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ABSTRACT
Solithromycin is a novel fluoroketolide antibiotic belonging to the class of macrolide
antibiotics. Activation of the interleukin (IL)-13 receptor leads to STAT6 activation
and subsequent induction of SAM pointed domain containing ETS transcription
factor (SPDEF), chloride channel accessory 1 (CLCA1), and anoctamin-1 (ANO1),
all of which are associated with the induction of MUC5AC. We examined the
effects of solithromycin on mucin production led by IL-13 signaling. Normal human
bronchial epithelial cells were grown at the air-liquid interface with IL-13 with/without
solithromycin for 14 days. Histochemical analysis was performed using hematoxylin
and eosin staining and MUC5AC immunostaining. MUC5AC, SPDEF, CLCA1, and
ANO1 mRNA expressions were examined using real-time polymerase chain reaction.
Western blot analysis was performed to assess CLCA1 and ANO1 proteins, and
phosphorylation of STAT6 and ERK. Solithromycin attenuated IL-13 induction of
goblet cell hyperplasia andMUC5AC,CLCA1 andANO1mRNAand protein expression
induced by IL-13, but had no effect on the phosphorylation of STAT6 and ERK. Our
results indicate that solithromycin could attenuate goblet cell hyperplasia andMUC5AC
induced by IL-13 through inhibition of CLCA1 and ANO1 mRNA and protein
expression. However, much more information is required to clarify the molecular
mechanisms underlying the inhibition of CLCA1 and ANO1 by solithromycin.
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INTRODUCTION
Asthma is a syndrome characterized by functional and structural abnormalities, including
airway hyperresponsiveness, chronic inflammation, andmucus hypersecretion. Interleukin
(IL)-13, one of the cytokines produced by type 2 helper T cells (Th2), plays a major role
in the pathogenesis of asthma. IL-13 induces goblet cell hyperplasia in human bronchial
cells (Kuperman et al., 2002; Tanabe et al., 2008) and goblet cells produce the gel-forming
mucin MUC5AC (Thornton, Rousseau & McGuckin, 2008).
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Activation of IL-13 receptor leads to a signaling cascade for MUC5AC production,
starting with activation of signal transducer and activator of transcription 6
(STAT6) (Kuperman et al., 2002). This is thought to be followed by the activation of
SAM pointed domain containing ETS transcription factor (SPDEF) and chloride channel
accessory 1 (CLCA1) (Yu et al., 2010; Alevy et al., 2012; Park et al., 2007).

Transmembrane protein (TMEM) 16A (also known as anoctamin-1 (ANO1)) is a
calcium-activated chloride channel (CaCC) that belongs to a family of 10 proteins operating
as phospholipid scramblases and chloride channels (Pedemonte et al., 2014). Many studies
have identified TMEM16A expression and CLCA1, a regulator of CaCC, as involved in
goblet cell metaplasia and mucus production/secretion (Huang et al., 2012a; Kondo et al.,
2017; Benedetto et al., 2019; Miner et al., 2019; Lin et al., 2015a; Cabrita et al., 2021; Patel,
Brett & Holtzman, 2009).

Epidermal growth factor receptor (EGFR) is another important modulator of mucin
expression that is activated in asthma. Signaling through EGFR increases transcription of
MUC5AC via extracellular signal-regulated kinase (ERK1/2) signaling pathways (Rose &
Voynow, 2006a).

Solithromycin is a novel fluoroketolide antibiotic belonging to the class of macrolide
antibiotics. Several structural modifications in solithromycin increase its binding to
the ribosome and reduce its propensity for known macrolide resistance mechanisms
compared to its macrolide and ketolide predecessors. Oral solithromycin has been found
to be non-inferior to oral moxifloxacin in the treatment of community-acquired bacterial
pneumonias, indicating the potential ofmacrolidemonotherapy for this pathology (Barrera
et al., 2016). Macrolide antibiotics have already been shown to have not only antibiotic
effects, but also immunomodulatory and mucoregulatory properties (Zarogoulidis et al.,
2012). Macrolide agents exert suppressive effects on mucus hypersecretion induced by
several stimuli, including IL-13, both in vivo and in vitro (Tanabe et al., 2011; Kitano et
al., 2011; Kaneko et al., 2003; Mertens, Hiemstra & Taube, 2016). Solithromycin has not
yet been shown to exert the mucoregulatory properties seen with other macrolides. We
therefore investigated the effects of solithromycin on IL-13-induced signaling pathways for
mucin production using normal human bronchial epithelial (NHBE) cells.

MATERIALS AND METHODS
Culture and differentiation of NHBE cells
NHBE cells (lot no. 0000442483; Lonza Walkersville, Walkersville, MD) were plated at
3,500 cells/cm2 in culture flasks of bronchial epithelial cell growth medium supplemented
with the SingleQuot

R©
kit (BEGM medium, CC-3170; Lonza Walkersville, Walkersville,

MD) and cultured at 37 ◦C in a 5% CO2 incubator. The medium was changed every 48–72
h and cells were grown to confluence for six days.

IL-13 and solithromycin exposure
After achieving confluence, the apical medium was removed and cells were grown for 14
days at the air-liquid interface (ALI) at 37 ◦C in a 5% CO2 incubator. First, we investigated
the concentrations of solithromycin that would have no effect on the differentiation of
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NHBE cells. When we used solithromycin at 30 µg/mL, all NHBE cells died by day 6. In
addition to these results, referring to evidence regarding epithelial lining fluid in human
airways (Rodvold et al., 2012) and a study examining the effects of solithromycin in a human
airway epithelial cell line stimulated with Pseudomonas aeruginosa lipopolysaccharide to
induce overexpression of MUC5AC (Kawamoto et al., 2020), we selected the concentration
of solithromycin used in this study. Medium containing IL-13 (recombinant human IL-13,
five ng/mL; Sigma-Aldrich, St. Louis, MO, USA) or vehicle (acetic acid) was added to the
basolateral side with solithromycin (Toyama Chemical, Tokyo, Japan) at 0, 5, 10, or 15
µg/mL. Medium containing IL-13± solithromycin was changed every 48–72 h. Acetic acid
was used as the vehicle for solithromycin.

Histochemical and immunohistochemical analyses
Cells on porous filters were fixed in 10% neutral-buffered formalin, embedded in paraffin
and cut into 4-µm slices. Paraffin-embedded tissues were deparaffinized in xylene and
rehydrated in a graded alcohol series. Slides were then immersed in hematoxylin for 4 min,
followed by immersion in eosin for 2 min. After thorough washing, slides were covered
and observed under light microscopy.

Sampleswere stained forMUC5ACwith the EnVisionTM FLEX and theDakoAutostainer
Link 48 platform. The deparaffinization, rehydration, and target-retrieval procedures
were performed using the EnVision FLEX Target Retrieval solution (high pH, 1×) and
EnVision FLEX wash buffer (1×). After this procedure, tissue samples were placed on the
Autostainer Link 48 platform. The instrument performed the staining process by applying
the appropriate reagent, monitoring incubation time and rinsing slides between reagents.
Slides were then observed under light microscopy.

Real-time quantitative polymerase chain reaction (RT-PCR)
To examine the expressions of MUC5AC, SPDEF, CLCA1 and ANO1 mRNAs, total RNA
was extracted from cells exposed to solithromycin or vehicle for 14 days and RT-PCR
was conducted as previously described (Kitano et al., 2011). The mRNA expression of
the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used
as a normalization control. Primer pairs for MUC5AC were as follows: forward, 5′-
TACTCCACAGACTGCACCAACTG-3′; and reverse, 5′-CGTGTATTGCTTCCCGTCAA-
3′. SPDEF/CLCA1/ANO1/GAPDH primers were purchased from Takara Bio (Shiga,
Japan) using the perfect Real Time Support System. Takara Primer set IDs were: SPDEF,
HA191804; CLCA1, HA206922; ANO1, HA187972; and GAPDH, HA067812.

Western blot analysis
Western blot analysis was used to examine CLCA1 and ANO1 proteins. These proteins
were exposed to IL-13 (0 or five ng/mL) with solithromycin (0, 5, 10, or 15 µg/mL)
for 14 days. Western blot analysis was used to examine the phosphorylation of STAT6
and ERK1/2. NHBE cells that had reached confluence were exposed to IL-13 (0 or five
ng/mL) with solithromycin (0, 5, 10, or 15 µg/mL). Cell lysates were harvested after 30
min of IL-13 exposure. Protein concentration and the procedure of Western blot analysis
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were conducted as described previously (Kitano et al., 2011). GAPDH protein was used to
normalize levels of total tissue lysate on the same membrane.

Statistical methods
All studies were performed as duplicate trials on at least three separate occasions. Data are
expressed asmean± standard error of themean (SEM). The Kolmogorov–Smirnov test was
used to test for normality. Student’s t -test (two-tailed, unpaired) and the nonparametric
Mann–Whitney test (two-tailed, unpaired) were used for comparisons of statistical
differences between two groups. Values of P < 0.05 were considered significant. Data
were analyzed using EZR version 1.41 (Saitama Medical Center, Jichi Medical University,
Saitama, Japan).

RESULTS
Effects of solithromycin on IL-13-induced goblet cell hyperplasia
NHBE cells cultured at the ALI for 14 days demonstrated a well-differentiated morphology
with ciliated cells at the surface of epithelial layers (Fig. 1A). In the presence of IL-13,
NHBE cells differentiated into goblet cells showing secretory granules (Fig. 1B) and
showed increased immunostaining for MUC5AC (Fig. 1F). Solithromycin administered
concomitantly decreased the number of goblet cells (Figs. 1C, 1D) and MUC5AC-positive
cells compared with IL-13 and solithromycin vehicle (Figs. 1G, 1H).

Effects of solithromycin on IL-13-stimulated MUC5AC gene
expression
Exposure to IL-13 over 14 days increased MUC5AC mRNA expression. While adding
solithromycin, a dose-dependent decrease inMUC5AC mRNA was identified (Fig. 2).

Effects of solithromycin on SPDEF mRNA, CLCA1 and ANO1 mRNA
and protein expression
Expression of SPDEF mRNA, CLCA1 and ANO1 mRNA and protein increased with
exposure to IL-13 over 14 days compared with the IL-13 vehicle. Addition of solithromycin
had no effect on SPDEF mRNA expression (Fig. 3A), but decreased CLCA1 and ANO1
mRNA and protein expression (Figs. 3B, 3C, 4A, 4B).

Effects of solithromycin on phosphorylation of STAT6 and ERK1/2
Western blot analysis of NHBE cell lysate showed that IL-13 increased phosphorylation
of STAT6 by 30 min after IL-13 stimulation, while solithromycin had no effect on STAT6
phosphorylation (Fig. 5A). IL-13 did not increase phosphorylation of ERK at 30 min and
solithromycin had no effect on ERK phosphorylation (Fig. 5B).

DISCUSSION
This study demonstrated that solithromycin inhibited the goblet cell hyperplasia and
MUC5AC expression induced by IL-13 and affected IL-13-exposed cells in attenuating
CLCA1 and ANO-1 (TMEM16A), but exerted no effects on STAT6 activation, SPDEF
expression or phosphorylation of ERK1/2.
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Figure 1 Hematoxylin and eosin andMUC5AC immunostaining of NHBE cells grown for 14 days at
the air-liquid interface with IL-13 (five ng/mL) and either solithromycin.Hematoxylin and eosin (A–D)
and MUC5AC immunostaining (E–H) of NHBE cells grown for 14 days at the air-liquid interface with IL-
13 (5 ng/mL) (B–D, F–H) and either solithromycin vehicle (acetic acid) (A, B, E, F), solithromycin (C, G:
5 µg/mL, D, H: 15 µg/mL) or IL-13 vehicle (PBS) (A, E). Black arrowheads show goblet cells with secre-
tory granules. White arrowheads show MUC5AC-positive cells.

Full-size DOI: 10.7717/peerj.14695/fig-1

MAC5AC expression by IL-13 is thought to occur through the suppression of FOXA2
by JAK1/STAT6-mediated enhancement of SPDEF expression (Zhen et al., 2007) and
activation of MAPK13 by the enhancement of TMEM16A and CLCA1 expression by
SPDEF (Yu et al., 2010; Alevy et al., 2012; Qin et al., 2016).

IL-13 reportedly does not induce EGFR ligand expression in airway epithelial cells in
vitro (Zhen et al., 2007), but instead causes inflammation, increases expression of EGFR
ligands, andpromotes the production ofMUC5AC in vivo (Shim et al., 2001). FOXA2 (Zhen
et al., 2007), TMEM16A (Qin et al., 2016; Crottès et al., 2019), and CLCA1 (Yu et al., 2010;
Nagashima et al., 2016), common to both IL-13 and EGFR pathways, are thought to act as
regulatory factors for MUC5AC expression.

The function of CLCA1 is associated with mucus production and the activation of
CaCCs through TMEM16A. CLCA1 engages TMEM16A directly on the cell surface,
and this effect appears to stabilize the expression of TMEM16A (Yurtsever et al., 2012;
Sala-Rabanal et al., 2015). Like CLCA1 expression, IL-4/IL-13 induces the expression of
TMEM16A (Scudieri et al., 2012; Lin et al., 2015b). Moreover, inhibitors of TMEM16A
have been reported to inhibit mucus production (Huang et al., 2012b; Zhang et al., 2015).
The CLCA1-TMEM16A interaction is hypothesized to activate intracellular MAPK13 and
induce MUC5AC, leading to the formation and degranulation of secretory granules.

Our results imply that solithromycinmay suppress IL-13-induced goblet cell hyperplasia
through the TMEM16A pathway, but not through the IL-13R α1-JAK-STAT6 or

Kimura et al. (2023), PeerJ, DOI 10.7717/peerj.14695 5/13

https://peerj.com
https://doi.org/10.7717/peerj.14695/fig-1
http://dx.doi.org/10.7717/peerj.14695


Figure 2 MUC5AC mRNA expression in NHBE cells grown for 14 days with basal exposure to IL-13
(0 or 5 ng/mL) and solithromycin (0, 5, 10 or 15µg/mL). MUC5AC mRNA was measured by real-time
PCR. Data are shown as mean± SEM from samples performed three times separately. Solithromycin de-
creasesMUC5AC mRNA in a dose-dependent manner. Significant differences from IL-13 alone are indi-
cated by ** p< 0.01, *** p< 0.001.

Full-size DOI: 10.7717/peerj.14695/fig-2

Figure 3 Expression of SPDEF, CLCA1, and ANO1 in NHBE cells grown for 14 days with basal expo-
sure to IL-13 (0 or 5 ng/mL) and solithromycin (0, 5, 10, or 15µg/mL) or acetic acid. SPDEF, CLCA1
and ANO1mRNA are measured by real-time PCR. Data are shown as mean± SEM from samples per-
formed three times separately. Experiments are performed three times each. Significant differences from
IL-13 alone are indicated by * p< 0.05 and ** p< 0.01.

Full-size DOI: 10.7717/peerj.14695/fig-3
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Figure 4 Western blot analysis of CLCA1 and ANO1 activation with exposure to IL-13 (0 or five
ng/mL) and solithromycin (0, 5, 10 or 15µg/mL) for 14 days. Data are shown as mean± SEM from
samples performed three times separately. Significant differences from IL-13 alone are indicated by an
asterisk (*) p< 0.05.

Full-size DOI: 10.7717/peerj.14695/fig-4

EGFR-ERK1/2 pathways. Solithromycin suppressed MUC5AC expression like other
macrolide antibiotics. Clarithromycin reportedly suppressed IL-13-induced goblet cell
hyperplasia through a TMEM16A-dependent pathway (Hara et al., 2019) and azithromycin
decreased IL-13-inducedMUC5AC expression by decreasing CLCA1 (Mertens et al., 2016).
Solithromycin is speculated to have a similar effect. Our previous report showed that
clarithromycin may inhibit IL-13-induced goblet cell hyperplasia by suppressing not only
CLCA1, but also SPDEF and ERK1/2 phosphorylation (Nagashima et al., 2016). However,
solithromycin does not appear to have that effect. Much more information is required
to elucidate the molecular mechanisms by which solithromycin inhibits CLCA1 and
TMEM16A.

As a limitation of this study, we did not measure FOXA2, a standard regulator of
the IL-13 and EGFR pathways, or MAPK13, which CLCA1 activates, so we cannot fully
speculate on the pathways by which solithromycin inhibits goblet cell hyperplasia. We also
consider it essential to examine the effects of solithromycin on FOXA3 (Rose & Voynow,
2006b; Schroeder et al., 2012; Williams et al., 2006), which directly binds to AGR2 and
MUC5AC and causes mucus production/goblet cell hyperplasia in the airway. These will
be the subjects of our future research.

Solithromycin has been reported to exert potent in vitro activity against most common
community-acquired bacterial pneumonia pathogens, including macrolide-, penicillin-,
and fluoroquinolone-resistant Streptococcus pneumonia, Haemophilus influenzae, and
atypical bacteria, making this an essential option as an antibacterial agent for community-
acquired pneumonia (Kato et al., 2019). Solithromycin has also been known to have
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Figure 5 Western blot analysis of STAT6 and ERK activation with exposure to IL-13 (0 or 5
ng/mL) and solithromycin (0, 5, 10, or 15µg/mL). Data are shown as means± SEM of the ratio of
phosphorylated (p)-STAT6/total (t)-STAT6 from samples performed three times separately. NHBE cells
were harvested after 30 min of exposure to IL-13 and solithromycin. While IL-13 increased the ratio of
p-STAT6/t-STAT6, solithromycin did not affect on. IL-13 did not increase the ratio of p-ERK/t-ERK, and
solithromycin did not affect the ratio of p-ERK/t-ERK.

Full-size DOI: 10.7717/peerj.14695/fig-5

inhibitory effects on tumor necrosis factor α production from monocytic cell lines,
suppresses mucin overexpression induced by P. aeruginosa LPS in airway epithelial
cells (Kawamoto et al., 2020) and may be able to control chronic lower respiratory tract
disease. Based on the present results, solithromycinmay represent a useful treatment option
by reducing excessive mucus secretion in asthmatic patients suffering from pneumonia
and providing an additional therapeutic agent for patients with bronchial asthma with
treatment-resistant sputum.

CONCLUSION
We have demonstrated that solithromycin could attenuate goblet cell hyperplasia and
MUC5AC induced by IL-13 through the inhibition of CLCA1 and TMEM16A mRNA and
protein expression.
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