Life-cycle traits in the demosponge *Hymeniacidon* perlevis living in a land-based fish farm (#74587)

First submission

Guidance from your Editor

Please submit by 7 Jul 2022 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

8 Figure file(s)

1 Table file(s)

3 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Life-cycle traits in the demosponge *Hymeniacidon perlevis* living in a land-based fish farm

 $\textbf{Maria Mercurio} \ ^1, \textbf{Caterina Longo} \ ^{\texttt{Corresp.} \ ^1}, \textbf{Cataldo Pierri} \ ^1, \textbf{Frine Cardone} \ ^2, \textbf{Giuseppe Corriero} \ ^1, \textbf{Walter Zupa} \ ^3, \textbf{Pierluigi Carbonara} \ ^3$

Corresponding Author: Caterina Longo Email address: caterina.longo@uniba.it

Background. The demosponge *Hymenaicidon perlevis*, characterized by wide geographic distribution, shows great ability to adapt its life cycle to high variable climatic and hydrological conditions. The extreme adaptive capacity allows it to colonize even artificial environments such as drainage channels, as happened in a marine land-based fish farming plant where the sponge grows spontaneously using the farm waste water as the only form of sustenance. This population offered the opportunity to investigate for the first time, both growth and reproductive cycle within a whole year in relation to some controlled environmental conditions.

Methods. The growth rate and the reproduction cycle were put in reon with the availability of trophic resources, the water temperature and the flux of waste water. Biological traits of the farmed sponges were compared with those of other wild poppions, allowing the evaluation of the impact of these ecological drivers in the life cycle of the sponge.

Results. The sponge showed marked growth variations along the study period, with the greatest increase in sponge volume mainly determined by the reduction of the fish reared biomass, the increase of pellet amount available and the increase of the waste water flow in the drainage conduit. Sponge reared specimens exhibited a vital physiological state during the whole year. Anyway, it has been not possible to recognise in the farmed specimens of *H. perlevis* a true sexual cycle, being the occurrence of sexual elements sporadic throughout almost all the year. No asexual elements were observed.

Discussion. Being an intertidal marine sponge, *H. perlevis* possess excellent flexibility and adaptability to the variations of the environmental conditions. The sponge living in the drainage conduit, is constantly in dark conditions, with a constant water temperature of 18 °C and subjected to a continuous nutritional supply, exhibited a vital physical state during the whole year, avoiding the stages of decline and long dormancy observed in wild populations. It seems quite plausible that for *H. perlevis* living in the drainage conduit characterized by constant values of some basic ecological parameters, the sexual phase was an almost continuous process under the control of endogenous factors. No asexual elements were observed, even though we cannot exclude the occurrence of asexual phenomena in the origin of the newly settled sponges, repeatedly detected thought study period. The growth variations during the study period are linked to some specific fish farming conditions, providing usefull indications on the best rearing conditions for *H. perlevis* potentially usable in integrated multitrophic farming systems for the waste water treatment.

¹ Department of Biology, University of Bari, Bari, Italy

² Department of Integrative Marine Ecology, Zoological Station "Anton Dohrn", Naples, Italy

COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Torre a Mare (Bari), Italy

Life-cycle traits in the demosponge Hymeniacidon

perlevis living in a land-based fish farm.

J	
4	Maria Mercurio ¹ , Caterina Longo ¹ , Cataldo Pierri ¹ , Frine Cardone ² , Giuseppe Corriero ¹ , Walter
5	Zupa ³ , Pierluigi Carbonara ³
6	
7	Department of Biology, University of Bari Aldo Moro, Bari, Italy
8 9	 Department of Integrated Marine Ecology, Zoological Station Anton Dohrn, Naples, Italy, COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare,
10	Torre a Mare, Bari, Italy
11	Tone a Marc, Barr, Italy
12	Corresponding Author:
13	Caterina Longo ¹
14	Via Edoardo Orabona, 4, Bari, 70125 Italy
15	Email address: caterina.longo@uniba.it
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	

Abstract

Background. The demosponge *Hymenaicidon perlevis*, characterized by wide geographic distribution, shows great ability to adapt its life cycle to high variable climatic and hydrological conditions. The extreme adaptive capacity allows it to colonize even artificial environments such as drainage channels, as happened in a marine land-based fish farming plant where the sponge grows spontaneously using the farm waste water as the only form of sustenance. This population offered the opportunity to investigate for the first time, both growth and reproductive cycle within a whole year in relation to some controlled environmental conditions.

Methods.

The growth rate and the reproduction cycle were put in relation with the availability of trophic resources, the water temperature and the flux of waste water. Biological traits of the farmed sponges were compared with those of other wild populations, allowing the evaluation of the impact of these ecological drivers in the life cycle of the sponge.

Results. The sponge showed marked growth variations along the study period, with the greatest increase in sponge volume mainly determined by the reduction of the fish reared biomass, the increase of pellet amount available and the increase of the waste water flow in the drainage conduit. Sponge reared specimens exhibited a vital physiological state during the whole year. Anyway, it has been not possible to recognise in the farmed specimens of *H. perlevis* a true sexual cycle, being the occurrence of sexual elements sporadic throughout almost all the year. No asexual elements were observed.

Discussion. Being an intertidal marine sponge, *Hymeniacidon perlevis* possess excellent flexibility and adaptability to the variations of the environmental conditions. The sponge living in the drainage conduit, is constantly in dark conditions, with a constant water temperature of 18 °C and subjected to a continuous nutritional supply, exhibited a vital physiological state during the whole year, avoiding the stages of decline and long dormancy observed in wild populations. It seems quite plausible that for *H. perlevis* living in the drainage conduit characterized by constant values of some basic ecological parameters, the sexual phase was an almost continuous process under the control of endogenous factors. No asexual elements were observed, even though we cannot exclude the occurrence of asexual phenomena in the origin of the newly settled sponges, repeatedly detected thought the study period. The growth variations during the study period are linked to some specific fish farming conditions, providing usefull indications on the best rearing conditions for *H. perlevis* potentially usable in integrated multitrophic farming systems for the waste water treatment.

Introduction

Porifera are primitive pluricellular invertebrates characterized by a high plasticity, being able to display special adaptive strategies at cellular, structural, and reproductive levels, so adapting their life cycle to a wide range of environmental variations (Gaino, Manconi & Pronzato, 1995; Hill & Hill, 2002; Manconi & Pronzato, 2015).

The effects of environmental factors on sponges' life cycles have been extensively studied (Witte, 1996; Whalan et al., 2007; Gaino et al., 2010; Wahab et al., 2014); in particular, the water temperature is known to be one of the most important environmental drivers, being able to affect gametogenesis, sex ratios, and sexual reproductive output (Reiswig, 1973; Fell, 1976; Maldonado & Young, 1996; Usher et al., 2004; Ettinger-Epstein et al., 2007; Riesgo et al., 2007; Whalan et al., 2007; Maldonado & Riesgo, 2008; Ereskovsky et al., 2013; Wahab et al.,

2014, 2017; Lanna et al., 2014, 2018; Shaffer et al., 2020).

The ability to adapt their life cycle to high variable climatic and hydrological conditions is particularly enhanced in sponges with wide geographic distribution, such as the demosponge Hyme cidon perlevis (Montagu, 1818), one of the most common species of European waters (Erpenbeck of Van Soest, 2002) so much that can be considered cosmopolitan (Pansini et al., 1987; Xue et al., 2004; Gaino et al., 2010; de Voogd et al., 2022). It can colonise both hard and soft bottoms in shallow subtidal and intertidal zones (Cabioch, 1968; Stone, 1970; Erpenbeck et al., 2002; Corriero, 1990). *H. pe* is is also one of the most common benthic species inhabiting the central Mediterranean lagoon's (Longo et al., 2016; 2017), where it is also able to survive prolonged periods of air exposure (Gaino et al., 2010) and high anthropogenic impacts (Gaino et al. 2010; Longo et al., 2016; 2017), showing peculiar adaptive strategies (Juniper & Steel, 1969; Stone, 1970; Gaino et al., 2010; Cao et al., 2(=). In particular, it exhibits the life cycle that lasts one year and that consists of four stages, linked to the seasonal var ons: dormancy, resuscitation, bloom, and decline. During these stages the sponge biomass increases or decreases according to the environmental conditions (Stone, 1970; Cao et al., 2007; Gaino et al., 2010; Zhang et al., 2010), with an optimal water temperature survival range ranging between 10-20°C, corresponding to the intermediate sons (Stone, 1970; Cao et al., 2007; Gaino et al., 2010; Zhang et al., 2010).

H. per is viviparous, gonochoric d/or hermaphroditic non-simultaneous in which over sepreceded spermatogenesis (Sarà, 1961; Stone, 1970; Diaz, 1973; Gaino et al., 2010). Ovocites are recilised in the sponge body, where they give rise to ciliated parenchymella larvae (Stone, 1970; Diaz, 1973; Xue et al., 2009; Gaino et al., 2010). In general, sexual reproduction starts in late spring and ends in summer, even if it is subjected to a wide influence of hydrological parameters (Stone, 1970; Gaino et al., 2010). Asexual reproduction by means of fragmentation is also important, especially under adverse environmental conditions (Stone, 1970; Gaino et al., 2010), a process supported by the high regenerative properties of the sponge.

The extreme adaptive capacity allows it to colonize even artificial environments such as drainage channels, as happened in a marine land-based h farming plant where the sponge grows spontaneously using the farm waste water as the only form of sustenance, as the incoming water is taken from a deep, nutrient-free aquifer. This population offered the opportunity to investigate for the first time, both growth and reproductive cycle within a whole year in relation to some controlled environmental conditions, such as the availability of trophic resources, the water temperature and the waste water flux, in conditions like breeding rather than natural growth. The biological traits of the farmed space were compared with those from which the propagules that colonized this drainage channel come (Gaino et al., 2010) together with other wild populations (Sarà, 1961; Stone, 1970; Diaz, 1973), allowing us to evaluate the impact of these ecological drivers in the life cycle phases of the sponge.

Moreover, the present study adds information about the life cycle and the best environmental conditions for the survival of *H. perlevis*, since in the last years it has become very important as a model organism in bioremediation researches thanks to its ability to remove potential pathogenic bacteria and vibrions from the cultured media (Fu et al., 2006, Longo et al., 2010, 2016; Zhang et al., 2010).

Materials & Methods

The Demospongiae *Hymeniacidon perlevis*, family Halichondriidae Gray, 1867 has a very variable external morphology, being able to assume the shape of small and thin crusts up to large

- size massive aspect (more than 30 cm in maximum diameter). Usually, short papillae and small
- digitations emerge from the sponge surface. Its colour varies from yellow-orange to red or pale
- green. Spicules and spicule bundles are made up of slightly curved styles, often with a faint
- 131 subterminal swelling tylote.
- 132 Under the name *Hymeniacidon perlevis*, thanks to a wide systematic and molecular revision, are
- now accepted species that in the past were named in a different way, such as *H. perleve*
- (Erpenbeck & Van Soest 2002; Sun et al. 2007; Mahaut et al. 2013), H. sanguinea, H. caruncula
- (de Voogd et al. 2021), H. sinapium and H. heliophila (Turner, 2020). Genetic and
- morphological data referred Europe, the Atlantic coasts of North and South America, the
- Pacific coast of North America and Asia, support the occurrence of only one species. The
- 138 literature data also reported some records from New Zealand, Southwest Africa, and the Pacific
- coast of South America, but these records are not confirmed by genetic analysis.
- Over all, *H. perlevis* can be effectively considered a cosmopolitan sponge species (Juniper &
- 141 Steele, 1969; Stone, 1970; Erpenbeck & Van Soest, 2002; Xue et al., 2004; Picton et al., 2007;
- Mahaut et al. 2013; Turner, 2020). In Mediterranean Sea its range comprises eastern and western
- basins (Erpenbeck & Van Soest, 2002).
- 144 The population here investigated lives on the bottom of a concrete waste channel which conveys
- the waste water of a marine land-based fish farming (COISPA experimental station fish farm,
- 146 Torre a Mare, southern Italy; www.coispa.it) to the sea. The sponge specimens have been
- detected for the first time at the end of an experience in which the rearing performances of this
- sponge, collected from the Mar Piccolo of Tarant (Gaino et al., 2010), have been
- assesses within the COISPA plant. One year later, some specimens of *H. perlevis* were found
- 150 growning spontaneously on the bottom of the drainage conduits. No specimens of this species
- had ever been observed before this experience in any area of the fish farm, so that the origin of
- these specimens is to be attributed to the reared sponges also because the circulating sea water
- into the fish farm is a marine nutrient-free ground water, without macroscopic organisms of the
- 154 benthos.

166 167

Environmental parameters

157 The portion of the drainage conduit where the sponge grows here investigated consists of a

concrete canal 4.0-meter-long, 0.57-meter-wide and 0.15 m deep, closed by a walkable

inspection cover that makes this part of the condercompletely dark (Figure 1). The wastewater

- 160 from the fish tanks flows out through the drainage conduit, passing on the area colonized by the
- sponges. Each tank has an overflow system and a tap at the bottom. To eliminate residues of feed
- and faces, the tap of each tank is daily opened and approximately one third of the entire water
- 163 volum discharged.

The ground sea-wate the fish farm has temperature and salinity values constant

165 throughout the year (18°C and 34%, respectively).

Growth performance

- Along the drainage conduit, 9 pvc frames of 20x20 cm were randomly positioned on sponges
- 169 (Figure 2A); three sampling frames were located in the area furthest from the wastewater inlet
- 170 (frames A, B and C), three sampling frames in the intermediate area (frames D, E and F), and
- three in the area closest to the wastewater inlet (frames G, H and I) (Figure 1). Only the frame D
- was placed in an area free from the presence of the sponge, to test the colonization process and

- the growth rate of the new recruits. Each frame in turn was divided into 4 squares 10x10 cm
- 174 (Figure 2B) for a more detailed assessment of growth patterns.
- 175 Growth performance was monthly registered from March 2018 to March 2019 for each sponge
- 176 frame and expressed as volume (cm³). The estimate of the volume of the sponge was calculated
- as the product of the total area occupied by the sponge in each square by the average thickness in
- the center of each 10x10 cm sub-square, calculated by means of a millimeter bar fixed in the
- sponge. Photographic sampling of the nine pvc frames was monthly performed and the area
- occupied by the sponge in each sub-square was detected thanks to ImageJ software and
- 181 expressed in cm².

Reproductive cycle

- With the aim to estimate the relevance of sexual reproduction in the sponge life-cycle, from
- March 2018 to April 2019, ten sponge fragm of *H. perlevis* of about 3 cm³ were monthly
- taken along the drainage conduit, avoiding the sponge biomass present in the frames to not
- invalidate the growth pattern estimation; fragments were fixed for 24 hours in 4% formaldehyde
- in filtered sea-water used as a buffer, repeatedly washed in the same buffer, dehydrated in the
- 189 crescent alcohol series and paraffin-embedded. For histological observations, 7 µm sections were
- 190 cut from the paraffin blocks by means of a Rotary One microtome and then processed according
- 191 to the routinely used methodology for setting up stable preparations. Sections were stained with
- toluidine blue and observed under a light microscope (Olympus BH2).
- 193 In order to compare the biological traits of the farmed sponges with those of other wild
- 194 populations (Sarà, 1961; Stone, 1970; Diaz, 1973; Cao et al. 2007; Gaino et al., 2010), an
- 195 accurate bibliographic research was perform

196 197

GAM analysis

- 198 With the perspective to better describe the growth performances of the species, a generalized
- additive model (GAM) analysis was used to describe the most effective variables influencing the increase in the volume of the sponge in the specific environmental conditions of the aquaculture
- facilities. The analysis was accomplished using the sponge total volume at any sampling time as
- the response variable. Different trials were done using either volume data from all the sampling
- stations or volume data from each sampling position (frames furthest from the wastewater inlet:
- A, B and C; the intermediate frames: D, F d F; and frames closest to the wastewater inlet: G, H
- and I). The best modelling performances were obtained from modelling data from frames G, H
- and I together.
- The GAM analysis was performed using the mgcv library (Wood, 2017) in the R environment
- 208 considering eight factors influencing the sponge growth pattern. The first variable that was
- 209 thought to be likely responsible for the growth of sponges was the amount of feed provided to
- 210 the fish reared in the aquaculture facilities. In particular, due to the different feeting regimes of
- 211 the fish reared in the facilities, three feed categories were considered: monthly amount of pellet,
- 212 fresh feed and total feed provided. To include in the model variable useful to describe the
- animals load of the facilities, other four variables were initially considered: number of active
- 214 tanks, total number of animals hosted in the facilities, the corresponding biomass and the
- 215 monthly water volumes provided. Also, month effect was initially tested in the model aiming to
- 216 describe a temporal trend in the model.
- 217 The variance inflation factor analysis (VIF) was used to assess the presence of multicollinearity.
- 218 Only covariates showing VIF values lower than 5 were retained in the analysis (Zuur et al.

2010), rejecting the others. Furthermore, a subsequent selection of the analysis was 220 accomplished using a backwards stepwise approach. The covariates firstly included in the model 221 were rejected following the following three criteria: (i) if the estimated degrees of freedom of the 222 variable was close to 1; (ii) if the interval of confidence was zero; and (iii) if the generalized 223 cross-validation (GCV) score (Gu & Wahba, 1991) decreased when the covariate was removed 224 from the model. Among the different family distributions tested in the final analysis the Poisson 225 family was chosen using the default logarithmic link function.

226227

Results

228 229

230

236

237

238239

240241

242

243

244

245

246

247248

249

Growth performance

Figure 3 reports the variations of sponge biomass within each sampling frame from March 2018 to Mi 2019. In general, the examined specimens showed an initial biomass decrement during the spring months (April-May), followed by a period of growth stasis during the summer (June-August); from August/September to January/March we assist to a general but non constant growth increase (Figure 3).

At the end of 13 months of observations, the sponges with the greatest growth, located in the frames G and I, showed an increase in their biomass of about a third compared to the initial volume. In particular, their volume increased from 1550 cm³ and 1150 cm³ to 2230 cm³ and 2040 cm³ respectively (Figures 4 A,B,C). At the beginning of the survey, their average thicknesses were 3.875 cm and 2.875 cm respectively; after one year the average thickness observed was 5.575 cm and 5.10 cm, respectively. Also, the sponge in the frame H showed a fair increase in biomass, its volume ranging from 840 cm³ to 1033 cm³ and its thickness from 2.10 cm to 3.275 cm. In the central part of the channel the frame D, positioned on the bare substrate of the dredging channel, was colonized by *H. perlevis* after two months, reaching the final volume of 256 cm³. The sponge in frame F showed a slow biomass decrease between March and September, its volume ranging from 580 cm³ to 311 cm³; the thickness ranged from 1.45 cm to 0.85 cm. In October the sponge died probably for the accumulation of dry food in the central part of the channel that caused severe phenomena of necrosis (Figures 5A,B). The sponge in frame E showed no significant variation in volume during the first 11 months of observation, but at the

same way of the sponge in frame F, showed some areas affected by necrosis until its total disappearance in the last month of observation.

Sponges in frames B and C showed no significative biomass and thickness variations, ranging their volume from 520 cm³ to 362 cm³ and from 950 cm³ to 900 cm³ respectively; thickness ranged from 1.3 cm to 1.475 cm and from 2.375 cm to 2.975 cm respectively. Finally, the sponse

ranged from 1.3 cm to 1.475 cm and from 2.375 cm to 2.975 cm respectively. Finally, the sponge in frame A had an initial biomass and thickness of 450 cm³ and 1.125 cm respectively, but died in August; it recolonized the frame in October and quickly grew until it reached the final volume of 600 cm³ and the thickness of 1.5 cm in March 2015.

258259

Sexual cycle

- 260 The monthly presence of the reproductive elements in *H. perlevis* is reported in Figure 6.
- Reproductive elements were discontinuously detected over the thirteen months of observations.
- 262 In particular: oocytes were found in July and January; spermatic cysts (January, March, May,

- and September) and embryos (January, April, July, and October) were both found in four
- 264 months. No larvae have been observed.
- 265 The sexual reproductive effort was different in female and male specimens: oocytes were
- 266 detected only in two fragments, with very low densities (2 elements for each examined section),
- 267 while the production of spermatic cyst involved up to 100% of the examined sponge fragments
- 268 in March and September, but with very low densities (7-10 spermatic cysts for each examined
- section). Embryos were rarely found (four sponge fragments, in total) with variable density
- values (6-10 embryos for each examined section). None of the fragments showed the coexistence
- of oocytes and sperm cysts according to the more widespread gonochoric condition of the
- **272** species (Gaino et al., 2010).
- 273 In Table 1 are reported the results of the previous studies about the sexual cycle of *H. perlevis*;
- 274 where available, literature information on life stages is also reported.
- 275 Gaino et al. (2010) reported that the reproductive timing in the population of *H. perlevi*, m the
- 276 Mar Piccolo of Taranto, lasts five months from April to August; the *sex ratio* was unbalanced,
- 277 with a female overabundance; two hermaphroditic specimens were also observed. A group of
- 278 specimens living close to the soft bottom and influenced by severe anoxic crises showed a
- significantly lower density of sexual elements than those belonging to the intertidal specimens,
- subjected to moderate water movement. This population shows four vital stages, corresponding
- 281 to the seasonal variations: dormancy in late autumn and winter, resuscitation in spring, bloom in
- summer, and decline in late summer and early autumn.
- 283 Stone (1970), studying an England population living in Langstone Harbour, reported that even if
- 284 the percentage of specimens containing embryos was higher in July and August, ranging from
- 285 45% to 100% of the sampled specimens, no trace of larvae settlement was found at any time.
- This population shows only two vital stages: bloom in five months (May-September) and decline in seven months (October-April).
- 288 The sexual cycle of *H. perlevis*, under the name of *H. caruncula*, was also investigated by Diaz
- 289 (1973) in the Thau pand. In this environment this species showed successive hermaphroditism in
- 290 which oogenesis preceded spermatogenesis: the rise in water temperature in spring triggers the
- onset of oogenesis, which lasts from March to May; spermatogenesis begins a month later and
- runs from April to June. Sarà (1961) reported for a population of *H. perlevis* of the Gulf of
- Table 1 and 1 and
- Napoli, under the name of *H. sanguinea*, that the presence of oocytes and spermatic cysts was
- 294 concentrated in June, and few sexual elements were also observed in July, August and
- 295 September; a certain degree of subsequent hermaphroditism was also observed. The sex ratio
- 296 was unbalanced, with a male overabundance.
- Finaly Cao et al. (2007) reported for a popultaion of *H. perlevis* living in the Lingshui Bay
- 298 (Dalian, China), the presence of the four vital stages, with a seasonality very similar to that
- observed in the population of *H. perlevis* from the Mar Piccolo of Taranto.

GAM analysis

300 301

308

- The VIF analysis howed the presence of collinearity (VIF > 5) among variables and some of them were hence rejected from the GAM analysis: month, total feed number of active tanks, and
- 304 number of animals in tanks.
- The best model describing the increase in volume of sponges uses the Poisson family distribution
- with the default logarithmic link function and fish biomass, amount of pellet and water volume
- as covariates, following the formula here reported:

proximal.frame.vol $\sim \alpha + f_i$ (biomass_i, pellet_i) + water.vol_i + ϵ_i

309 310 311

312

313

314

315316

317

318 319 The final model explains up to 87.9% of deviance and has an R² of 0.61. The estimated degrees of freedom of the estimated smoother and of the linear relationship used in the model were significantly different from zero value < 0.05).

The residuals distribution is quite normal around the zero, giving also a good dispersion of fitted values against response in the plots reported in Figure 7.

Thanks to the partial effect of explanatory variables reported in Figure 8, the model shows that the sponge volume increase is mainly determined by the reduction of fish biomass and consequent increase of pellet amount provided to fish, together with the increase of the water flow in the drainage conduit.

320 321

322 323

324

325

326 327

328 329

330

331

332 333

334

335 336

337

338 339

340

341 342

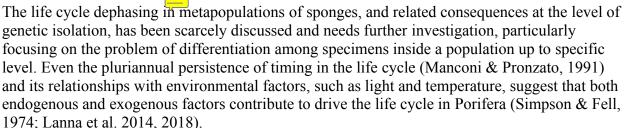
343

344 345

346

347

348


349

350

351 352

353 354

Discussion

Being an intertidal marine sponge, Hymeniacidon perlevis has to face extreme conditions, such as air exposure, excess rainwater, anoxic conditions and so on. Therefore it should possess excellent flexibility and adaptability to such variations in environmental conditions. Literature data report that wild European populations of this species exhibit dormancy in winter months; however, they are able to change their life phases according to the seasonal variations. Atlantic populations exhibit dormancy in winter, when the species greatly reduces its biomass (Stone, 1970; Cao et al., 2007), sometimes completely disappearing (Zhang et al., 2010); restarting in spring, blooming in summer and declining in autumn, according to the optimal temperature survival range encompassed between 10–20°C, corresponding to the intermediate seasons. South Mediterranean intertidal populations shift their active phase of rapid growth in spring, whereas they apparently disappeared from late summer to winter months (Gaino et al., 2010). In the present study we observed that, even if monthly variations in sponge biomass were detected, H. perlevis was not subjected to the dormancy phase which typically occurs in the wild populations. The reared specimens, constantly living in dark conditions, with a constant water temperature of 18 °C and subjected to a continuous nutritional supply, exhibited a vital physiological state during the whole year, avoiding the stages of decline and long dormancy. The reared specimens, however, showed marked growth variations during the study period. The applied model shows that the increase in sponge volume was mainly determined by the reduction of fish biomass and at the same time an increase of pellet amount available, together with the increase of the water flow in the drainage conduit. The synergic effects of these factors would lead to an increase in the volume of the sponges. Indeed, the decrease in fish biomass would lead to a greater amount of waste feed which in turn would produce a greater amount of organic matter and bacteria in the wastever. These factors with an increase in water flow, which would consist in a greater nutritional supply, could explain the growth of the sponge under constant environmental factors (e.g. temperature, salinity). Indeed, taking into account the effective microbiological filtering capability of *H. perlevis* (Longo et al., 2010), it is plausible to

PeerJ

hypothesize that food would be the determining factor in a constant environmental conditions to 355 356 explain the growth variation of this species. Zhang et al. (2010) reported that *H. perlevis* reared in an intensive mariculture water system, 357 358 showed growth, stationary, and decline stages during the test period. At the end of the experiment, the sponge biomass was les an that at the beginning. This trend has also been 359 observed in a previous laboratory study (Zhang et al., 2005). In an applique research 360 performed in Mar Piccolo of Taranto (Bioremediation in aquaculture activities through the use of 361 362 bentic invertebrates - FEP Project 39/OPI/010), the biomass of *H. perlevis* reared in vertical structures along the water column increased in the first months after implantation, to undergo to 363 364 a significant decrease due to the substrate competition with the other filter-leader organisms. Data collected in the present research street that the total sponge biomass of *H. perlevis* was 365 slightly increased compared to the beginning of the observations. On the whole, the sponge in 366 the frames located in the area closest to the water inlet showed the greatest growth performance 367 throughout the survey year. The sponges positioned in the central area showed evident signs of 368 necrosis until their total disappearance, especially in correspondence with the intake of large 369 quantities of solid food and a decrease in flow water rate, causing the food stagnation in the 370 371 central part of the drainage conduit, suffoca the sponges. The sponges located farthest from the water inlet area showed a generally low growth rate, probably due to the lower food 372 373 availability mostly captured by the sponges placed up—am. 374 The reproductive strategy is mainly determined by phylogeny (Riesgo et al., 2014), but there is a 375 high degree of plasticity correlated to the abiot onditions of the environment; among these the water temperature is the most studied environmental driver (Reiswig, 1973; Fell, 1976; 376 377 Maldonado & Young, 1996; Usher et al., 2004; Ettinger-Epstein et al., 2007; Riesgo et al., 2007; Whalan et al., 2007; Mercurio et al., 2007; 2013; Maldonado & Riesgo, 2008; Ereskovsky et al., 378 2013; Wahab et al., 2014; 2017; Lanna et al., 2014; 2018). In wild populations of *H. perlevis*, the 379 380 onset of gametogenesis seems to be triggered by the rapid seasonal changes in water temperature. At the Mar Piccolo of Taranto, Gaino et al. (2010) reported that the increase in 381 water temperature promoted female gamete differentiation, which preceded the presence of 382 sper—ysts by one month; the reproductive timing lasted five months, from April to August, and 383 384 the sex ratio was unbalanced, with a female overabundance. A similar trend was also observed in the Thau Pond, where gamete differentiation was triggered by the increase in water temperature 385 and the species showed successive hermaphroditism in which oogenesis preceded 386 387 spermatogenesis (Diaz, 1973). In the present study, the course of the sexual cycle was very different from that observed in wild 388 populations, being not possible to recognise in the farmed specimens of H. perlevis a true sexual 389 cycle. The occurrence of sexual elements was sporadic throughout almost all the year with very 390 391 low densities of gametes in the sponge tissue, with the exception of male elements that were subjected to short and fast peaks in frequency in two distinct months. No asexual elements were 392 393 observed, even though we cannot exclude the occurrence of asexual phenomena, since the sexual 394 or asexual origin of the newly settled sponges, repeatedly detected the the study period, was not ascertained. It seems quite plausible that for *H. perlevis* living in the drainage channel 395 396 characterized by constant values of some basic ecological parameters (water temperature, 397 salinity, pH, dark anditions), the sexual phase was an almost continuous process under the 398 control of endogenous factors. According to literature, in sponges, endogenous processes, using a biological clock, are involved in the control of an obligate set of life cycle phases, but the 399

404

405

406 407

408

409

410

411

412 413

414 415

416

417

418 419

420

421

422

423

424

425

426

427

428

429 430

431

432

433 434

435

436

437

438

439 440

441

442 443

444

445

seasonality and length of phases are subject to exogenous factors (Simpson & Fell, 1974; Hill & Hill, 2002; Manconi & Pronzato, 2015).

Finally, the results of the present research not only add further information about the plastic and adaptable life-cycle of *H. perlevis*, but provides precise and usefull indications on the best rearing conditions for this species, that, thanks to its ability to remove pathogenic bacteria and vibrions from the cultured media (Fu et al., 2006; Longo et al., 2010; 2016; Zhang et al., 2010), is potentially usable in integrated multitrophic farming systems for the waste treatment, in contrast to usual technologies with high negative impacts on the whole ecosystems (Done et al., 2015; Chen et al., 2020).

Conclusions

H. evis is a cosmopolitan species showing peculiar adaptive strategies to extreme environmental conditions (Juniper & Steel, 1969; Stone, 1970; Cao et al., 2007; Gaino et al., 2010; Longo et al., 2016; 2017); its life cycle was extensively studied in wild populations demonstrating the presence of four stages, linked to the seasonal variations: dormancy, resuscitation, bloom, and decline (Stone, 1970; Cao et al., 2007; Gaino et al., 2010; Zhang et al., 2010). Moreover, several studies demonstrate that H. perlevis is viviparous, gonochoric and/or hermaphroditic non-simultaneous in which ovocit preceded spermatogenesis (Sarà, 1961; Stone, 1970; Diaz, 1973; Gaino et al., 2010); the onset of sexual reproduction is triggered by seasonal water temperature variation, starting in late spring and ending in late summer (Stone, 1970; Gaino et al., 2010). Asexual reproduction by means of fragmentation is also important, especially under adverse environmental conditions (Stone, 1970; Gaino et al., 2010). By contrast, very low informations are available about the life cycle of this species reared in mariculture water system (Zhang et al., 2010) The results of this research demonstrate that the sponge present in the drainage conduit of a marine land-based fish farming plant, constantly living in dark conditions, with a constant water temperature of can and subjected to a continuous nutritional supply by means of waste water, exhibited a vital physiological state during the whole year, avoiding the stages of decline and long dormancy observed in wild populations. About the sexual reproduction, it has been not possible to recognise in the farmed specimens of H. perlevis a true sexual cycle, being the occurrence of sexual elements sporadic throughout almost all the year, with very low densities of gametes. It seems quite plausible that for H. perlevis living in the drainage channel characterized by constant values of some basic ecological parameters (water temperature, salinity, pH, dark conditions), the sexual phase was an almost continuous process under the control of endogenous factors, but the lack of the seasonal changes in water temperature does not allow the onset of a real sexual cycle, as happened instead in the wild populations in spring. No asexual elements were observed, even though we cannot exclude the occurrence of fragmentation in the origin of the newly settled sponges, repeatedly detected thought the study period. Moreover the sponge showed marked growth variations along the study period, with the largest biomass increase linked to the variations of some fish farming conditions (reduction of the fish reared biomass, increase of pellet amount available and increase of the waste water flow in the drainage conduit). Further research will be needed to imple t knowledge on the best rearing conditions for this species in mariculture facilities in relation to its peculiar life-cycle characteristics, being this sponge excellent candidate in integrated multitrophic farming systems for the waste water treatment thanks to its ability to remove pathogenic bacteria and vibrions from the cultured media (Fu et al., 2006; Longo et al., 2010; 2016; Zhang et al., 2010).

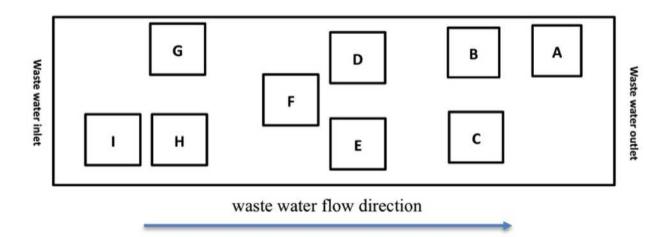
446	
447	Acknowledgements
448	Not applicable.
449	

451

References

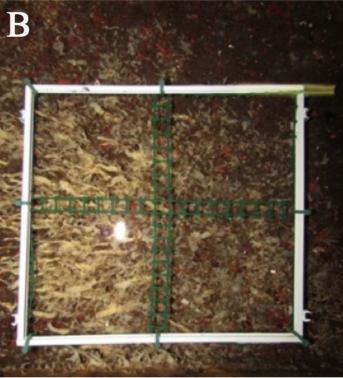
- Cabioch L. 1968. Contribution a la connaissance de la faune des spongiaires de la Manche occidentale: démosponges de la région de Roscoff. *Cahiers de Biologie Marine* 9(2): 211-246.
- Cao X, Fu , Yu X, Zhang W. 2007. Dynamics of spicule production in the marine sponge
 Hymeniacidon perlevis during in vitro cell culture and seasonal development in the field. *Cell* and Tissue Research 329: 595–608.
- Chen J, Sun R, Pan C, Sun Y, Mai B, Li QX. 2020. Antibiotics and food safety in aquaculture.
 Journal of Agricultural and Food Chemistry 68: 11908–11919.
- Corriero G. 1990. Distribuzione ed ecologia dei Poriferi in ambienti "confinati mediterranei".
 PhD Thesis, University of Genova, Italy.
- de Voogd NJ, Alvarez B, Boury-Esnault N, Carballo JL, Cárdenas P, Díaz M-C, Dohrmann M,
 Downey R, Hajdu E, Hooper JNA, Kelly M, Klautau M, Manconi R, Morrow CC, Pisera AB,
- 464 Ríos P, Rützler K, Schönberg C, Vacelet J, van Soest RWM. 2021. World Porifera
- Database. *Hymeniacidon perlevis* (Montagu, 1814). Accessed at:
- http://www.marinespecies.org/porifera/porifera.php?p=taxdetails&id=132663 on 2022-05-26
- Diaz JP. 1973. Cycle sexuel de deux demosponges de l'Étang de Thau: Suberites massa Nardo et
 Hymeniacidon caruncula Bowerbank. Bulletin de la Société zoologique de France 98(1): 145 56
- Done HY, Venkatesan AK, Halden RU. 2015. Does the recent growth of aquaculture create antibiotic resistance threats different from those associated with land animal production in agriculture? AAPS *Journal* 17: 513–524.
- Ereskovsky A, Dubois M, Ivanisevic J, Gazave E, Lapébie P, Tokina D, Perez T. 2013. Pluriannual study of the reproduction of two Mediterranean *Oscarella* species (Porifera,
- Homoscleromorpha): Cycle, sex-ratio, reproductive effort and phenology. *Marine Biology*160: 423-438.
- Erpenbeck D, Van Soest RWM. 2002. Halichondriidae Gray, 1867. In: Hooper JNA, Van Soest RWM, Eds. *Systema porifera*. New York: Kluwer Academic Plenum Publishers, 787-815.
- Ettinger-Epstein P, Whalan S, Battershill CN, de Nys R. 2007. Temperature cues gametogenesis and larval release in a tropical sponge. *Marine Biology* 153(2): 171-178.
- Fell PE. 1976. The reproduction of *Haliclona lossano* and its apparent relationship to water temperature. *Biological Bulletin* 150: 200–210.
- Fu W, Sun L, Zhang X, Zhang W. 2006. Potential of the marine sponge *Hymeniacidon perleve* as a bioremediator of pathogenic bacteria in integrated aquaculture ecosystems. *Biotechnology* & *Bioengineering* 93(6): 1112-1122.
- Gaino E, Cardone, F, Corriero G. 2010. Reproduction of the intertidal sponge *Hymeniacidon perlevis* (Montagu) along a bathymetric gradient. *Open Journal* of *Marine Science* 4: 47-56.
- 488 Gaino E, Manconi R, Pronzato R. 1995. Organizational plasticity as a successful conservative

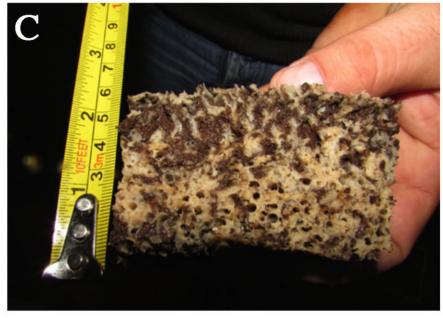
- tactics in sponges. *Animal Biology* 4: 31–43.
- Gu C, Wahba G. 1991. Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton Method. *SIAM Journal* on *Scientific Computing* 12: 383-398
- 492 https://doi.org/10.1137/0912021.
- Hill MS, Hill AL. 2002. Morphological plasticity in the tropical sponge *Anthosigmella varians*:
 Responses to predators and wave energy. *Biological Bulletin* 202: 86–95.
- Juniper AJA, Steele RD. 1969. The intertidal sponges of the Portsmouth area. *Journal of Natural History* 3: 153-63.
- Lanna E, Cajado B, Santos-da-Silva C, da Hora J, Porto U, Vasconcellos V. 2018. Is the Orton's rule still valid? Tropical sponge fecundity, rather than periodicity, is modulated by temperature and other proximal cues. *Hydrobiologia* 815: 187-205.
- Lanna E. Paranhos R, Paiva PC, Klatau M. 2014 nvironmental effects on the reproduction and fecundity of the introduced calcareous sponge *Paraleucilla magna* in Rio de Janeiro, Brazil.
 Marine Ecology 36: 1075–1087.
- Longo C, Altınsaçlı S, Yardımcı CH, Altınsaçlı S. 2017. Occurrence of *Hymeniacidon perlevis* (Montagu, 1814) (Porifera, Demospongiae) in Kamil Abduş Lagoon, İstanbul, Turkey.
 Journal of Entomology and Zoology Studies 5(5): 1620-1625.
- Longo C, Cardone F, Mercurio M, Nonnis Marzano C, Pierri C, Corriero C. 2016. Spatial and
 temporal distributions of the sponge fauna in southern Italian lagoon systems. *Mediterranean Marine Sciences* 17(1): 174-189.
- Longo C, Corriero G, Licciano M, Stabili L. 2010. Bacterial accumulation by the Demospongiae
 Hymeniacidon perlevis: A tool for the bioremediation of polluted seawater. *Marine Pollution* Bulletin 60: 1182–1187.
- Mahaut ML, Basuyaux O, Baudinière E, Chataignier C, Pain J, Caplat C. 2013. The porifera
 Hymeniacidon perlevis (Montagu, 1818) as a bioindicator for water quality monitoring.
 Environmental Science and Pollution Research 20: 2984-2992.
- Maldonado M, Riesgo A. 2008. Reproduction in the phylum Porifera: a synoptic overview.
 Treballs de la Societat Catalana de Biologia 59: 29-49.
- Maldonado M, Young CM. 1996. Effects of physical factors on larval behavior, settlement, and recruitment of four tropical demosponges. *Marine Ecology Progress Series* 138:169–180.
- Manconi R, Pronzato R. 2015. Chapter 8. Phylum Porifera. In: Thorp J. & Rogers D.C. (Eds.),
 Ecology and General Biology: Thorp and Covich's Freshwater Invertebrates. 4th Edition,
- 521 Vol. 1. Academic Press: London. 133–157. https://doi.org/10.1016/b978-0-12-385026-522 3.00008-5
- Manconi R, Pronzato R. 1991. Life cycle of *Spongilla lacustris* (Porifera, Spongillidae): a cue for environment-dependentph type. *Hydrobiologia* 220: 155-160.
- Mercurio M, Corriero G, Gherardi M, Baldacconi R, Gaino E. 2013. Sexual reproduction in
 Sarcotragus spinosulus from two different shallow environments. *Marine Ecology* 34(4): 394-408.
- Mercurio M, Corriero G, Gaino E. 2007. A 3-year investigation of sexual reproduction in *Geodia cydonium* (Jameson 1811) (Porifera, Demospongiae) from a semi-enclosed Mediterranean
 bay. *Marine Biology* 151: 1491-1500.
- Pansini M. 1987. Littoral Demosponges from the Banks of the Strait of Sicily and the Alboran
- Sea. In: Vacelet J, Boury-Esnault N, eds. *Taxonomy of Porifera*. NATO ASI Series (Series G:
 Ecological Sciences), Berlin, Heidelberg: Springer, 13.
- Picton BE, Goodwin CE. 2007. Sponge biodiversity of Rathlin Island, Northern Ireland. *Journal*



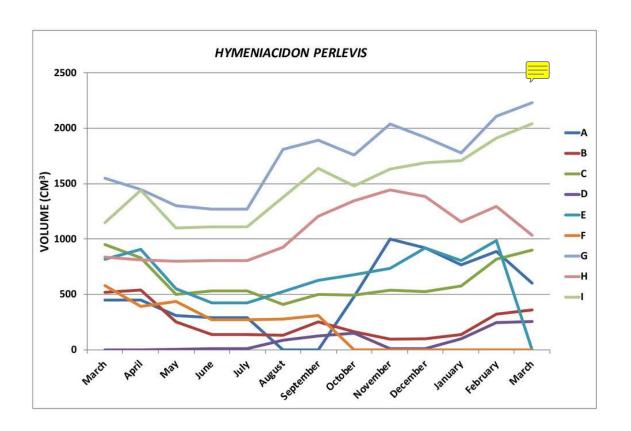
- of the Marine Biological Association UK 87: 1441–1458.
- Reiswig HM. 1973. Population dynamics of three Jamaican Demospongiae. *Bulletin of Marine Science* 23: 191–226.
- 538 Riesgo A, Maldonado M, Durfort M. 2007. Dynamics of gametogenesis, embryogenesis, and
- larval release in a Mediterranean homosclerophorid demosponge. *Marine and* Freshwater *Research* 58:398–417.
- Riesgo A, Novo M, Sharma PP, Peterson M, Maldonado M, Giribet G. 2014. Inferring the
- ancestral sexuality and reproductive condition in sponges (Porifera). *Zoologica Scripta* 43: 101–117 doi: 10.1111/zsc.12031.
- Sarà M. 1961. Ricerche sul gonocorismo ed ermafroditismo nei Poriferi. *Bollettino di Zoologia* 28: 47-59.
- Shaffer MR, Davy SK, Maldonado M, Bell JJ. 2020. Seasonally Driven Sexual and Asexual
 Reproduction in Temperate *Tethya* Species. *The Biological Bulletin* 238
 https://doi.org/10.1086/708624
- Simpson TL, Fell PE. 1974. Dormancy among the por a: gemmule formation and germination in fresh-water and marine sponges. *Transactions of the American Microscopical Society* 93(4): 544-577.
- Stone AR. 1970. Growth and reproduction of *Hymeniacidon perleve* (Montagu) (Porifera) in
 Langstone Harbour, Hamphire. *Journal of Zoology London* 161: 443-59.
- Sun L, Song Y, Qu Y, Yu X, Zhang W. 2007. Purification and in vitro cultivation of
 archaeocytes (stem cells) of the marine sponge *Hymeniacidon perleve* (Demospongiae). *Cell* and *Tissue Research* 328: 223–237.
- Turner T. 2020. The marine sponge *Hymeniacidon perlevis* is a globally-distributed exotic species. *Aquatic Invasior* pi: 10.3391/ai.2020.15.4.01.
- Usher KM, Sutton DC, Toze S, Kuo J, Fromont J. 2004. Sexual reproduction in *Chondrilla australiensis* (Porifera: Demospongiae). *Marine and Freshwater Research* 55: 123–134.
- Wahab MAA, de Nys R, Abdo DA, Webster NS, Whalan S. 2014. The influence of habitat on
 post-settlement processes, larval production and recruitment in a common coral reef sponge.
 Journal of *Experimental Marine Biology* and *Ecology* 461: 162-172.
- Wahab MAA, De Nys R., Holzman R., Schneider CL, Whalan S. Patterns of reproduction in two
 co-occurring Great Barrier Reef sponges. 2017. *Marine and Freshwater Research* 68(7):
 1233-1244.
- Whalan S, Battershill C, de Nys R. 2007. Sexual reproduction of the brooding sponge
 Rhopaloeides odorabile. Coral Reefs 26: 655–663.
- Witte U. 1996. Seasonal reproduction in deep sea sponges—triggered by vertical particle flux?
 Marine Biology 124: 571–581.
- Wood SN. 2017. Generalized Additive Models: An Introduction with R (2nd edition). Chapman and Hall/CRC.
- Xue L, Zhang X, Zhang W. 2009. Larval release and settlement of the marine sponge
 Hymeniacidon perlevis (Porifera, Demospongiae) under controlled laboratory conditions.
- 575 *Aquaculture* 290: 132–139.
- Xue S, Zhang HT, Wu PC, Zhang W, Yuan Q. 2004. Study on bioactivity of extracts from
 marine sponges in Chinese Sea. *Journal of Experimental Marine Biology* and *Ecology* 298:
 71-8.
- Zhang W, Xue LY, Fu WT, Zhang XY, Liu YL, Liu SF, Jin MF. 2005. Cultivation of sponge
 Hymeniacidon perlevis in bioreactors. *Journal of Fishery Sciences of China* 12(4): 430–436.

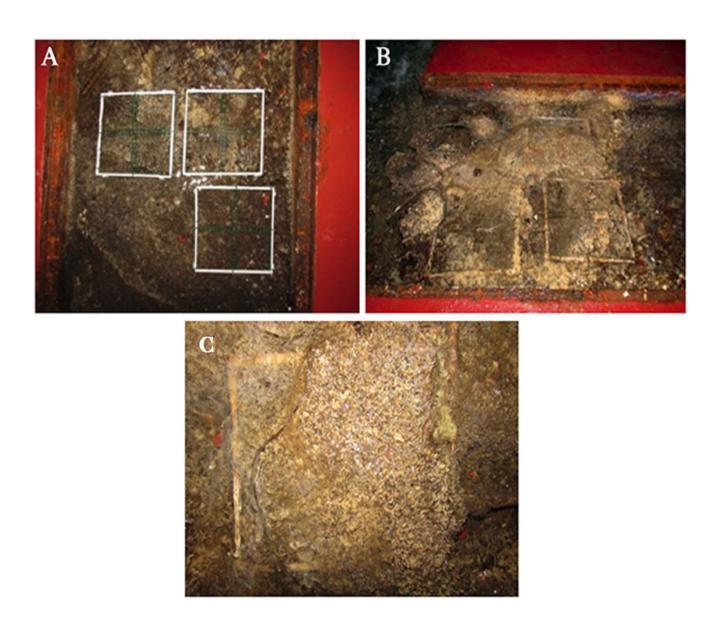
PeerJ


581	Zhang X, Zhang W, Xue L, Zhang B, Jin M, Fu W. 2010. Bioremediation of bacteria pollution
582	using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of
583	turbot Scophthalmus maximus. Biotechnology & Bioengineering 105(1): 59-68.
584	Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common
585	statistical problems. Methods in Ecology and Evolution 1: 3-14.
586	https://doi.org/10.1111/j.2041-210X.2009.00001.x

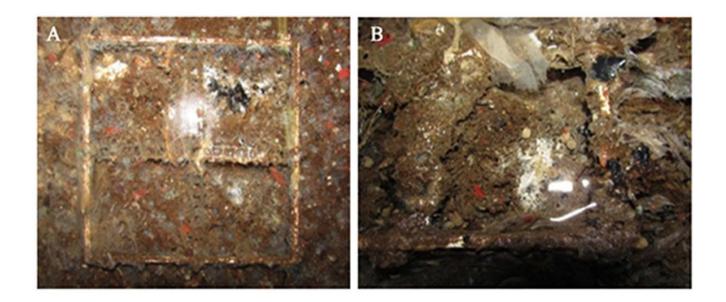

Plant Diagram of the drainage conduit and the sponge frames allocation; the arrow indicates the wastewater flow direction.

A: the sampling frames positioned along the drainage conduit; B: one sampling frames divided into 4 squares 10x10 cm each side; C: sample of *Hymeniacidon perlevis*.



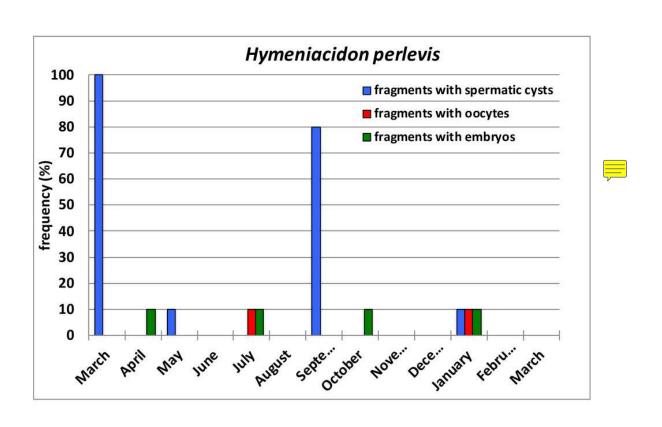


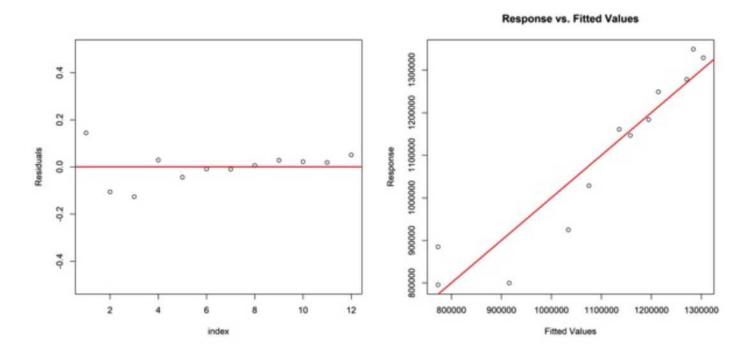
Growth performance (volume in cm³) of the biomass of *H. perlevis* within the sampling frames from March 2018 to March 2019.

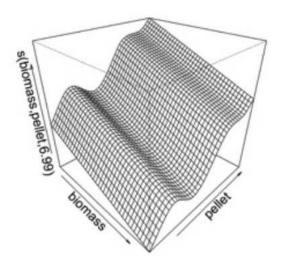


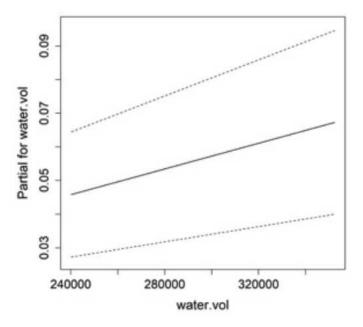
H. period (B); particular of the frame G at the end of the observation period (B); particular of the frame G at the end of the observation period (C).

Frame F, where *H. perlevis* shows evident areas in necrosis (A); dry food residues (pellet) next to the necrosis areas (B).




Monthly frequency of fragments of *H. perlevis* with oocytes, spermatic cysts and embryos from March 2018 to March 2019.


Diagnostic plots for the GAM analysis: on the left is reported the dispersion of residuals around zero; on the right is reported the response vs. fitted values plot.



Smoother and linear partial effect for the explanatory variables estimated from GAM model for sponge volume growth.

Left: surface described by the bidimensional spline of biomass and pellet (edf = 6.99); Right: partial linear effect of the water volume variable (water.vol).

Table 1(on next page)

Literature data: monthly frequency of *H. perlevis* with oocytes, spermatic cysts and embryos.

"X" is reported as qualitative observation when quantitative data are not available. Indication of vital stage: Do= Dormancy, R=Resuscitation, B=Bloom, De=Decline.

Reproduction	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Gen
Gaino et al. (2010): fragments with spermatic cysts				33%	33%	11%						
fragments with oocytes			22%	55%	55%	44%	33%					
fragments with embryos and larvae				33%	55%	44%	33%					
Diaz (1973): fragments with spermatic cysts				x	x							
fragments with oocytes			x	x								
fragments with embryos and larvae					x	x						
Sarà (1961): fragments with spermatic cysts				50%	85%		50%	25%				
fragments with oocytes					15%			50%				
fragments with embryos and larvae					7.5%							
Stone (1970): fragments with embryos						77%	82%	25%	3%			
Vital Stage												
Gaino et al.(2010)- Mar Piccolo of Taranto (Ionian Sea, Italy)	Do	R	R	В	В	В	De	De	Do	Do	Do	Do
Cao et al. (2007) - Lingshui Bay (Dalian, China)	Do	Do	R	R	В	В	В	De	De	De	Do	Do
Stone (1970) - Langstone Harbour (Hampschire-England)	De	De	De	В	В	В	В	В	De	De	De	De

2