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ABSTRACT
Background. Bee colony sound is a continuous, low-frequency buzzing sound that
varies with the environment or the colony’s behavior and is considered meaningful.
Bees use sounds to communicate within the hive, and bee colony sounds investigation
can reveal helpful information about the circumstances in the colony. Therefore, one
crucial step in analyzing bee colony sounds is to extract appropriate acoustic feature.
Methods. This article uses VGGish (a visual geometry group—like audio classification
model) embedding and Mel-frequency Cepstral Coefficient (MFCC) generated from
three bee colony sound datasets, to train fourmachine learning algorithms to determine
which acoustic feature performs better in bee colony sound recognition.
Results. The results showed that VGGish embedding performs better than or on par
with MFCC in all three datasets.

Subjects Agricultural Science, Animal Behavior, Entomology, Zoology, Data Mining and
Machine Learning
Keywords Acoustic feature, Bee colony sound, VGGish embedding, Apis cerena, MFCC

INTRODUCTION
Honey bees play an essential role in agricultural production, responsible for pollination
of almost 90% of the world’s commercial pollination services (Klein et al., 2007) and
pollination of natural habitats (Hung et al., 2018). As a vital node of the agriculture section,
it is essential to ensure that the bee colonies can provide service. To save human resources
and reduce disturbance to bee colonies, a non-invasive or minimally invasive method
that can detect the intra-colonial condition of the hive without disturbing the colony is a
consensus among researchers and practitioners (Bencsik et al., 2011; Qandour et al., 2014;
Gil Lebrero et al., 2016). Since the colony weight, temperature, humidity, gas concentration
and sound in the hive are relatively stable, much information about the status of the colony
can be learned by monitoring the indicators and establishing the association between
these indicators (Meikle & Holst, 2015; Ferrari et al., 2008; Murphy et al., 2015; Braga et al.,
2020). Among these indicators, beehive sound is critical. Bee buzzing carries information
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on colony behavior and phenology. Honey bees emit specific sounds when exposed
to stressors such as pest infection (Qandour et al., 2014), airborne toxicant (Zhao et al.,
2021), swarming detection (Ferrari et al., 2008; Zlatkova, Kokolanski & Tashkovski, 2020),
and failing queens (Cejrowski et al., 2018; Soares et al., 2022). Using both statistical and
Artificial Intelligence (A.I.) analysis of colony sounds, Bromenshenk et al. (2009), in their
patents (Bromenshenk et al., 2009) and in their review article (Bromenshenk et al., 2015)
showed that their A.I. could detect a diverse variety of chemicals and eight colony health
variables, by simply putting a microphone into the bottom of a beehive and recording
bee colony sounds for 30 or 60 s. In 2019, they released a cellphone app (Bee Health
Guru) that can run the diagnostic programs, record and analyze the results, and upload
the data, visual inspections, and app analyses to a cloud-based site, which automatically
generates a report with the GPS location shown on a map. Currently, the app is being
calibrated for a variety of phone operating systems for bee sounds from around the world
(http://www.beehealth.guru).

One of the critical phases in analyzing the bee colony sound would be extracting
appropriate feature for machine learning or deep learning algorithms. Traditionally we
use frequency domain or time domain feature of sound, such as soundscape indices and
low-frequency signal features (Sharif et al., 2020). MFCC is one of the most commonly
used features in bee colony sound analyzing (Kim, Oh & Heo, 2021; Soares et al., 2022).
It is characterized by using a set of critical coefficients to create Mel cepstrum, which
makes its cepstrum more similar to the nonlinear human auditory system (Muda, Begam
& Elamvazuthi, 2010). Due to the nonlinear correspondence between Mel frequency and
Hz frequency, the calculation accuracy of MFCC decreases with the increase of frequency.
This characteristic makes MFCC more suitable for bee colony sound than other feature
extraction methods in the past because the sound signal in the colony is concentrated in
the low-frequency part (Dietlein, 1985).

Thanks to the rapid development of artificial intelligence, convolutional neural net
(CNN) and recurrent neural networks (RNN) have been applied in audio recognition
(Kumar & Raj, 2017). Experimental results showed that the recognition method based on
CNN is prior to or on par with the method based on machine learning models in beehive
audio classifying (Kulyukin, Mukherjee & Amlathe, 2018). Visual Geometry Group (VGG)
is one of the most popular CNN models. Simonyan and Zisserman proposed it in 2014
and is named after the Visual Geometry Group (Simonyan & Zisserman, 2014). VGGish is
a TensorFlow definition of a VGG-like audio classification model. The VGGish model is
a derivative network of the VGG network trained on a large YouTube dataset (Gemmeke
et al., 2017). Its structure is consistent with VGG11, including eight convolutional layers,
five pooling layers, and three fully connected layers. Each convolutional layer uses a 3x3
convolution kernel. VGGish converts audio input feature into a semantically meaningful,
high-level 128-dimensional embedding, which can be fed as input to a downstream
classification model. On account of the scale and diversity of the YouTube dataset, the
resulting acoustic feature are both very general and of high resolution, placing each audio
sample in a high-dimensional feature space that is unlikely to show ecosystem-specific
bias. This 128-dimensional embedding characteristic is helpful in various identification
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contexts, including monitoring anomalous events in an ecosystem (Sethi et al., 2020) and
sound-based disease detection (Shi et al., 2019).

In this article, we contribute to the body of research on audio beehive monitoring
by comparing VGGish embedding and standard MFCC in classifying audio samples
from microphones deployed inside beehives. We tested the VGGish embedding and
MFCC on three different classification tasks and compared these two features using four
machine-learning algorithms.

In particular, section two will describe the hardware and software configuration to
obtain bee colony sound and report the detail of the three bee colony datasets we used in
this article. Section three will give the performance of VGGish embedding and MFCC in
bee colony sound classification, as well as the effects of different dimensional reduction
algorithms. Section four will report conclusions and a future perspective.

MATERIALS AND METHODS
Hardware
The hardware and software systems for obtaining bee colony sound are as follows: a
microphone inside the beehive (PCK200, Takstar, Guongdong, China) was placed about
15 cm from the bottom. The microphone has a frequency range of 30 Hz to 20 kHz and a
sensitivity of −35 dB. A digital sound card (UM2, Behringer, Willich, Germany) was used
to convert the analogue signal into a digital signal. The digital signal was transmitted to a
personal computer (HP 2170p, Windows 7), The software Audacity was used to record the
sound, and the sound sampling rate was set to 44.1 kHz, mono. Sound files were saved on
the hard disk in .wav format. The hardware structure is illustrated in Fig. 1.

Audio data
The experiment was carried out at the Sericulture and Apiculture Research Institute of
Yunnan Academy of Agricultural Sciences (23.5144N, 103.4043E) from November 2020 to
June 2021. The institute is located in Caoba Town, Mengzi City, Yunnan Province, China.
We collected three collections of honeybee (Apis cerena) colony sounds and named them
dataset one, two and three, respectively. A detailed description of these datasets is given
below. Every bee colony resided in a typical wood beehive with a 10-month-old queen. All
the bee colonies were healthy without any sign of attack by pests, emerging diseases, and
viruses.

Dataset one
Dataset one contains the colony sound of three experimental groups. Each group was
treated with unique odorous compounds.

Honeybees were trained with syrup to visit artificial feeding sites approximately 200 m
from the hive. A feeder containing 50% sucrose solution was placed 5 m from the hive,
and the marked foragers were caught in a glass tube at the hive entrance. The foragers were
gently let out to the feeder. When the foragers had eaten enough syrup, they returned to the
hive after hovering over the feeder a few times. This was repeated several times, and when
visited by many foragers, the feeder was slowly placed approximately 10 m from the hive,
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Figure 1 The hardware system used to obtain bee colony sound. The microphone is placed inside the
beehive. The sound signal captured by the microphone is converted to a digital signal by the digital sound
card, then transmitted to the PC and saved on a hard disk for further analysis.

Full-size DOI: 10.7717/peerj.14696/fig-1

and so on, gradually moving the feeder to 200 m. When a large number of marked bees
were visiting the feeder, the sound inside the colony was recorded for 10 min. In addition
to pure syrup, we fed the bees syrup containing ethyl acetate and syrup containing acetone,
respectively. Before changing the compounds added to the syrup, we stopped feeding for
two days, waiting for the colony to be depleted of food and odors before starting another
treatment. The sound files were collected from three different colonies, each colony with
two frames, the number of recordings and duration were shown in Table 1. The colony
sound files were collected during winter from November 2020 to January 2021, and very

Di et al. (2023), PeerJ, DOI 10.7717/peerj.14696 4/19

https://peerj.com
https://doi.org/10.7717/peerj.14696/fig-1
http://dx.doi.org/10.7717/peerj.14696


Table 1 An overview of the datasets collected in order to identify compounds in nectar and queen’s
presence. ‘‘Scenario ‘‘N recordings’’ denotes the number of individuals with buzzing sounds recorded;
‘‘Total duration’’ represents the total recording time in each case; N colonies denotes the number of
colonies in which we recorded sounds; N frames represent the colony size.

Datasets Scenario N
colonies

N
frames

N
Recordings

Total
duration

Blank 3 2 6 50 min
Acetone 3 2 9 90 min

Dataset one
Identify
compounds Ethyl acetate 3 2 11 111 min

Blank 2 6 12 131 min
New queen pupa 2 6 9 101 min

Dataset two
Identify queen
state New queen 2 6 3 23 min

C2 2 2 2 12 min
C4 2 4 2 15 min

Dataset three
Identify colony
size C6 2 6 2 29 min

few food sources were available outside. In this way, the artificial food source we provide
may be the only food sources for honeybees.

This dataset contains the colony sound of three experimental groups, which were treated
with unique odorous compounds at a mass ratio of 0.1% in 50% (w/w) sucrose solution,
sucrose solution with 50% concentration was used as blank control. The colony sound was
labeled ‘blank,’ ‘acetone,’ and ‘ethyl,’ respectively.

Dataset two
Dataset two collects bee colony sounds concerning the queen’s status. The object is to
use the colony sound to detect whether there is a queen pupa and whether the pupa has
hatched. This dataset includes honey bee sounds under three scenarios.

This work was carried out in June 2021, alternating between spring and summer. It
simulated the occurrence of a new queen cell in the colony before swarming. We selected
two groups of healthy and strong colonies of Apis cerana, each with six frames of honeybees
and a normal breeding queen. In the first scenario, we caged the queen and collected colony
sounds. In the second stage, we introduced a mature queen pupa into this colony. The
original queen was still in the cage and, therefore, would not attack the new queen pupa.
Collecting sound data began after a day. In the third stage, we opened the hive every night,
checked the pupa condition, and recorded the next day after the new queen emerged.
All recordings started around 11:00 am. In this way, we obtained colony sounds in three
different queen states. They were labeled as ‘blank,’ ‘queen pupa,’ or ‘new queen.’

Dataset three
This dataset contains sounds from bee colonies of different colony sizes. We investigated
six bee colonies, including two colonies with two frames, two with four, and two with six.
The bee colony sound was recorded at 9:00 am for about three to ten minutes in each of
the colonies, and the recorded sound files were labeled as ‘C2’, ‘C4’, and ‘C6,’ respectively.
We reckon the number of bees by weighing the colony. The weight of an empty hive is
measured first, then the whole swarm of bees is shaken off into the empty hive, and the
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Table 2 The size of each colony used in dataset three. ‘‘N frames’’ denotes the number of frames in the
colony; ‘‘Total bee weight(Kg)’’ represents the total weight of each colony; ‘‘N worker bees denotes the ap-
proximate number of worker bees in each colony.

Colony N frames Total bee
weight (Kg)

N worker
bees

1# 2 0.723 8,670
2# 2 0.685 8,213
3# 4 1.010 12,110
4# 4 1.095 13,129
5# 6 1.650 19,784
6# 6 1.580 18,945

mass is measured again. The mass difference obtained is the total weight of the swarm. We
estimated the number of bees per colony based on the average honeybee weight, which was
83.4 ± 10.2 mg (Table 2).

Data processing
The data processing was based on python 3.5.1 and Scikit-learn 1.0.2 (Pedregosa et al.,
2011).

Feature extraction
VGGish Embedding. The audio sample was first split into segments of 0.96s. Each 0.96s
segment was first resampled to 16 kHz using a Kaiser window, and a log-scaled Mel-
frequency spectrogram was generated (96 temporal frames, 64 frequency bands). Each
audio sample was then passed through CNN from Google’s AudioSet project (Gemmeke
et al., 2017; Hershey et al., 2017) to generate a 128-dimensional embedding of the audio.
Figure 2 shows the structure of the VGGish network and the workflow of extracting VGGish
embedding.

Mel-frequency Cepstral Coefficient (MFCC). MFCCs are based on the known variation of
the human ear’s critical bandwidths with frequency. The MFCC technique uses two types
of filters: linearly spaced and log arithmetically spaced. The signal is expressed in the Mel
frequency scale to capture the phonetically important characteristics of speech. This scale
has a linear frequency spacing below1,000Hz and a logarithmic spacing above 1,000Hz. The
MFCC extraction procedures are as follows: windowing the sound signal, applying the FFT
(Fast Fourier Transform), taking the log, and then warping the frequencies on a Mel scale,
followed by applying the inverse DCT (Discrete Cosine Transform). The 13-dimensional
MFCCs will be combined with the first-order difference coefficients and second-order
coefficients difference to get the 39-dimensional MFCCs (Davis & Mermelstein, 1980).

A block diagram of the structure of an MFCC processor is given in Fig. 3.

Dimension reduction
Since the features extracted from the raw data are high-dimensional, it is not conducive to
visualization. It is necessary to use the technique for dimensionality reduction to get 2D
points from a high-dimensional input vector.
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Figure 2 An overview of the structure of the VGGish network.
Full-size DOI: 10.7717/peerj.14696/fig-2

To estimate the impact of dimension reduction, we experimented with the following
dimensionality reduction algorithms: (R1) uniform manifold approximation and
projection (UMAP). UMAP works by learning approximate manifolds from higher
dimensional Spaces and mapping them into lower dimensional Spaces (McInnes, Healy &
Melville, 2018); (R2) t-distributed stochastic neighbor embedding (t-SNE) (Vander Maaten
& Hinton, 2008). This technique is a variation of Stochastic Neighbor Embedding (Becht
et al., 2019; Diaz-Papkovich et al., 2019).
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Figure 3 Block diagram of the MFCC processor.
Full-size DOI: 10.7717/peerj.14696/fig-3

The multidimensional colony sound features were narrowed down to two by the two
algorithms. Machine learning algorithms then classify the reduced feature set.

Training classifiers
In this article, we trained four well-known machine learning (ML) algorithms, namely
decision tree (DT), K-nearest neighbors (KNN), support vector machine (SVM)
classification, and random forests (RF). DT is a tree-structured classifier. The internal nodes
represent the features. The branches represent the rules, and each leaf node represents the
outcome. KNN (Altman, 1992) is a supervised learning model. A majority vote classifies its
neighbors in vector space, and the data is assigned to the class with the nearest neighbors.
SVM classification (Hong & Cho, 2008) aims to create the best decision boundary (which
is called a hyperplane) that can segregate n-dimensional space into classes so that the new
data point can be put into the correct category. RF is a classifier that contains a bunch of
decision trees (Breiman, 2001). It takes the prediction from each tree and predicts the final
output based on the majority votes of predictions from those decision trees.

We trained all four models on the same feature vectors automatically extracted from the
raw audio files in three bee colony datasets. The following feature: (F1) VGGish embedding;
(F2) Mel frequency cepstral coefficients (MFCCs) (Davis & Mermelstein, 1980) are used
in training all four models. We used the mean of the test accuracy as a summary of the
model’s performance. Then the paired Student’s t -test was used to check if the difference
in the mean accuracy between the two models is statistically significant.

The labeled features were split into a training set (70%) and a testing test (30%) with the
training_test_split procedure from the Python sklearn.model_selection library (Pedregosa
et al., 2011). All these classification models were trained with the training set on an Intel
Xeon E5−2676 V3@2.40 GHz x 12 processor with 64 GiB of RAM and 64-bit Windows 10.

Model evaluation
Classification accuracy and F1 score were used to evaluate the performance of the ML
models. The classification accuracy is the percentage of correct predictions. The F1 score
integrates information regarding both precision and recall (Chinchor & Sundheim, 1993).
The balanced accuracy of the classifier on the test set was reported as an average F1 score
for each class to account for sample-size imbalances among classes.

The data processing work-flow is presented in Fig. 4.
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Figure 4 Overview of the approach adopted for the acoustic classification of beehive sounds work-
flow. The original audio files (.wav format) containing recordings of beehive sounds were manually
classed into corresponding scenarios. Then, the MFCC and VGGish embedding were used to extract the
audio features, respectively. Dimensionality reduction was performed using the UMAP method for the
two sets of feature data. After that, the resulting data set was split into 70% for the training/development
set and 30% for the testing data set. Finally, the test data set was used to evaluate the performance of the
classifiers in correctly assigning the beehive sound to the respective scenario.

Full-size DOI: 10.7717/peerj.14696/fig-4

RESULTS

The performance of models on dataset one

Audio signal
Two different compoundswere added separately into the sucrose solution. Figure 5 presents
the log spectrogram of the bee colony sound. We can see that: (1) after being treated with
a compounds-sucrose solution, the low-frequency sound in the bee colony increased; (2)
the bee colony sound increased more significantly when feeding with the acetone-sucrose
solution than when feeding with ethyl-sucrose solution, and there was a significant increase
in bee colony sound around 130 Hz.

Dimensional reduction of audio feature
Figure 6 shows the output of VGGish embedding and MFCC dimensionality reduction in
dataset one. In the two-dimensional diagram, it is evident that the MFCC overlaps after
dimensionality reduction, while the VGGish embedding can better distinguish the sound
in these three situations.
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Figure 5 Log spectrum of bee colony sounds from dataset one. Left: Acetone (treated with acetone-
sucrose solution); Middle: Ethyl (treated with ethyl acetate-sucrose solution); Right: Blank (treated with
sucrose solution).

Full-size DOI: 10.7717/peerj.14696/fig-5

Figure 6 UMAP dimension reduction of sound features from dataset one.
Full-size DOI: 10.7717/peerj.14696/fig-6

Table 3 Accuracy of machine learning models using different colony sound features on three colony sound datasets.

Datasets Dataset 1 Dataset 2 Dataset 3

Algorithm KNN DT RF SVM KNN DT RF SVM KNN DT RF SVM

VGGish 94.79% 93.45% 94.43% 91.56% 86.58% 85.14% 85.94% 81.46% 91.08% 88.81% 89.23% 89.15%
MFCC 69.09% 66.28% 69.17% 68.29% 90.48% 88.45% 89.95% 87.25% 66.04% 65.78% 65.13% 68.05%

Model evaluation
Tables 3 and 4 summarize the results of fourmachine learningmethods. VGGish embedding
performs significantly better than the MFCC (P < 0.005) and shows an advantage of about
30% over MFCC in all four machine learning methods, among which KNN performs best,
achieving an accuracy of 94.79%.
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Table 4 F1-score of machine learning models using different colony sound features on three colony sound datasets.

Datasets Dataset 1 Dataset 2 Dataset 3

Algorithm KNN DT RF SVM KNN DT RF SVM KNN DT RF SVM

VGGish 94.79% 93.45% 94.42% 91.55% 86.58% 85.17% 85.93% 81.49% 91.06% 88.82% 89.21% 89.03%
MFCC 68.24% 66.32% 68.49% 65.26% 90.13% 88.44% 89.63% 85.41% 65.73% 65.74% 64.80% 65.09%

Figure 7 Log spectrum of bee colony sounds of dataset two. Left: normal situation; Middle: Queen pupa
inside colony; Right: new queen emerged (two queens in the colony).

Full-size DOI: 10.7717/peerj.14696/fig-7

The performance of models on dataset two

Audio signal
From the log spectrogram of the bee colony sound (Fig. 7), the colony with a queen pupae
seemed more active than the colonies in the other two conditions. The signal around 250
Hz and 500 Hz are stronger in the sound collection ‘Queen pupa’ and ‘New queen’ than in
the sound collection ‘Blank.’

Dimensional reduction of audio feature
Compared with the MFCC dimensionality reduction diagram (Fig. 8), the scatter plot of
VGGish embedding after dimensionality reduction has less overlap.

Model evaluation
The MFCC performs slightly better than VGGish embedding and shows an advantage of
about 4 percent of four machine learning methods (Tables 3 and 4). Still, the difference
was not statistically significant (P > 0.05). Moreover, KNN performed best, and achieved
an accuracy of 90%.

The performance of models on dataset three (identifying colony size)

Audio signal in dataset three
This dataset includes bee colony sounds from three colony sizes: C2) bee colony size of
about 8,500 worker bees; C4) bee colony size of about 12,000–13,000 worker bees; C6) bee
colony size of about 19,000–20,000 worker bees. Figure 9 presents the log spectrogram of
the bee colony sound signals in this dataset.
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Figure 8 UMAP dimension reduction of sound features from dataset two.
Full-size DOI: 10.7717/peerj.14696/fig-8

Figure 9 Log spectrum of bee colony sounds for dataset three. Left: Colony size of around 8,500 bees
(C2); Middle: Colony size of around 12,500 bees (C4); Right: Colony size of around 19,000 bees (C6).

Full-size DOI: 10.7717/peerj.14696/fig-9

Dimensional reduction of audio feature
The output of UMAP (Fig. 10) exhibits the VGGish embedding and MFCC of colony
sound in dataset three.

Model evaluation
The accuracy of four ML models using different colony sound features on dataset three is
shown in Table 3. VGGish embedding has an advantage over MFCC of about 20 percent in
all four ML methods, and the difference was statistically significant (P < 0.05). Moreover,
KNN performed best and achieved an accuracy of 91%.

The influence of different dimensionality reduction methods
To test the effects of different dimensionality reduction algorithms on the accuracy of the
models, we have chosen two-dimensionality reduction algorithms, namely UMAP and
t-SNE.

Figure 11 exhibits the results of the dimensionality reduction of dataset one using the
t-SNE algorithm, compared with the output of the UMAP algorithm (Fig. 6), UMAP
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Figure 10 UMAP dimension reduction of sound features for dataset three.
Full-size DOI: 10.7717/peerj.14696/fig-10

Figure 11 MFCC features of three datasets after t-SNE dimensionality reduction. Left: MFCC feature
using t-SNE dimensionality reduction on dataset two; Middle: MFCC feature using t-SNE dimensionality
reduction on dataset one; Right: MFCC feature using t-SNE dimensionality reduction on dataset three.

Full-size DOI: 10.7717/peerj.14696/fig-11

performs better than t-SNE feature in separating bee colony sounds. Table 4 shows the
accuracy of four ML methods trained by two dimension factors obtained by UMAP and
t-SNE. The original sound feature used by those dimensional reduction algorithms were
the MFCC. The results show that UMAP performs better than t-SNE in almost all datasets
and all ML methods.

DISCUSSION
Hive monitoring based on colony sound has made numerous research achievements
in recent years (Terenzi, Cecchi & Spinsante, 2020; Kim, Oh & Heo, 2021; Zhao et al.,
2021; Soares et al., 2022; Yu et al., 2022) and has become increasingly popular with
many international companies such as Arnia, Bee Hero, Nectar, and Broodminder
(https://www.umt.edu/bee/monitoringconference_2020/).
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Table 5 Comparison of different dimensionality reductionmethods.

Datasets Dataset 1 Dataset 2 Dataset 3

Algorithm KNN DT RF SVM KNN DT RF SVM KNN DT RF SVM

UMAP 69.09% 66.28% 69.17% 68.29% 90.48% 88.45% 89.95% 87.25% 66.04% 65.78% 65.13% 68.05%
t-SNE 51.62% 54.85% 55.07% 56.63% 62.64% 65.38% 66.83% 66.42% 52.24% 55.04% 57.45% 60.18%

In this article, we compared the performance of VGGish embedding and MFCC of bee
colony sound in four classification algorithms. Table 3 indicated that all four classification
algorithms could generate prediction accuracy percentages that are better than ‘chance’
based percentages. In all classification methods, the VGGish feature can guarantee more
than 80% testing accuracy, among which KNN has the best performance of 94%. The
testing accuracy of the MFCC varies greatly between different datasets. In datasets one
and three, the MFCC could only achieve an accuracy of about 69%, while in dataset
two, it achieved an accuracy of 90%. Results (Tables 3 and 5) show that the difference
between the two features in datasets one and three is statistically significant (P < 0.005).
At the same time, in dataset two, there is no significant difference between the two models
(P > 0.005).

We confirm that the VGGish embedding applies to bee colony sound classification and
performsmore stability than theMFCC among different datasets. This may be attributed to
the MFCC being highly dependent on data and features which causes weak generalization
ability due to insufficient bee colony data and the similarity of bee colony sound. The
VGGish network is trained on a more extensive and general Audio set, which means a
better generalization ability.

Our results suggest that different compounds do lead to different responses in the bee
colony (Fig. 6, Tables 3 and 4), which further confirms the results of previous studies
(Bromenshenk et al., 2009; Sharif et al., 2020; Zhao et al., 2021; Yu et al., 2022), and verifies
the applicability of VGGish embedding in bee colony sound classification. As seen from
the log spectrum of bee colony sounds (Fig. 5), the acetone-sucrose solution and acetone
ethyl-sucrose solution would agitate the colony compared to the sucrose solution. The
low-frequency amplitude was much larger when treated with acetone than when treated
with sucrose solution. This may be because acetone stimulates bee colonies more strongly
than ethyl acetate at the same concentration, and low concentrations of ethyl acetate were
mildly attractive to bees (Schmidt & Hanna, 2006).

The MFCC performs better in dataset two (Tables 3 and 4). This may be ascribed to
the sound changes fundamentally during bee swarming (Michelsen et al., 1986). Thus, it is
easier for the standard MFCC to capture the character in colony sounds. Dataset three is
small. The total duration of sound in dataset three is less than one hour, and theMLmodels
trained by the VGGish embedding could still achieve an accuracy of around 90%, which
may be because the VGGish could better capture the distinctions among the datasets. We
have compared two different dimensionality reduction algorithms (Fig. 11, Table 5), and
UMAP performs better than the t-SNE in every situation. The secret of UMAP lies in its
ability to infer local and global structures while maintaining relative global distances in
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low-dimensional space. The result also shows that UMAP performed better in separating
different colony sounds.

In summary, the results of this article indicate that the combination of VGGish
embedding and the KNN method has achieved the highest accuracy on the testing set
of all three datasets (Tables 3–5).

Several ways in which this research can be improved are given below:
(1) Beehive sound samples are few, and only one type of microphone is used for collecting
the sound, which causes a lack of data diversity and affects the model’s generalizability.
A more comprehensive data set must be attained in future work to train the system and
improve the model’s generalizability.
(2) Expand the application of the model: in this study, we applied VGGish embedding in
the classifications of three datasets. Beehive sound can be influenced by many other factors,
such as the invasion of natural enemies and parasites. Subsequent studies can check how
VGGish embedding performs in these scenarios.
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