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ABSTRACT
Background. Identifying the cell types using unsupervised methods is essential for
scRNA-seq research. However, conventional similarity measures introduce challenges
to single-cell data clustering because of the high dimensional, high noise, and high
dropout.
Methods. We proposed a clustering method for small ScRNA-seq data based on
Subspace andWeighted Distance (SSWD), which follows the assumption that the sets
of gene subspace composed of similar density-distributing genes can better distinguish
cell groups. To accurately capture the intrinsic relationship among cells or genes, a new
distance metric that combines Euclidean and Pearson distance through a weighting
strategy was proposed. The relative Calinski-Harabasz (CH) index was used to estimate
the cluster numbers instead of the CH index because it is comparable across degrees of
freedom.
Results. We compared SSWD with seven prevailing methods on eight publicly scRNA-
seq datasets. The experimental results show that the SSWD has better clustering
accuracy and the partitioning ability of cell groups. SSWD can be downloaded at
https://github.com/ningzilan/SSWD.

Subjects Bioinformatics, Cell Biology, Molecular Biology, Data Mining and Machine Learning
Keywords scRNA-seq, Consensus clustering, Subspace, EP_dis, Marker gene

INTRODUCTION
Single-cell RNA-sequencing (scRNA-seq) technologies capture cellular heterogeneity
between single cell, which allows researchers to dissect complex biological samples with
detailed information about the transcriptome, thereby changing our understanding of
biological systems (Tang et al., 2009; Jaitin et al., 2014; Praktiknjo et al., 2020). Identifying
the cell types is essential in analyzing scRNA-seq data, and the quality will directly
affect downstream analysis in single-cell (Kharchenko, Silberstein & Scadden, 2014).
Unsupervised clustering is one of the most widely used methods for identifying cell groups
in scRNA-seq data (Ji & Ji, 2016; Žurauskiene & Yau, 2016; Kiselev, Andrew & Hemberg,
2019; Peyvandipour et al., 2020; Qi et al., 2020). However, high dimensional, noise, and
dropout characteristics of scRNA-seq data present traditional clustering methods with a
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challenge (Elowitz et al., 2002; Stegle, Teichman & Marioni, 2015). Therefore, it is important
to develop efficient and reliable clustering algorithms to identify cell groups.

Recently, many novel clusteringmethods have been developed for identifying cell groups
of scRNA-seq data. Most of them focus on computing more accurate and robust similarity
measures between cells (Taiyun et al., 2018; Peng et al., 2020). Single-cell Interpretation
via Multi-kernel LeaRning (SIMLR) (Wang et al., 2017) chooses the most appropriate
distance measure through multiple kernel learning and uses k-means to determine the
cell groups. Seurat (Satija et al., 2015; Butler et al., 2018) and SNN-Cliq (Xu & Su, 2015)
are graph-based clustering methods. Seurat constructs a k-nearest neighbor (KNN) graph
with Euclidean distance in PCA (Jolliffe, 2002). SNN-Cliq combines a previously developed
clustering algorithm with an SNN-based similarity measure, which determines cell groups
automatically but requires three parameters to be specified. SC3 (Kiselev et al., 2017)
employs consensus clustering to merge the clustering results under Euclidean distance,
Pearson’s correlation, and Superman’s correlation to improve performance. However,
SC3 is not scalable (Kiselev, Andrew & Hemberg, 2019). Besides, nonnegative matrix
factorization, imputation, dimensionality reduction-based methods, and mixture model
ensemble have been used to assess cellular heterogeneity (Grün et al., 2015; Lin, Troup &
Ho, 2017; Shao & Höfer, 2017; Yang et al., 2019; Huh et al., 2020; Venkatasubramanian et
al., 2020).

Subspace clustering is an efficient technique to mitigate noise applied in various
fields (Chen, Nasrabad & Tran, 2011; Ekström & Hagen, 2019). SinNLRR (Zheng et al.,
2019) considers cell clustering as a sparse subspace clustering (SSC) problem and uses the
multiplier with an alternating direction to solve the optimization problem. S3C2 (Zhuang et
al., 2021) combines enhanced SSC and low-rank completion algorithms in an optimization
framework. DSCD (Wang et al., 2020) discovers the low dimensional latent structure from
the compressed representation in scRNA-seq data and learns global relationships in single
cells via a novel self-expressive denoise layer.

Highlighted by previous methods, calculating the similarity (distance) matrix of cells
and reducing noise interference are crucial in clustering. This paper proposed a clustering
method for small ScRNA-seq data based on Subspace and Weighted Distance (SSWD),
which assumed that sets of gene subspace composed of similar gene kernel density
distributing genes could distinguish cell groups better. We proposed a new distance
metric EP_dis, which integrates Euclidean and Pearson distance through a weighting
strategy. Furthermore, we used the relative Calinski-Harabasz (RCH) index to determine
the cluster numbers instead of CH because of its advantage of comparability in degrees of
freedom. SSWD also included a consensus clustering process. Each of the gene subspace’s
clustering resultswas summarized using the consensusmatrix integrated byPAMclustering.
We applied the SSWD to eight public scRNA-seq datasets and contrasted it with seven
widespread scRNA-seq clustering methods. The results show that SSWD reduces the
influence of noise in clustering and better captures intrinsic relationships among cells or
genes, which has greater clustering accuracy and the partitioning ability of cell groups.
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MATERIALS & METHODS
Datasets
Simulated datasets
This paper used six simulation data to demonstrate the effect of EP_dis and RCH in the
improved k-means algorithm. D1 and D2 were synthesized using different mathematical
models (Zhang, Yue & Zhang, 2014) (Table 1). D1 contains five clusters with 420 (60,
80, 90, 90, 100) samples and 30 features. D2 contains four clusters with 300 (60, 70,
80, 90) samples and 10 features. Furthermore, four Gaussian datasets (D3-D6) (Fig. S1)
(Liu et al., 2010; Hussain & Haris, 2019) were used to explain the properties of RCH with
monotonicity, noise, density, and subcluster.

UCI datasets
Six real datasets (Table 2) from UCI (University of California Irvine) (https://archive.ics.
uci.edu/) were used to validate the performance of RCH.

scRNA-seq datasets
We downloaded eight scRNA-seq datasets from GEO (https://www.ncbi.nlm.nih.gov/geo/)
to validate the effectiveness of SSWD, for which the cell types were declared in the
original publications. These datasets, including human and mouse species, involve various
tissues and biological processes, such as cell development and differentiation, using
different unit counts, e.g., RPKM and FPKM. Specifically, Biase, Cao & Sheng (2014), Yan
et al. (2013), and Qiaolin et al. (2014) consist of transcriptomes of human/mouse cells in
embryos at some crucial developmental stages. Treutlein et al. (2014) contains 201 cells in
four developmental stages of mouse lung epithelial cells. Patel et al. (2014) contains 430
glioblastoma cells from five patients. Li et al. (2016) is a human islet cell dataset, which
contains alpha (n= 18), beta (n= 12), pp (n= 9), acinar (n= 11), and ductal (n= 8) cell
subtypes. Tian307 and Tian305 (Tian et al., 2019) include lung adenocarcinoma cells from
five patients. The detailed description of the datasets is listed in Table 3.

The improved k-means algorithm with EP_dis and relative CH (RCH)
The k-means is a widely used clustering algorithm (MacQueen, 1967; Jain, Murt & Flynn,
1999; Jain, 2008). The algorithm requires the user to provide cluster initialization, distance
metric, and the cluster numbers as the parameters (Chiang & Mirkin, 2010). Here we
designed an improved k-means algorithm by introducing the EP_dis and RCH, which
measure the similarity between two cells more appropriately and can automatically
determine the cluster numbers.

EP_dis metric
Euclidean distance (E) is themost commonly used distancemetric in traditional k-means, it
characterizes the global correlation in high-dimensional space between samples. However,
it will lose the correlation information between samples (cells or genes) when they have the
same trend (Taiyun et al., 2018). Pearson distance (P) is another commonly used distance
metric in clustering, which can captures the locally variable trend between samples (cells
or genes), where P = (1 − R), and R is the Pearson correlation coefficient (Fulekar, 2009).

Ning et al. (2023), PeerJ, DOI 10.7717/peerj.14706 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.14706#supp-2
https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
https://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.7717/peerj.14706


Table 1 Mathematical models of D1 and D2.D1 contains five clusters with 420 (60, 80, 90, 90, 100)
samples and 30 features. D2 contains four clusters with 300 (60, 70, 80, 90) samples and 10 features. i,j,
and k represent the cluster id, the feature id and the sample id, respectively. ξ : the random error.

D1 D2

cluster 1 0.1+ sin( j
3 )+ξ(i,j,k),ξ∼N (0,1) −exp(j)

1000 +ξ(i,j,k),ξ∼N (0,1)
cluster 2 1.2sin( 2j5 −2)+ξ(i,j,k),ξ∼N (0,1) j

6.6 +ξ(i,j,k),ξ∼N (0,2)

cluster 3 1.5sin( j
3 −3.5)+ξ(i,j,k),ξ∼N (0,1) 5(j−4)2

max(j−4)2 +ξ(i,j,k),ξ∼N (0,2)
cluster 4 0.5sin( 2j5 −2.2)+ξ(i,j,k),ξ∼N (0,1) sin(j)+ξ(i,j,k),ξ∼N (0,1)

cluster 5 0.6sin( j
3 −3.8)+ξ(i,j,k),ξ∼N (0,1)

Table 2 Description of the six UCI datasets.UCI (University of California Irvine) machine learning
repository: https://archive.ics.uci.edu/.

Datasets No. of
samples

No. of
features

No. of
categories

Dermatology 366 33 6
Seed 569 7 3
Sensor 5,456 24 4
Statlog 2,000 36 6
Waveform 5,000 21 3
Yeast 1,484 8 10

Table 3 The details of eight scRNA-seq datasets.

Datasets Groups Variables Cells Units Species Protocol Reference

Biase 3 25737 49 FPKM Mus musculus Smart-Seq Biase, Cao & Sheng (2014)
Li 5 180253 58 RPKM Homo sapiens Smart-Seq2 Li et al. (2016)
Patel 5 5948 430 TPM Homo sapiens Smart-Seq Patel et al. (2014)
Deng 7 12735 135 RPKM Mus musculus Smart-Seq2 Qiaolin et al. (2014)
Treutlein 4 11245 201 FPKM Mus musculus SMARTer Treutlein et al. (2014)
Yan 7 12325 90 FPKM Homo sapiens Smart-Seq2 Yan et al. (2013)
Tian307 5 13800 307 UMI Homo sapiens CEL-Seq2 Tian et al. (2019)
Tian305 5 13137 305 UMI Homo sapiens CEL-Seq2 Tian et al. (2019)

Notes.
FPKM, fragments per kilobase of transcript per million mapped reads; RPKM, reads per kilobase of transcript per million mapped reads; TPM, transcripts per million
mapped reads; UMI, unique molecular identifiers.

Here, we combined Euclidean and Pearson distances through a weighting strategy and
defined a new distance, EP_dis metric (Ning et al., 2022). It was defined as follows:

EP_dis=wE+ (1−w)P. (1)

A bigger EP_dis shows a weaker similarity between samples. If w = 0, EP_dis is Pearson
distance; if w = 1, it is Euclidean distance. w is the weight, and it ranges from 0 to 1. The
matrix E and P must be min-max normalized when calculating EP_dis because the range
of E and P are different. Take the maximum SS B/SSW as the standard, and a step-by-step
search determines the suitable w in EP_dis. Where SSB=

∑k
i=1ni||ci− c̄||2 represents the

sum of squares between clusters and SSW =
∑k

i=1
∑nj

j=1||xj− ci||2 represents the sum of
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squares within clusters; k represents the cluster numbers; ni (nj) represents the sample
numbers in cluster Vi (Vj); c̄ =

∑N
i=1

xi
N is the overall mean; N is the sample numbers.

We adopt the maximum technique (Fränti & Sieranoja, 2019) to obtain the cluster’s initial
centroids to ensure clustering stability.

Determine the number of clusters
The k-means algorithm needs to be specified the number of clusters. The clustering internal
validation (CIV) indices, such as the Calinski-Harabasz (CH) index (Caliński & Harabasz,
1974), Silhouette (Sil) index (Rousseeuw, 1987), and Gap Statistic (Tibshirani & Hastie,
2001), can be used for estimating the cluster numbers. The CH has been proven the best in
estimating cluster numbers (Milligan & Cooper, 1985; Chiang & Mirkin, 2010). It is defined
as:

CH =
SSB
k−1
SSW
N−k

,k= 2,3...NC, (2)

where N as the sample numbers, NC as the largest cluster numbers. The k with the
maximum CH is the suitable cluster numbers. In different k, the CH value is incomparable
because the degrees of freedom vary. So, we designed a new index, relative CH (RCH)
(Ning et al., 2022), that was relatively comparable under different k:

RCHk =
CHk

F(α,k−1,N−k)
. (3)

The workflow of the improved k-means algorithmwith EP_dis and RCH is shown in Fig. 1.

The overview of the SSWD
In the scRNA-seq data matrix XG×N ={xij |1≤ i≤G,1≤ j ≤N }, rows represent genes, and
columns represent cells. xij represents the value of gene i in the j th cell. The framework of
SSWD is depicted in Fig. 2.

Step 1 filtering genes
Since rare and ubiquitous genes provide insufficient information for clustering, we only
retained the v genes (default: 1,000) with the highest variance after log-transformed.
Specifically when the maximum value in X is greater than 10,000, X

′

= log10(X + 1),
otherwise X

′

= log2(X+1). The gene subset X
′

was the input of the second module.

Step 2 partition genes with subspace
In scRNA-seq data, the sets of subspace represent the groups of genes. The gene subspace
with similar density genes can distinguish informative features from noise (Song et al.,
2021). We used the function density in R to calculate the gene’s density. Specifically, the
kernel density function scattered the density of genes over a regular grid of 512 points
and convolved this approximation with the discretized kernel version using a fast Fourier
transform. Then the function used the linear approximation to evaluate the density at each
point (Sheather & Jones, 1991). In the density matrix EG′×512, column and row represent
the density values and gene, respectively. The improved k-means algorithm with EP_dis
and RCH was employed to group the genes with similar density in matrix ‘E ’. Then, the
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Figure 1 The workflow of improved k-means algorithmwith EP_dis and relative CH. NC is the largest
cluster numbers; N is the sample numbers; w_step is the search step; F (0.05, N, N-k) is the corresponding
F-test threshold at the significance level of 0.05.

Full-size DOI: 10.7717/peerj.14706/fig-1

X
′

G′×N
was separated into several sets of gene subspace. Each set of gene subspaces contains

all cells and some genes X
′

G′×N
=
⋃

i=1,2,...,c subspacei, subspacei=X
′

N×G′i
.

Step 3 cell clustering in subspace
The sets of gene subspace containing more than three genes have been kept. Then, we
used PCA for dimensionality reduction and retained the first d-dimension with the Elbow
method (Thorndike, 1953). Then the improved k-means algorithm with EP_dis and RCH
was employed to get the sets of gene subspace clustering results Ysubspacei .

Step 4 consensus clustering
The cluster-based similarity partitioning algorithm (CSPA) was used to compute the
consensus matrix M (Strehl & Ghosh, 2002). MN×N = {Mij |Mij = num}, (i,j = 1,2,...N ),
based on the clustering results from the sets of gene subspace. The num is the number
of subspaces where cells i and j are in the same cluster. If num =0, cell i and j are never
in the same subspace. Because the M was a discrete matrix, the improved k-means with
EP_dis and RCH were unsuitable, but the PAM algorithm did. PAM is a variation of the
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Figure 2 The SSWD framework for clustering scRNA-seq data. (A) clustering by the improved k-means
with EP_dis and RCH; (B) retaining the d-dimension with the elbow method; (C) visualization of Tian307
gene expression profile under clustering results; *: each element represents a cell, and different colors rep-
resent different clusters under clustering.

Full-size DOI: 10.7717/peerj.14706/fig-2

k-means clustering algorithm, which uses the median of data points rather than the mean
and minimizes a sum of pairwise dissimilarities instead of a sum of squared Euclidean
distance as the objective function (Park & Jun, 2009). The PAM is more robust to noise
and outliers than k-means. Then, we used the Sil index (Rousseeuw, 1987) to estimate the
cluster numbers (cell groups).

Time complexity of SSWD
The main time-consuming step of SSWD is clustering by the improved k-means with
EP_dis and RCH. In step 2 (see The overview of the SSWD), we used the improved
k-means algorithm in the density matrix. We denoted n represents the sample numbers,m
represents the feature numbers, k represents the cluster numbers, NC represents the range
of cluster numbers, l represents the iteration numbers to determine the cluster centers,
and w_step represents the search step. Since the k<<n, NC<<n, the step 2 time complexity
holds about O(lmn). In step 3, each subspace would be performed the improved k-means
algorithm after PCA. We denoted d as the retained dimension after PCA, and s is the
number of genes subspace. The SSWD time complexity has roughly O(lmn +lnds). Since
d<<m, s<<m, we can simplify the time complexity of SSWD to approximately O(lmn).
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Biological insights
We transformed the clustering results of each cell group into ‘‘one-against-the-rest’’.
Then, we executed the Wilcoxon rank-sum test for each gene between the expression
value and the binary cluster, adjusting the p-value based on FDR. The gene that adjusted
p-value<0.001 was preserved as the differential gene . Next, we used the AUC score to
evaluate the performance of genes in distinguishing different cell types. Since AUC was
only suitable for dichotomous problems, we constructed a binary classifier based on the
mean expression value of each gene and compared the processed values with the binary
cluster value. We defined the genes with AUC >0.85 and p-value<0.001 as marker genes.

Evaluation metrics
Two external validation indices, ARI (Adjusted Rand Index) and NMI (NormalizedMutual
Information) were used to evaluate the effectiveness of clustering methods.

ARI (Hubert & Arabie, 1985) is a widely used external validation index in clustering, and
it is defined as follows:

ARI (R,C)=

∑
ij

(
nij
2

)
−

[∑
i

(
ai
2

)∑
j

(
bj
2

)]/(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−

[∑
i

(
ai
2

)∑
j

(
bj
2

)]/(
n
2

) , (4)

where R and C are published and predicted clusters, respectively. The overlap of samples
between R and C can be generalized into a contingency table. nij is the times a sample
occurs in the ith cluster of R and the jth cluster of C, ai is the sum of the ith row in
the contingency table, bj is the sum of the jth column in the contingency table, and (.)
represents the binomial coefficient.

NMI (Strehl & Ghosh, 2002) is defined as follows:

NMI (R,C)=
2∗ I (R,C)
[H (R)+H (C)]

, (5)

where I (R,C)=
∑|R|

i=1
∑|C |

j=1pij log(
pij
pipj

) is the mutual information between R and C,

H (R)=−
∑|R|

i=1pilogpi is the entropy with R, H (C)=−
∑|C |

i=1pilogpi is the entropy with
C, pij =

nij
n is the probability that a cell belongs to both the ith cluster in R and the jth

cluster in C. The range of ARI and NMI are [0, 1]. The larger ARI (NMI) represent a better
performance of clustering.

Reference methods
In this article, seven prevailing clustering algorithms were introduced as reference
methods. The SC3 v.1.22.0 (Kiselev et al., 2017), CIDR v.0.1.5 (Lin, Troup & Ho,
2017), Seurat v.4.1.1 (Satija et al., 2015) , SIMLR v.1.20.0 (Wang et al., 2017) were
implemented with the original R package in Rstudio4.0. SinNLRR (Zheng et al.,
2019) (https://github.com/zrq0123/SinNLRR) and S3C2 (Zhuang et al., 2021) (https:
//github.com/Cuily-v/S3C2) were implemented in Matlab2017a. The SNN-Cliq (Xu &
Su, 2015) (https://github.com/BIOINSu/SNN-Cliq) was run in Matlab2017a and Python3.8.
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SILMR and SNN-Cliq used the same log transformation as this paper. SinNLRR and S3C2
used the correct cell groups for clustering. Unless specified, the default parameters in the
program were used as suggested in the original paper.

RESULTS
Performance evaluation and comparison with reference methods
We compared the performance of SSWD with seven prevailing clustering methods in eight
scRNA-seq datasets (Table 4). The SSWD achieved the best clustering performance with
an average ARI of 0.791 and was 0.143 higher than the second-ranked SC3, whereas the
SNN-Cliq had poor performance (ARI of 0.364). SSWD ranked in the top three for ARI
on all other datasets except Yan. SSWD attained the best results for NMI in three datasets
(Li, Tian305, Tian307) and the second-best in four datasets (Biase, Yan, Deng, Treutlein).
The average NMI of SSWD was the highest (0.850). Seurat had the poorest performance
with only 0.579 in NMI because it failed on Biase, and the NMI of Li was only 0.122.

We further demonstrated the SSWD performance by ranking clustering accuracies
on eight datasets (Fig. 3). For ARI (Fig. 3A), SSWD was superior to the seven reference
methods in rank-wise (median of 2). SNN-Cliq performed the worst, with a median of
7. For NMI (Fig. 3B), SSWD was also superior to others, and the performance of CIDR,
Seurat, and SNN-Cliq was all poor. Furthermore, the one-sided Wilcoxon signed-rank test
was used to explain the statistical difference between SSWD and the reference methods.
Except for SC3 and SinNRLL (in ARI), all the p-value are less than 0.05, which shows
SSWD is superior to other methods (Table 5).

The SSWDwas also better for estimating the cell groups. Five out of eight datasets (Biase,
Patel, Li, Tian307, Tian305) acquired the correct cell groups using SSWD. Especially for
Tian307 and Tian305, only the SSWD estimated the correct cell groups and achieved the
best ARI of over 0.948. Deng contains seven cell groups, for which all methods failed to
identify the correct number of cell groups. For Treutlein, CIDR and Seurat estimated the
correct cell groups, but the ARI (0.188 and 0.531) and NMI (0.304 and 0.648) were lower
than those of SSWD (0.607 and 0.732). For Yan, the SinNRLL and S3C2 performed very
well under the correct cell groups.

Annotate the clusters
We illustrated the effectiveness of the cell annotation using PanglaoDB (Oscar, Li-Ming
& Johan, 2019) to clusters taking the Li dataset as an example. Li is a human pancreatic
islet cells dataset containing five subtypes (alpha, beta, pp, acinar, and ductal) (Li et al.,
2016). According to the AUC score (see Biological insights), we obtained the marker genes
for each cluster identified by SSWD. Figure 4 is the expression heatmap of the top 10
marker genes for each cluster, which was divided into five clear modules and indicated
that these marker genes could distinguish the clusters well. The keration8 (KRT8) in cluster
1; transthyretin (TTR), glucagon (GEG) in cluster 2; insulin (INS) in cluster 3; pancreatic
polypeptide (PPY ) in cluster 4; REG1B, REG1A, CTRB2 in cluster 5 were all reported
in the original publication. We also annotated the cluster with PanglaoDB. The cluster
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Table 4 The performance of SSWD.—The method that fails in clustering. () The actual cell groups have been provided as prior parameters. The
best accuracy and the correct number of clusters (cell groups) are marked as bold for each dataset.

Datasets Actual cell
groups

Measure SSWD SC3 CIDR Seurat SIMLR SNN-Cliq SinNRLL S3C2

k 3 3 5 — 7 7 (3) (3)
ARI 0.948 0.948 0.795 — 0.521 0.445 1.00 0.948Biase 3

NMI 0.929 0.929 0.860 – 0.610 0.672 1.00 0.929
k 5 3 9 2 9 7 (5) (5)
ARI 0.967 0.292 0.072 0.045 0.317 0.746 0.057 0.080Li 5

NMI 0.964 0.449 0.288 0.122 0.504 0.835 0.177 0.191
k 5 18 7 6 5 26 (5) (5)
ARI 0.776 0.445 0.744 0.689 0.809 0.278 0.849 —Patel 5

NMI 0.762 0.668 0.846 0.680 0.849 0.463 0.823 —
k 4 5 5 4 9 16 (7) (7)
ARI 0.526 0.530 0.513 0.390 0.484 0.346 0.272 0.387Deng 7

NMI 0.751 0.738 0.725 0.602 0.755 0.639 0.505 0.609
k 6 7 4 4 10 19 (4) (4)
ARI 0.607 0.724 0.188 0.531 0.353 0.209 0.583 0.475Treutlein 4

NMI 0.732 0.850 0.304 0.648 0.534 0.505 0.664 0.644
k 10 6 5 3 10 13 (7) (7)
ARI 0.591 0.650 0.602 0.685 0.473 0.568 0.782 0.718Yan 7

NMI 0.803 0.784 0.718 0.784 0.744 0.802 0.783 0.829
k 5 7 5 5 8 42 (5) (5)
ARI 0.958 0.745 0.651 0.910 0.576 0.154 0.915 0.955Tian307 5

NMI 0.945 0.836 0.714 0.885 0.733 0.546 0.888 0.938
k 5 8 6 6 10 45 (5) (5)
ARI 0.948 0.841 0.585 0.802 0.396 0.148 0.593 0.694Tian305 5

NMI 0.909 0.872 0.655 0.906 0.644 0.531 0.692 0.819

Category correct ratio (%) 62.5 12.5 25.0 25.0 12.5 0 — —
ARI 0.791 0.647 0.519 0.507 0.491 0.364 0.631 0.608Average
NMI 0.850 0.766 0.639 0.579 0.672 0.624 0.692 0.709

results annotated with PanglaoDB are consistent with the cell annotations in the original
publication (Table 6).

DISCUSSION
Role of the EP_dis metric
EP_dis was used in SSWD to assess the similarity between cells or genes. According to the
EP_dis definition (see Materials & Methods), the optimal w was determined by SSB/SSW
using a search strategy. When w = 1, the EP_dis equals the Euclidean distance; when
w = 0, it is the Pearson distance. We used two simulated datasets, D1 and D2, to display
the impact of EP_dis and explain the process of optimizing w by SSB/SSW . Figure 5 shows
the clustering accuracy of D1 (Fig. 5A) and D2 (Fig. 5B) under different w. It can be seen
that the highest scores (CA, Rand, and SSB/SSW ) in D1 and D2 are not appearing at the
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Figure 3 The ranking performance of eight clustering methods on eight datasets. Each method is
ranked according to ARI (A) and NMI (B) for eight datasets. A lower rank represents better performance
(1 is the best and 8 is the worst). Ties are replaced by the mean of their ranks.

Full-size DOI: 10.7717/peerj.14706/fig-3

Table 5 The results of theWilcoxon signed-rank test conducted on SSWD versus the reference algo-
rithms. The p-value (< 0.05) indicates the significant difference between SSWD and the reference algo-
rithms.

Measure SC3 CIDR Seurat SIMLR SNN-Cliq SinNRLL S3C2

ARI 0.074 0.004 0.014 0.004 0.002 0.150 0.012
NMI 0.074 0.010 0.002 0.014 0.002 0.049 0.012

endpoints (0.6 in D1 and 0.8 in D2), which indicates that the EP_dis could capture more
information between samples.

Role of the relative CH
The RCH in the improved k-means algorithm was used to determine the cluster numbers.
In SSWD, we employed RCH to estimate the gene subspace numbers and guide each set
of gene subspace grouping. The capability of the RCH directly affects the performance of
the SSWD. We utilized simulated datasets D3–D6 with different characteristics, six UCI
datasets, and three scRNA-seq datasets to illustrate RCH properties and compare them
with CH (Table 7). We can see that CH and RCH were consistent in D3–D6, indicating
their good performance in simulated datasets. In the UCI datasets, RCH could estimate
the correct cluster numbers except for Dermatology and Yeast, but the corresponding
cluster numbers estimated by the RCH was closer to the real value than those of CH. For
the scRNA-seq datasets, RCH and CH all failed. Their poor performance may be due to
the characteristics of scRNA-seq data. Nonetheless, the RCH result was closer to the true
value.

Role of the subspace
After performing steps 1 and 2 of SSWD (see ‘‘Materials & Methods’’), the Li has been
separated into eight sets of gene subspace, and seven participate in consensus clustering
(Fig. 6, Fig. S2). The expression heatmaps of the best three sets of genes subspace display
clear patterns (Figs. 6A–6C), and their EP_dis heatmap (Figs. 6D–6F) effectively clustered
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Fig. 4 The expression heatmap of the top 10 marker genes for each cluster in Li
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Figure 4 The expression heatmap of the top 10 marker genes for each cluster in Li. Rows represent
genes, columns represent cells.

Full-size DOI: 10.7717/peerj.14706/fig-4

cells with similar expression patterns. Compared with the EP_dis heatmap by 1,000 genes
(Fig. 6G), the consensusmatrix using sets of genes subspace (Fig. 6H) enhances intercellular
signaling. The consensus matrix clustering result was better (ARI of 0.967, NMI of 0.964)
than the former (ARI of 0.386, NMI of 0.579) because the former could not distinguish
alpha and pp cells well.

Discussion of prevailing methods
We also provided further discussion in Tables 4–5. The average performance of SC3 was
only lower than SSWD, and its results were not significantly different from SSWD in the
one-sided Wilcoxon signed-rank test. The SC3 combined multiple similarity measures
(Euclidean, Pearson, Spearman) in clustering. It used the consistency matrix to integrate
the multiple clustering results, and the consistency matrix strengthened the consensus
signal between cells. At the same time, we can see that Deng and Treutlein, the best
accuracy performers in SC3, could not obtain the correct number of cell groups. Although
Biase estimated the correct number of cell groups in SC3, one cell was classified mistakenly,
while SinNRLL could classify all cells accurately. Both SinNRLL and S3C2 introduce the
idea of subspace clustering. Their average performances were better than other methods
except for SSWD and SC3. However, this result was based on the cell group numbers being
provided. Evaluating the cluster numbers is an important aspect of clustering methods.
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Table 6 Cluster annotation with the topmarker genes and the PanglaoDB for the Li dataset.

SSWD results Marker
genes

AUROC Adjust
p-value

Cell
type
annotion
with
PanglaoDB

cluster 1
CTSH 0.997 2.56E−06
KRT8 0.995 5.86E−06
ANXA4 0.989 3.89E−06

ductal cells

cluster 2
TTR 1.00 1.52E−09
GCG 0.951 1.52E−09
PEMT 0.904 3.70E−08
FXYD5 0.886 1.37E−07

alpha cells

cluster 3
INS 1.00 1.23E−07
NPTX2 0.946 1.67E−06
IAPP 0.933 4.69E−06
PDX1 0.924 1.25E−06
ERO1B 0.917 3.83E−07
PCSK1 0.889 1.67E−06
G6PC2 0.886 3.13E−07

beta cells

cluster 4
PPY 1.00 2.31E−06
ETV1 0.960 4.31E−06
FXYD2 0.955 2.12E−05
MEIS1 0.934 3.73E−05

pp cells

cluster 5
REG1B 1.00 8.22E−07
REG1A CTRB1 0.996 8.22E−07
CTRB2 0.996 9.13E−07
RARRES2 0.996 1.25E−06
SPINK1 0.977 1.01E−06
CPA2 0.977 1.25E−06

acinar cells

Although SinNRLL could estimate the cluster numbers by other methods, its accuracy is
still unsatisfactory (Zheng et al., 2019).

SNN-Cliq performed the worst (ARI = 0.364, NMI = 0.624), with none of the seven
datasets estimating the correct number of cell groups. SNN-Cliq tended to divide more
clusters, probably because the method requires providing three suitable parameters, and
the results depend on the graphical representation of the data. CIDR used an implicit
imputation approach to reduce the impact of dropout in scRNA-seq and used CH to
estimate the cell groups. The method determined the correct number of cell groups
in Treutlein and Tian307, but their clustering accuracies were poor. SIMLR adopts a
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multi-kernel strategy to adaptively select an appropriate distance metric and automatically
determine the cell groups. However, this method achieved good performance only in Patel
because it used Euclidean distance as the metric to construct a Gaussian kernel function
(Taiyun et al., 2018). For Seurat, Biase failed, and the ARI of Li was only 0.084. The results
show that Seuratmay be unsuitable for small datasets, consistent with the literature (Kiselev,
Andrew & Hemberg, 2019).

The SSWD had the best performance in experiments. However, the performance of Patel
and Yan were mediocre. Although Patel estimated the correct cell groups, the clustering
accuracies were only ranked the third (in ARI) and the fourth (in NMI), probably because
there were negative values in Patel datasets. All methods failed to estimate the correct cell
group numbers in Yan. The poor performance of Yan in SSWD was because the estimated
cell groups was far from the actual numbers.

We can draw the following conclusions from the above observations: (1) Due to the
complex structure of scRNA-seq data, developing an optimal clustering method for all
situations is impossible. (2) Determining the cluster numbers is difficult, so assigning cells
to appropriate types is more important. (3) Selecting suitable similarity measures and using
subspace in single-cell clustering help obtain better clustering results.
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Table 7 Comparison of the estimated cluster numbers between the CH and RCH under simulated and
real datasets. The correct number is marked as bold for each dataset.

Datasets True cluster
number

Measure

CH RCH

D3 5 5 5
D4 5 5 5
D5 2 2 2
D6 5 5 5
Dermatology 6 4 5
Seed 3 2 3
Sensor 4 2 4
Statlog 6 3 6
Waveform 3 2 3
Yeast 10 7 9
Biase 3 2 2
Tian307 5 2 3
Yan 7 2 9

CONCLUSIONS
The identification of cell types is a fundamental problem in scRNA-seq data analysis.
In recent years, many clustering methods have been proposed. Most of them focus
on computing more accurate and robust similarity measures between cells. However,
conventional similarity measures are encountering challenges to single-cell data clustering
because of the high dimensional, high noise, and high dropout. This study proposed a
clustering method for small scRNA-seq data, named as SSWD, based on sets of gene
subspace and weighted distance. Firstly, an improved k-means with EP_dis and RCH was
applied to divide sets of gene subspace with similar density distributions, which better
identify distinct cell groups. Secondly, cell clustering was performed in these sets of gene
subspace. Lastly, the ensemble clustering with PAM was conducted on the consensus
matrix composed of gene subspace clustering results. The results of eight scRNA-seq
datasets showed that SSWD could effectively reduce the influence of noise in clustering
and better capture the intrinsic relationship between cells or genes, thereby achieving more
robust and accurate clustering results.
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