change or 

471 accidental introduction is another way by which environments change and become more or less 

472 suitable for specific phenotypes, such as feeding or courtship behaviors. These behaviors are 

473 very important and when they are interrupted, can increase or decrease abundance of the affected 

474 organism. 

475 Current methods for retrieving behaviors that might be predictive of species interactions 

476 mostly rely on published or unpublished ethograms and incidental comments in taxonomic 

477 descriptions or experimental studies. There are databases of species interactions (Poelen, Simons 

478 & Mungall, 2014), but these reflect interactions observed and reported in the literature, without 

479 the behavioral content to make predictions about possible interactions resulting from the 

480 introduction or range expansion of one or both species. Ideally, behavioral descriptions would 

481 include specific environmental preferences as well as details of foraging, anti-predator, and 

482 courtship behavior. The ability to make predictions of interactions would be an important 

483 contribution when considering planned introductions or when setting priorities for preventing 

484 unintentional spread.
485

486 Current Workflow: 

487 Larry depends on his vegetable garden for food and on the spiders within it for pest 

488 control. He frequently sees the jumping spider, Phidippus clarus Keyserling 1884, in the garden. 

489 P. clarus is a widespread and common spider in the Eastern US (Edwards, 2004) and has been 

490 demonstrated to be capable of controlling an experimental population of herbivorous insect pests 

491 (Hoefler, Chen & Jakob, 2006). Larry hears from his local agricultural extension office that a 

492 South American wasp that preys on spiders has been accidently introduced nearby. Should Larry 

493 be concerned that the presence of the wasp will lead to more pests in his garden? Larry takes the 

494 day off work to go to the local University library and asks a librarian to help him find 

495 information about P. clarus and the South American wasp. Much of the information he needs is 

496 in table format (ethogram) or in narrative text (comments in taxon descriptions and experimental 

497 studies) and is difficult to decipher. The librarian makes him aware of a database of species 

498 interactions that is easier to understand, but no data for P. clarus are available. At the end of the 

499 day, Larry is still uncertain about the effect of the wasps on his garden spider population.  
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500

501 Future Workflow: 

502 Larry depends on his vegetable garden for food and on the spiders within it, such as the 

503 jumping spider Phidippus clarus Keyserling 1884, for pest control. Larry hears from his local 

504 agricultural extension office that a South American wasp that preys on spiders has been 

505 accidently introduced nearby. Should Larry be concerned that the presence of the wasp will lead 

506 to more pests in his garden? Larry checks a gardening app on his mobile device that uses a 

507 combination of ontologies and observation data to power a Q&A engine about nature in his area. 

508 Through a simple user interface, he asks the app if the wasp is likely to affect the jumping spider 

509 and whether there are additional potential consequences. Guided by the ontological structure 

510 available in its back-end, the app states that 1) P. clarus is known to spend large amounts of time 

511 on the tops and tips of plant shoots, and commonly lays its egg sacs near the tips of shoots 

512 (Edwards 1980; Hill 2014), and 2) the wasp searches for prey on the tops and tips of plant 

513 shoots. The inference engine used by the app are able to predict that the introduced wasp is likely 

514 interact with Larry’s population of P. clarus spiders. Because of where eggs are laid, this would 

515 have the potential to interrupt P. clarus reproduction and thus reduce pressure on his garden 

516 pests. With this information, Larry spends an hour making several wasp traps out of old plastic 

517 bottles to place in his garden.
518

519 Challenges Today: 

520 Environment ontologies currently do not explicitly incorporate species interactions in the 

521 definition of their classes; however, an ontology for describing experimental conditions (EO) 

522 does describe interactions between plants and other organisms in their environment. Many 

523 environment ontologies, as they are currently structured, may not capture features relevant to 

524 whether an environment will support specific behaviors, which can be very important data. Not 

525 all taxa will engage in important behaviors in all environments, thus for many studies, 

526 presence/absence data are not adequate. Creating a new set of ethological ontologies and 

527 developing relations from their classes to those present in environmental ontologies has great 

528 potential to address these issues, but requires significant effort to realize and maintain.
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529

530 DISCUSSION

531 Challenges

532 The process of developing the Use Cases identified several major barriers to linking 

533 phenotype and environment. These fall into two categories: challenges of coverage and 

534 challenges of interoperability.
535

536 Challenges of Coverage

537 Variable Granularity:

538 Environmental data are reported with varying degrees of granularity that can take the 

539 form of nested categories (e.g., continent – country – province – township – street), intervals 

540 (e.g., ± 30 km), or significant digits (e.g., 5.236 vs 5.2). Some data sets, especially species 

541 observations, include highly granular metadata specifying the exact location or exact conditions 

542 under which a specimen was collected (such as collecting an insect from under tree bark or 

543 collecting an organism in the presence of its predator). Although existing ontologies cover many 

544 of the scales of interest, gaps prevent sufficient detail to capture all of the environmental data 

545 provided in connection with collected specimens or published studies.  These are critical for 

546 some taxa, such as insects collected from under bark (Jain & Balakrishnan, 2011). Currently, 

547 such data are not discoverable due to the paucity of terms in existing ontologies and the lack of 

548 easy-to-use tools that allow for semantic annotation with multiple ontologies. 
549

550 Terms and Definitions:

551 One of the biggest challenges in creating ontologies for application to disciplines that 

552 have a long history of published knowledge is the translation of the information in human-

553 readable narrative into a machine-readable form. Human language is very difficult for a machine 

554 to understand largely because of its variability and nuance. Different terms (i.e., synonyms) can 

555 be used to refer to the same concept, while a single term (i.e., homonyms) can refer to multiple, 

556 different concepts. The human brain copes with this uncertainty by understanding context. One 

557 way for a machine to cope with the variability of natural language is to provide it with an 

558 ontology that includes synonymous terms; however, this can be difficult to maintain because 

559 language evolves rapidly. Homonyms are a word-sense-disambiguation problem, which requires 
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560 heuristics about context to infer meaning; it is an active area of research (Zhan & Chen, 2011). A 

561 homonym example applicable to environments is the term “scrubland”, which means something 

562 very different in California and South Africa. In this case, significant disambiguation could be 

563 achieved by cross-referencing terms with geo-location or place names using resources such as 

564 GAZ (Buttigieg et al., 2013), a gazetteer developed along ontological principles. 
565

566 Incomplete Ontologies:

567 The development of ontologies in the biodiversity sciences has grown rapidly but is 

568 relatively new, thus coverage is still small (Table 1). The OBO Foundry Library 

569 (http://www.obofoundry.org/), a repository for biological ontologies, contains 22 ontologies 

570 relevant to environments and phenotypes, with a total of 136,480 classes. Of these ontologies, 

571 only one describes environments (ENVO) and one describes plant environmental conditions in 

572 experimental treatments (EO). Eleven are phenotype or anatomy ontologies that cover specific 

573 taxonomic groups, such as fungi (FYPO), animals (UBERON primarily for Chordates, with 

574 other ontologies such as PORO for specific clades like Porifera (Thacker et al., 2013)), and 

575 plants (TO) (Table 1).  Many other taxa, such as the microbial eukaryotes, do not have dedicated 

576 ontologies. Furthermore, existing ontologies lack many key concepts required for application to 

577 the many facets of biodiversity. This argues for the need of “living” ontologies (actively 

578 maintained and highly-responsive to user requests) that can be updated continually and with 

579 tools and services to allow users to request new classes and update existing classes with low 

580 overhead. Ontology development is extremely time-consuming (Dahdul et al., 2015), and it must 

581 be driven by scientific requirements, not by attempts to fully provision them a priori. Further, 

582 provenance, i.e., the record of authorship involved in term development through persistent digital 

583 identifiers such as ORCID (orcid.org), is a poorly developed feature in most ontologies, though 

584 important for providing credit to contributors.  
585

586 Challenges of Interoperability

587 Data Integration:

588 Linking environments, locations, and phenotypes will require interoperability between 

589 several data types with the varying granularity used in biodiversity and geoscience. These 

590 include data types from political and physical geography, coordinate systems, gazetteers, as well 
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591 as representations of environment and habitat. GeoNames has linked political geography and 

592 some physical geography with coordinates (http://www.geonames.org/). A specimen with 

593 coordinates can easily be linked to any number of political entities using the GeoNames API. 

594 The same has not been accomplished for habitats; however, the components required to 

595 accomplish this are falling into place. For example, the LifeMapper (Prajapati, 2009) and Map of 

596 Life (Jetz, McPherson & Guralnick, 2012) projects use ecological niche modeling to map species 

597 distributions based on environmental conditions. Additionally, the Encyclopedia of Life 

598 TraitBank (http://eol.org/info/516) links taxa to their habitat type and phenotypic traits, but not to 

599 geographic coordinates (Parr et al., in press). Once greater ontological representation of the link 

600 between species and their environments is accomplished, robustly linking species’ phenotypes to 

601 their environments and locations become readily achievable.

602 In addition to spatial variation, environments show considerable variation over time and 

603 often change over daily and seasonal cycles. This makes temporal data a key component for 

604 meaningful integration. Environmental conditions measured at 14:00 can be very different from 

605 those measured at 02:00 in the same location. The measurements made at the former, may not 

606 apply to a specimen collected at the latter. In addition, an organism is rarely only exposed to 

607 conditions measured at a single place and time. Some degree of integration is required to get a 

608 complete picture of an environment associated with a phenotype (referred to as the “exposome” 

609 in epidemiology, Wild, 2005). 
610

611 Ontology Legacy Alignment:

612 The development of successful ontologies is often driven by a “bottom-up” community 

613 approach. While this results in a product that is relevant for users, it can also result in multiple 

614 partially overlapping ontologies, despite efforts to prevent duplication (e.g., Smith et al., 2007). 

615 For improved integration and inferencing, overlapping ontologies need to be properly aligned 

616 and those alignments need to be maintained over time. If not done properly, inferencing may be 

617 inhibited or precluded altogether. This is a general problem that is not unique to environment or 

618 phenotype ontologies (Cregan et al., 2005). A “top-down” approach to ontology development, in 

619 which classes that constitute the top levels of a new ontology come from an existing domain or 

620 upper-level ontology (e.g., CARO, UBERON, PO, BFO - Grenon & Smith, 2004; Haendel et al., 

621 2008; Mungall et al., 2012; Cooper et al., 2014), can result in a shared structure and 

PeerJ reviewing PDF | (2015:07:5750:0:0:CHECK 11 Jul 2015)

Reviewing Manuscript



622 homogenized development across ontologies, although more specific classes will still require 

623 alignment. Aligning ontologies manually is a large task and it is difficult to know the full 

624 consequences of an alignment without testing (Ochs et al., 2015). The ability to support the 

625 provenance of alignments and re-alignments can translate into trust and continued investment. 

626 Numerous semi-automated tools for alignment have been developed (e.g., Granitzer et al., 2010; 

627 Chen et al., 2014). Challenges include setting up proper relations between classes in different 

628 ontologies such that the logical outcomes are valid and consistent (Franz & Peet 2009; Meilicke 

629 & Stuckenschmidt 2009; Jiménez-Ruiz et al., 2009; Franz et al., 2015, N. Franz unpublished 

630 data). The time and effort spent on maintaining alignments and interoperability can be eliminated 

631 if shared community resources are instead developed (Dahdul et al., 2015). For example, several 

632 independent anatomy ontologies for vertebrates [teleost (Dahdul et al., 2010); amphibian 

633 (Maglia, Leopold & Pugener, 2007); vertebrate skeletal (Dahdul et al., 2012), and vertebrate 

634 homologous organs (Niknejad et al., 2012)] were recently subsumed into UBERON, the 

635 metazoan anatomy ontology (Haendel et al., 2014), and new content and development is now 

636 focused on this single resource.
637

638 Proof of Concept Demonstrations: Linking Environments and Phenotypes

639 Miniaturization in Fish

640 Question: Has the evolution of miniaturization in fishes been driven by environmental variables?  

641 Miniaturization is essentially the evolution of small body size and the associated set of 

642 phenotypes, typically reduction or loss of structures. Authors have related this extreme change in 

643 body size to organisms whose habitats include highly acidic waters, typical of peat bog or black 

644 water habitats (Kottelat et al., 2006). As a proof of concept, we tested the hypothesis that 

645 miniaturization is correlated with environmental variables. Using a list of miniaturized fishes and 

646 their sister taxa extracted from the literature as input, we retrieved a phenotype X taxon synthetic 

647 supermatrix from Phenoscape Knowledgebase (KB) (kb.phenoscape.org) using the Ontotrace 

648 tool (Dececchi et al., in press). Using the common phenotype ontologies as a bridge, the KB 

649 links evolutionary phenotypes of biodiverse taxa to candidate genes from model organisms.  

650 Using the taxon names as input to GBIF, we created a list of 378 georeferenced observations 

651 from museum specimen records (http://www.gbif.org/occurrence/download/0000659-

652 150211104439307; Fig. 3). These species’ latitude and longitude occurrence records were 
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653 matched to the 1 km  HydroSHEDS hydrography (Lehner, Verdin & Jarvis, 2008) using a 

654 horizontal distance tolerance of 3 km; they were then intersected with freshwater specific layers 

655 by Domisch et al., (unpublished data). In this data set, the watershed of each 1 km stream reach 

656 along the HydroSHEDS hydrography was delineated and then overlaid with climate (Hijmans et 

657 al., 2005), topography (Lehner, Verdin & Jarvis, 2008), land cover (Tuanmu & Jetz, 2014), and 

658 surface geology (USGS) layers. The differences in the habitat variables between miniatures and 

659 non-miniatures were explored using a two-tailed t-test (Table 2). The results showed that 

660 miniaturized fishes are found in warmer, wetter environments than their non-miniaturized 

661 counterparts. New data layers are being developed to test specific phenotypic hypotheses related 

662 to the habitats (e.g., pH, water flow) of miniaturized fishes (Domisch et al., unpublished data). 

663 Specifically, the phenotypic data from the ontology-enabled matrix can be used to examine 

664 correlations to environment with ontology-based miniaturized phenotypes (e.g., mandibular 

665 sensory canal, absent; basibranchial 2 tooth, absent).
666

667 Amphibian Reproduction

668 Question: Which amphibians in my neighborhood are most likely to have their breeding 

669 disrupted if a plan to drain a pond (the single source of year-round, standing freshwater) is 

670 implemented?

671 The Encyclopedia of Life links environments associated with a given species’ habitat and 

672 phenotypes indirectly through taxon names. These data can be accessed and downloaded via 

673 TraitBank (Quintero et al., 2014; Parr et al., in press). TraitBank uses Uniform Resource 

674 Identifiers (URI), many from existing ontologies, as a controlled vocabulary for describing 

675 characters and character states to facilitate large-scale data integration (Table 3). As proof of 

676 concept, we queried TraitBank for breeding environment and developmental mode in 282 

677 amphibian taxa. A Chi-Square Test was used to test for independence between habitat and 

678 reproductive mode. The data suggested an important reproductive difference between 

679 amphibians in aquatic and terrestrial habitats (Table 4). Ninety nine percent of the amphibians 

680 with direct development breed in a terrestrial habitat. Ninety eight percent of the amphibians 

681 with larval development (tadpoles) breed in an aquatic environment. This links the “larval 

682 development” phenotype to the “freshwater” environment and the “direct development” 

683 phenotype to the “terrestrial” environment. These data also suggest that a permanent freshwater 
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684 habitat is more important to amphibians with paedomorphic development than those with 

685 indirect development.
686

687 These examples provide demonstrations of the value of linking phenotype to environment 

688 and demonstrate how these links can be made with existing tools. More complicated research 

689 questions are likely to require more nuanced linking for several reasons. First, phenotypes 

690 frequently vary within a species; one cannot assume that every member of a species has the same 

691 phenotype. In these two examples, we chose traits that were consistent across all members of a 

692 species (miniaturization and developmental mode). In the miniaturization example, this allowed 

693 addition of the GBIF query results to the Phenoscape Knowledgebase results. Second, an 

694 organism’s life style (ambush predator, nocturnal frugivore, etc.) within an environment is 

695 deeply rooted to its phenotypic composition. For example, a visual predator in an environment 

696 with low-light conditions may have a large eye phenotype while a scavenger in the same 

697 environment may have a small eye phenotype. Trying to connect an eye size phenotype to this 

698 environment would have to be clarified by including the ecological role of the taxon in a given 

699 ecosystem. Third, scale can be important. Taxa of very different sizes can experience the same 

700 environment in very different ways. For example, a soil protist will experience a forest 

701 environment differently than a vascular plant. Despite these challenges, the highly simplified fish 

702 and amphibian examples above still demonstrate the results of linking phenotypes and 

703 environments with existing data and tools.
704

705 Knowledge representation

706 Despite the challenges of coverage and interoperability, we can demonstrate some basic 

707 models linking phenotypes to environments using existing ontologies (Figs. 4,5). The Extensible 

708 Observation Ontology (OBOE) provides a basic knowledge graph for linked measurements 

709 (Madin et al., 2007; Madin et al., 2008). This ontology has been described in detail elsewhere 

710 (Madin et al., 2007, Madin et al., 2008). Briefly, the fundamental OBOE model is built around 

711 an “Observation” class which is an observation of an “entity” and has one or more 

712 “measurements”. Observations can also have a context of other observations. Phenotypes and 

713 environments can be linked by representing an organism observation with a location observation 

714 as its context (Fig. 4A). OBOE can model categorical and numerical measurements (Fig. 4B). 

PeerJ reviewing PDF | (2015:07:5750:0:0:CHECK 11 Jul 2015)

Reviewing Manuscript



715 Thus, a geolocation, a data point, or a country code can be added to a location observation that 

716 provides context for an organism observation. OBOE allows the use of literals as instances, 

717 meaning a measurement can have as a value a string or a URI, which can be helpful when a 

718 needed URI does not exist. 

719 Although OBOE is well suited for describing observations, it was not originally built to 

720 manage information about specimens or taxa. The Biological Collections Ontology (BCO) 

721 (Walls et al., 2014a; Walls et al., 2014b; Deck et al., 2015) offers an alternative way to link data, 

722 based on ontology design principles from the Ontology for Biomedical Investigations (OBI; 

723 Brinkman et al., 2010), but adapted for biodiversity science. A key element of BCO is the 

724 difference between a specimen collection process, which has a material entity (i.e., specimen) as 

725 output and an observing process, which has data as output. Deck at al. (2015) describes how 

726 information about locations (e.g., coordinates or environmental conditions) and taxonomy (e.g., 

727 the identification process or species name) can be linked to specimens. A similar approach can 

728 be used to link phenotypic data to observations of organisms in their environment. At its most 

729 basic, the BCO (via OBI) represents the observing process as a type of assay (an OBI class).  

730 Rather than representing taxonomic information as an observation, BCO has a class for 

731 taxonomic identification process, which, like assay, is a subclass of OBI:planned process (Fig. 

732 5A). Fig. 5B shows how the same data from Figure 4B would be mapped to instances of BCO 

733 classes.

734 OBOE and BCO were developed for different uses cases and therefore have different 

735 approaches to representing observations. Nonetheless, there is significant overlap between the 

736 two ontologies (e.g., OBOE’s observation corresponds closely to BCO’s observing process), and 

737 ongoing efforts to align them are likely to lead to a harmonized model that can work for many 

738 different use cases.
739

740 Summary

741 Providing data structures that improve integration of biological data is necessary for 

742 efficiently addressing complex research questions. The link between phenotype and environment 

743 is fundamental to research in taxonomy, ecology, and phylogenetics; its relevance extends to the 

744 biomedical domain. One way to create this link is through the use of extensible ontologies 

745 designed to work across different data types, such as OBOE or BCO in combination with ENVO 
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746 and other trait ontologies. Despite recent advances, significant challenges remain. We 

747 recommend the following steps to increase interoperability between phenotype and environment 

748 data: 

749 Make it easy to contribute to existing ontologies. 

750 The existing suite of ontologies is not adequate for linking phenotypes and environments 

751 across the tree of life. To address this, new classes need to be added to extend and improve 

752 existing taxonomy, phenotype, and envivonmental ontologies. Some ontologies have well-

753 developed pathways for submitting new classes and editing existing classes and resources to 

754 respond to requests quickly (e.g., Gene Ontology), but frequently the social processes of 

755 validating ontologies are not a part of the ontology platform.

756 Georeference environments with temporal considerations.

757 Many taxon observations are accompanied by geographical coordinates, collection date 

758 and time, but lack adequate environmental descriptions. While services exist that can translate 

759 coordinates into a municipality, retrieving environmental information using geographic 

760 coordinates is not yet possible across the globe. In addition, because environments are dynamic, 

761 temporal information should be used to filter results. A service is needed that can take 

762 spatiotemporal information and return data concerning environmental conditions and ontology 

763 classes corresponding to environment types. Map of Life can provide some data corresponding to 

764 coordinates in some areas, but ontology classes are not yet available. 

765 Organize research communities that share common resources.

766 Ontologies rely on community support, driven by scientific questions, to be relevant. 

767 Communities of experts can be organized around workshops co-occuring at conferences and 

768 funded through programs such as the National Science Foundation’s Research Coordination 

769 Network. Significant progress on discipline-specific ontologies has been made through the use of 

770 targeted workshops (e.g., Yoder et al., 2010).
771
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795 Glossary

796 collecting event – The process of specimen collection that occurs at a specific time and place.

797 cyberinfrastructure – The technological framework of interconnected databases and computers 

798 across institutions that enable and support advanced, large-scale scientific research.

799 Darwin Core – A standard reference of terms related to biological diversity, in particular taxa 

800 and their occurrences. Darwin Core was created to facilitate sharing of biodiversity 

801 information.

802 GCM (General Circulation Model) – From Wikipedia: A general circulation model (GCM), a 

803 type of climate model, is a mathematical model of the general circulation of a planetary 

804 atmosphere or ocean and based on the Navier–Stokes equations on a rotating sphere with 

805 thermodynamic terms for various energy sources (radiation, latent heat). 

806 genotype. The genetic makeup or set of genes of an organism.

807 georeferenced – Observations or specimen collection records that are associated with locality 

808 information (e.g., latitude and longitude). 

809 human readable – Information that is presented in a format that can be understood by a human.

810 inferencing – Performed by software programs (“reasoners”) that deduce logically consistent 

811 statements implied by the entities and relations asserted in an ontology or database.

812 knowledgebase – A database of interconnected information.

813 machine readable – Information stored in a data format that can be understood by a computer.

814 Machine Learning (ML) – A type of artificial intelligence in which software programs have the 

815 ability to learn (make decisions or data predictions) without being explicitly programmed 

816 when given new data.

817 meta-analysis – A statistical analysis of data that is combined from independently conducted 

818 research studies.

819 NLP (Natural Language Processing) – Methods used in computer programs to understand and 

820 extract data from natural (human) language.

821 ontology – A set of  defined terms (classes, concepts) and the relations between them that 

822 represent the knowledge of a particular domain. Terms in an ontology are related in a 

823 directed, acyclical graph.

824 OCR (Optical Character Recognition) - automated conversion of images of text into machine-

825 readable text
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826 OWL (Web Ontology Language) – The name encompassing the set of web-based languages 

827 used for ontology building supported by the World Wide Web Consortium (WC3) 

828 international standards body and based on the rules of formal semantics.

829 phenome – The entirety of an organism’s phenotypic traits.

830 phenotype – One or more observable characteristics of an organism. 

831 provenance - History of data and its place of origin.

832 RDF (Resource Description Framework) – A family of World Wide Web Consortium (WC3) 

833 specifications originally designed as a metadata model and generally used to model 

834 information in knowledge management applications

835 semantic – of or relating to meaning or context.   

836 semantic annotation – The act of adding (i.e. ‘tagging’) information artifacts such as images, 

837 free-text anatomical descriptions, or specimen collection records, with classes from an 

838 ontology or similar resource which represents their meaning in a machine-readable fashion.

839 specimen – A whole organism or part of an organism preserved in a collection.

840 taxonomic description – Natural language description of a taxonomic group, typically includes 

841 phenotypic characters such as morphology and behavior.

842 URI (Uniform Resource Identifier) – A string of characters used to identify a resource that 

843 enables interactions with representations of the resource over the internet.

844 vocabulary – Flat list of terms that can be used to classify data. These terms are not explicitly 

845 related to one another.
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1201 Table 1: List of resources (vocabularies and ontologies) relevant to annotating phenotypes and 

1202 environments.

Name Abbreviation URL Reference
AGROVOC 1
Behavioral Ontology NBO 2
Chemical Entities of Biological 
Interest ChEBI

3
Hastings et al., 2013

CMECS Habitat Classification 4
Crop Ontology CO 5 Shrestha et al., 2010
Eagle-i Resource Ontology ERO 6
EcoLexicon 7
Ecological Classifications NatureServe 8
Environment Ontology ENVO 9 Buttigieg et al., 2013
EUNIS Habitat Classification 10
Experimental Factor Ontology EFO 11 Malone et al., 2010
Exposure ontology EXO 12
Fission Yeast Phenotype Ontology FYPO 13 Harris et al., 2013
Flora Phenotype Ontology FLOPO 14 Vos et al., 2014
Floristic Regions of the World Takhtajan, 1986
Fungal gross anatomy FAO 15
Gazetteer GAZ 16
Gene Ontology GO 17 Ashburner et al., 2000
GeoNames 18
Getty Thesaurus of Geographic Names 19
Global Administrative Areas GADM 20
Human Phenotype Ontology HP 21 Köhler et al., 2014
Information Artifact Ontology IAO 22 Ceusters, 2012
International Consortium for Agricultural 
Systems Applications standards ICASA White et al., 2013
IUCN Habitats Classification Scheme 23
Mammalian phenotype MP 24 Smith and Eppig, 2009
Mapping European Seabed Habitats MESH 25
NASA GCMD keyword list for locations 26
Ontology of Biological Attributes OBA 27
Ontology of Biomedical Investigation OBI 28 Brinkman et al., 2010
Ontology of Microbial Phenotypes OMP 29 Giglio et al., 2009
Phenotype Quality Ontology PATO 30 Gkoutos et al., 2004
Plant Environment Ontology EO 31
Plant Ontology PO 32 Jaiswal et al., 2005

Plant Trait Ontology TO
33 Jaiswal et al., 2002

Arnaud et al., 2012
Population and Community Ontology PCO 34
Relation Ontology RO 35
Semantic Web for Earth and 
Environmental Terminology SWEET

36
DiGiuseppe et al., 2014

Sequence Ontology SO 37 Elbeck et al., 2005

PeerJ reviewing PDF | (2015:07:5750:0:0:CHECK 11 Jul 2015)

Reviewing Manuscript



Terminology of Grazing Lands and 
Grazing Animals Allen et al., 2011

Uber Anatomy Ontology UBERON
38 Mungall et al., 2012; 

Haendel et al., 2014

Worm Phenotype WBPhenotype
39 Schindelman et al., 

2011
WWF Ecozones 40

1203 1 http://aims.fao.org/agrovoc#.VG4QG_nF_ng
1204 2 https://code.google.com/p/behavior-ontology/
1205 3 https://www.ebi.ac.uk/chebi/
1206 4 https://marinemetadata.org/references/cmecshabitat
1207 5 http://pantheon.generationcp.org/index.php?option=com_content&task=section&id=7&Itemid=35
1208 6 https://www.eagle-i.net/
1209 7 http://ecolexicon.ugr.es/en/index.htm
1210 8 http://explorer.natureserve.org/classeco.htm
1211 9 http://www.environmentontology.org
1212 10 https://marinemetadata.org/references/eunishabitat
1213 11 http://www.ebi.ac.uk/efo/
1214 12 http://www.obofoundry.org/cgi-bin/detail.cgi?id=exo
1215 13 http://www.pombase.org/
1216 14 http://wiki.pro-ibiosphere.eu/wiki/Traits_Task_Group
1217 15 http://www.yeastgenome.org/fungi/fungal_anatomy_ontology/
1218 16 http://bioportal.bioontology.org/ontologies/GAZ
1219 17 http://geneontology.org/
1220 18 http://www.geonames.org/
1221 19 http://www.getty.edu/research/tools/vocabularies/tgn/index.html
1222 20 http://www.gadm.org/
1223 21 http://www.human-phenotype-ontology.org/
1224 22 https://code.google.com/p/information-artifact-ontology/
1225 23 http://www.iucnredlist.org/technical-documents/classification-schemes/habitats-classification-scheme-ver3
1226 24 http://www.informatics.jax.org/searches/MP_form.shtml
1227 25 http://www.emodnet-seabedhabitats.eu/
1228 26 https://marinemetadata.org/references/cfregions
1229 27 http://wiki.geneontology.org/index.php/Extensions/x-attribute
1230 28 http://obi-ontology.org/page/Main_Page
1231 29 http://microbialphenotypes.org/wiki/index.php/Main_Page
1232 30 http://obofoundry.org/wiki/index.php/PATO:Main_Page
1233 31 http://planteome.org/amigo/cgi-bin/crop_amigo/browse.cgi?
1234 32 http://www.plantontology.org/
1235 33 http://planteome.org/amigo/cgi-bin/crop_amigo/browse.cgi?
1236 34 https://github.com/PopulationAndCommunityOntology/pco
1237 35 https://github.com/oborel/obo-relations
1238 36 https://sweet.jpl.nasa.gov/
1239 37 http://www.sequenceontology.org/
1240 38 http://uberon.github.io/
1241 39 http://www.wormbase.org/
1242 40 http://wwf.panda.org/about_our_earth/ecoregions/ecoregion_list/
1243
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1244 Table 2: Mean annual temperature and precipitation associated with miniature and non-miniature 

1245 phenotypes in fishes
1246

Variable Type Mean p value df t Statistic t Critical
Miniature 24.8°CAnnual Mean 

Temperature (°C) Non-miniature 22.6°C
0.002 227 3.128 1.970

Miniature 6.9 X 107 mmAnnual Mean 
Precipitation (mm) Non-miniature 1.8 X 107 mm

0.008 227 2.668 1.970

1247  
1248
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1249 Table 3: Some of the URIs used to describe amphibian breeding and development in TraitBank
Term URI
breeding habitat http://eol.org/schema/terms/BreedingHabitat
development mode http://eol.org/schema/terms/DevelopmentalMode
terrestrial habitat http://purl.obolibrary.org/obo/ENVO_00002009
intermittent pond http://purl.obolibrary.org/obo/ENVO_00000504
permanent pond http://eol.org/schema/terms/permanentFreshwater
freshwater stream http://eol.org/schema/terms/freshwaterStream
direct development http://eol.org/schema/terms/directDeveloper
larval development http://eol.org/schema/terms/larvalDevelopment
paedomorphic http://purl.obolibrary.org/obo/HOM_0000029

1250
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1251 Table 4: Breeding habitat and developmental mode for 282 species of amphibians
1252

Larval Direct Paedomorphic df test statistic X2
0.95

Freshwater Stream 30 0 1 6 278 1.635
Intermittent Pond 28 0 0
Permanent Pond 59 2 3
Terrestrial 2 166 0

1253  
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1254 Figure 1: Ontology and the Heterogeneity Challenge

1255

Yellow gold chromatophores

Golden chloroplast

Yellow  chromatophore

Brownish-yellow chloroplasts

DATABASE

RESULT
No ontology

RESULT
With ontology

QUERY 
Yellow Chromatophore

Yellow chromatophore Brownish-yellow chloroplasts

Yellow  chromatophore

Golden chloroplast

Yellow gold chromatophores

1256 This diagram demonstrates how ontologies can solve the challenge of heterogeneous 
1257 terminology. In this example, the database contains four different natural language descriptions 
1258 about dinoflagellate chloroplasts harvested from text. A user needs to query the database for 
1259 instances of dinoflagellates with yellow chromatophores.  Without an ontology to provide the 
1260 query engine information about synonomy (“chromatophore” = “chloroplast”) and term 
1261 relationships (“brownish-yellow”, “golden”, and “yellow gold” are subtypes of “yellow”), a 
1262 query for “yellow chromatophore” will only yield one of the four results the user needs and 
1263 would find using an ontology. Without an ontology to link closely related concepts with a 
1264 common parent, and reconcile heterogeneous terms, a user would have to perform many more 
1265 queries to get a desired result, which may not be tractable in a large dataset.
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1266 Figure 2: Manual Workflow Conceptual Diagram
1267
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1281 This diagram shows the manual workflow to link phenotype and environment data sets using 

1282 current tools and services.
1283
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1284 Figure 3: Map of Miniaturized Fishes and Their Non-Miniaturized Sister Taxa

1285
1286 This map shows locations of fish species exhibiting the miniaturized phenotype (red circles) and 

1287 their non-miniature sister taxa (blue squares). The georeferenced occurrence data were gathered 

1288 from GBIF.
1289
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1290 Figure 4: Using the OBOE Ontology to Link Phenotype and Environment 

1291 A

1292
1293 B

1294
1295 This demonstrates linking phenotype and environment using instances of the OBOE classes 

1296 Entity, Observation, and Measurement. A) Links between Entity, Observation, and Measurement 

1297 OBOE classes. B) Example measurements of phenotypes and environments using instances of 

1298 the OBOE classes. Numbered measurement instances are consistent across A and B. This 

1299 representation is simplified with regards to the taxonomic entities in play (Baskauf and Webb 

1300 unpublished data).
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1301 Figure 5: Using BCO to Link Phenotype and Environment

1302 A

1303
1304 B

1305
1306 This demonstrates linking phenotype and environment using classes and relations from the 

1307 Biological Collections Ontology (BCO). A) A simple version of the classes and relations used to 

1308 describe observations in the BCO, with classes imported from OBI (Ontology for Biomedical 

1309 Investigations), IAO (Information Artifact Ontology), and BFO (Basic Formal Ontology). B) 

1310 Links among organism, phenotype, and environment, using the BCO model, using the same data 

1311 as in Fig. 3. Light grey boxes represent either literal values (e.g., Hyla plicata), or instances of 

1312 classes from external ontologies (ENVO – Environment Ontology, UBERON – Uber Anatomy 

1313 Ontology, PATO – Phenotye Quality Ontology). Properties with a dwc prefix are imported 

1314 directly from Darwin Core.
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