
Submitted 29 August 2022
Accepted 12 December 2022
Published 24 January 2023

Corresponding authors
Chen Yue, yuechen08@outlook.com
Xue Zhang, 15856040194@163.com

Academic editor
Gwyn Gould

Additional Information and
Declarations can be found on
page 11

DOI 10.7717/peerj.14677

Copyright
2023 Ma et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Mesenchymal stem cell-derived extracellular
vesicles, osteoimmunology and orthopedic
diseases
Maoxiao Ma1,*, Guofeng Cui2,*, Youwen Liu1, Yanfeng Tang1, Xiaoshuai Lu1,
Chen Yue1 and Xue Zhang1

1Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan
Province, Luoyang, Henan, China

2Department of Orthopedics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan,
China

*These authors contributed equally to this work.

ABSTRACT
Mesenchymal stem cells (MSCs) play an important role in tissue healing and regenera-
tive medicine due to their self-renewal and multi-directional differentiation properties.
MSCs exert their therapeutic effects mainly via the paracrine pathway, which involves
the secretion of extracellular vesicles (EVs). EVs have a high drug loading capacity and
can transport various molecules, such as proteins, nucleic acids, and lipids, that can
modify the course of diverse diseases. Due to their ability to maintain the therapeutic
effects of their parent cells,MSC-derived EVs have emerged as a promising, safe cell-free
treatment approach for tissue regeneration. With advances in inflammation research
and emergence of the field of osteoimmunology, evidence has accumulated pointing
to the role of inflammatory and osteoimmunological processes in the occurrence and
progression of orthopedic diseases. Several studies have shown that MSC-derived EVs
participate in bone regeneration and the pathophysiology of orthopedic diseases by
regulating the inflammatory environment, enhancing angiogenesis, and promoting
the differentiation and proliferation of osteoblasts and osteoclasts. In this review, we
summarize recent advances in the application and functions of MSC-derived EVs as
potential therapies against orthopedic diseases, including osteoarthritis, intervertebral
disc degeneration, osteoporosis and osteonecrosis.

Subjects Bioengineering, Cell Biology, Immunology, Orthopedics
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INTRODUCTION
As early as the 1970s, some studies showed that certain immune cells secrete osteoclast-
activating factor, which opened new lines of investigation at the interface of bone biology
and immunology (Horton et al., 1972), ultimately leading to a field that became known as
‘‘osteoimmunology’’ at the beginning of this century (Takayanagi et al., 2000). Work in
this field has established that T cells, B cells and macrophage-related immune cells (Ono
& Takayanagi, 2017) interact with the bone marrow directly, as well as indirectly through
transcription factors, cytokines and their receptors (Fierro, Nolta & Adamopoulos, 2017).
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Mesenchymal stem cells (MSCs) have a strong capacity for self-renewal and multi-
directional differentiation, making them useful for tissue healing and regenerative
medicine (Ding, Shyu & Lin, 2011). MSCs can differentiate into mesodermal tissues,
such as osteoblasts, chondrocytes and adipocytes; and they can regulate immune responses
(Pittenger et al., 1999). These characteristics have made MSCs an important focus in
osteoimmune research. MSCs play a key role in bone formation. They differentiate into
osteoblasts by expressing transcription factors Runx2 and osterix (Tjempakasari, Suroto &
Santoso, 2021). They can also secrete alkaline phosphatase to synthesize extracellular matrix
such as type I collagen, osteopontin (OPN), osteocalcin (OCN), further mineralizing the
matrix to form bone tissue (Birmingham et al., 2012; Park et al., 2021). At the same time,
MSCs regulate innate immunity in various ways. They can inhibit the differentiation and
maturation of neutrophils and monocytes, or promote the polarization of macrophages
by secreting different cytokines, which can promote tissue healing (Chen et al., 2008; Cho
et al., 2014; Jiang et al., 2016; Zhang et al., 2010; Zhang et al., 2004). MSCs participate in
adaptive immune regulation by inhibiting T cell proliferation, regulating B cell proliferation
and differentiation, inhibiting B cell apoptosis, and inducing regulatory B cells (Bregs)
(Carreras-Planella et al., 2019; Tian et al., 2022).

MSCs perform their functions via paracrine mechanisms partially mediated by
extracellular vesicles (EVs) (Mendt, Rezvani & Shpall, 2019). EVs are lipid bilayer-enclosed
compartments secreted by various cell types (Ibrahim & Khan, 2022). EVs contain a wide
range of nucleic acids, proteins, and lipids, which can exert several functions through
diverse mechanisms and pathways (Ibrahim & Khan, 2022). Because of their key role in
pathophysiology, EVs have become a new strategy for diseases affecting the cardiovascular
system, kidney, liver, lung, and nervous system (Gatti et al., 2011; Lai et al., 2022; Zhao
et al., 2020a). MSC-derived EVs are also widely used in orthopedics. MSCs-derived EVs can
mediate the formation of bone or cartilage by regulating the differentiation of osteoblasts,
osteoclasts and chondrocytes, as well as by regulating osteoimmune processes, thereby
influencing the course of orthopedic diseases (Luo et al., 2021;Meng & Qiu, 2020; Tsiapalis
& O’Driscoll, 2020;Wei et al., 2019; Zhao et al., 2020a; Zhao et al., 2020b).

In recent years, EVs has been found to play a variety of roles in the process of disease,
but it has not been described in the field of osteoimmunity in orthopedic diseases. In
light of recent advances in osteoimmunity, this review surveys recent developments
in our understanding of MSC-derived EVs in orthopedic diseases. First, we focus on the
immunomodulatory effects ofMSCs, thenwe discuss the types and biological characteristics
of EVs to clarify their therapeutic advantages. Finally, we describe progress in elucidating
how MSC-derived EVs mediate bone immunity in orthopedic diseases. Understanding the
various characteristics and functions of MSC-derived EVs provides new insights into the
pathophysiology of orthopedic diseases, whichmay help developmore effective treatments.

Osteoimmunology: a combination of bone biology and immunology
Highlighting the interaction between skeletal system and immune system, osteoim-
munology aims to explore the relationship between bone biology and immunology.
The detection of activated T lymphocytes to express receptor activator for nuclear
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factor κB ligand (RANKL) is the most direct evidence of the interaction between the
skeletal system and the immune system (Yao et al., 2021). In bone biology, activation
of T cells during inflammatory conditions leads to enhanced production of RANKL
and tumor necrosis factor-α (TNF-α), thereby promoting osteoclastogenesis and
subsequent bone loss in various inflammatory and autoimmune conditions (Colucci
et al., 2004; Dar et al., 2018). While immune cells such as macrophages and neutrophils
are important for resolving inflammation and promoting repair, they can also contribute
to orthopedic diseases (Castanheira & Kubes, 2019; Jamalpoor et al., 2018; Saxena, Routh
& Mukhopadhaya, 2021). With an increasing amount of evidence linking the impact of
abnormal immunoregulation to bone biology, the dysfunction of the immune system
has been considered as an indispensable role to the occurrence and progression of
orthopedic diseases (Goodman & Maruyama, 2020; Lee et al., 2019; Zhou et al., 2022).
Our understanding of this dysfunction has advanced rapidly with the combination of bone
biology and immunology—long considered separately from each other—into the field of
osteoimmunology (Ma et al., 2022). This field has developed into a research hotspot as well
as an important research direction for orthopedic diseases research.

Immunoregulation mediated by MSCs
MSCs can regulate innate immunity in differentways.Upon infectionwithmicroorganisms,
MSCs cause the accumulation of neutrophils in the body by secretingmacrophagemigration
inhibitor factor (MIF), thus inducing the body to eliminate the foreign invaders (Brandau
et al., 2010). At the same time, in order to minimize tissue damage, MSCs prevent excessive
neutrophil activity by producing superoxide dismutase 3 (SOD3), reducing the level of
superoxide anion, and inhibiting the formation of neutrophil extracellular trap (NET) and
the release of tissue damage protease (Jiang et al., 2016).MSCs also secrete chemokines such
as Chemokine Ligand 2 (CCL2), CCL3 and CCL12 to promote the migration of monocyte
macrophages to injured tissue, thus promoting tissue healing (Chen et al., 2008). MSCs
downregulate CD40, CD80, CD86 and HLA-DR, inhibiting monocyte differentiation and
maturation, restricting cytokine production by dendritic cells and activation of T cells
(Zhang et al., 2004). In addition, MSCs can promote the polarization of macrophages to
the anti-inflammatory phenotype (M2) (Zhang et al., 2010). For example, co-culturing
macrophages with MSCs polarized the macrophages to M2 by upregulating arginase 1 and
CD206 (Cho et al., 2014; Zhang et al., 2010). This increased the secretion of interleukin-4
(IL-4) and IL-10 while reducing the production of cell chemoattractant protein 1(MCP-1),
TNF-α, IL-1β and inducible nitric oxide synthase (iNOS).

MSCs also regulate the adaptive immune system. They effectively inhibit the proliferation
of T cells, such as in animal models of graft-versus-host disease (Bartholomew et al., 2002).
The inhibitory effect of MSCs on T cell proliferation is thought to be caused by the release
of transforming growth factor-β (TGF- β) and hepatocyte growth factor (HGF), as well as
the decrease of cyclin D2 and the increase of p27kip1 expression in T cells, resulting in the
inhibition of T cell proliferation (Nicola et al., 2002;Glennie et al., 2005).MSCs also regulate
B cell proliferation and differentiation and inhibit B cell apoptosis, thereby dampening
adaptive immune responses. MSCs induce and regulate Bregs, in particular by promoting
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the secretion of IL-10, ultimately promoting B cell proliferation and differentiation and
suppressing immune responses (Corcione et al., 2006).

Types and biological characteristics of EVs
EVs mediate communication between cells and promote osteogenesis, bone regeneration
and mineralization, as well as formation of vascular networks (Zhao et al., 2020a). MSCs-
derived EVs present several advantages over the corresponding cell-based therapies: lower
cytotoxicity, immunogenicity low enough to allow allogeneic transplantation, lower risk of
iatrogenic tumor formation, more convenient manufacture and storage, greater stability,
and longer-lasting biological activity (Barile et al., 2014; Keshtkar, Azarpira & Ghahremani,
2018; Mendt, Rezvani & Shpall, 2019; Tsiapalis & O’Driscoll, 2020). Below we present the
different types of EVs and describe their biological characteristics and activities.

Exosomes
Exosomes are cell-derived vesicles that are present in many and perhaps all biological
fluids. Their diameter is between 40 and 200 nm, and their density ranges between 1.13
to 1.19 g/ml (Hessvik & Llorente, 2018; Pol et al., 2012). They form through endocytosis of
the plasma membrane, then the inner membrane sprouts inward to form multivesicular
bodies. These bodies later fuse with the plasma membrane to secrete internal vesicles
(Hessvik & Llorente, 2018; Pol et al., 2012). As a result, exosomes are vesicular, membrane-
rich cup-shaped structures with a complex composition of protein, nucleic acids, lipids
and other metabolites (Hessvik & Llorente, 2018; Mendt, Rezvani & Shpall, 2019; Pol et al.,
2012). Exosomes serve as transport vehicles, playing an important role in intercellular
communication (Pol et al., 2012;Zhao et al., 2020a). Exosomes contain proteins involved in
membrane transport and fusion, such as Rab, annexins, and flotillin, as well as components
of the endosomal sorting complex required for transport, such as Alix, tumor susceptibility
gene 101, heat shock protein 70, integrins, and tetraspanin molecules CD9, CD63, CD81,
CD82 and HSP70 (Kordelas et al., 2014; Pol et al., 2012).

Microvesicles
Microvesicles are present in most biological fluids, their diameter ranges between 200
and 2,000 nm, and their density ranges between 1.16 and 1.19 g/ml (Keshtkar, Azarpira &
Ghahremani, 2018; Pol et al., 2012; Vig & Fernandes, 2022; Zhao et al., 2020a). In contrast
to exosomes, microvesicles form directly through protrusion and budding of the cell
membrane, and they can alter the behavior of target cells by transporting intracellular
proteins (Pol et al., 2012). The size ranges ofmicrovesicle and exosomesmay overlap, which
is important to remember when EVs are isolated from body fluids. Microvesicles contain
CD40, matrix metalloproteases (MMP), caspases, selectin, integrins and cytoskeletal
protein, and their cell membrane is highly rich in cholesterol, phosphatidylserine and
diacylglycerol (Lai, Lichty & Bowdish, 2015; Ratajczak & Ratajczak, 2020).

Apoptotic bodies
When cells undergo apoptosis, they release caspase-3 and rho-related kinase I, then form
vesicles called apoptotic bodies or apoptotic vesicles (Ela et al., 2013; Todorova et al., 2017).
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These bodies produce anti-inflammatory or tolerogenic reactions when absorbed by
adjacent cells (Pol et al., 2012). Apoptotic bodies are membrane vesicles that form through
lysis or autophagy after apoptosis, they have a diameter of 500–5,000 nm, and their density
ranges between 1.16 and 1.28 g/ml (Pol et al., 2012). Specific surface markers of apoptotic
bodies include DNA, tumor antigens, phosphatidylserine and histones (Bergsmedh et al.,
2001). Inappropriate clearance of apoptotic vesicles is considered to be the primary cause
of systemic autoimmune disease (Pol et al., 2012).

Immunomodulatory functions of MSCs-derived EVs in orthopedic
diseases
Their immunosuppressive and anti-inflammatory properties make MSCs promising for
many therapeutic applications (Griffin et al., 2013). Acting as a bridge between MSCs
and recipient cells, MSCs-derived EVs carry a variety of nucleic acid, protein and other
bio-active molecules to play anti-inflammatory and immunomodulatory roles in a variety
of tissues and organs (Phinney & Pittenger, 2017). This type of EVs can (i) accelerate bone
formation and inhibit bone resorption by regulating the differentiation of osteoblasts and
osteoclasts through the promotion of early osteogenic markers expression, such as alkaline
phosphatase and bone morphogenetic protein 2; (ii) enhance the regeneration of damaged
cartilage by inducing proliferation, migration, and matrix synthesis of chondrocytes; (iii)
enhance chondroprotection through reducing pro-inflammatory mediators production
and increasing anti-inflammatory cytokine production; and (iv) inhibit inflammatory
responses through promoting the polarization of macrophage towards to the M2
phenotype, decrease the secretion of the pro-inflammatory cytokines of TNF-α, IL-1,
and IL-6, and augment the production of the anti-inflammatory cytokine of IL-10, thereby
influencing the development of many orthopedic diseases (Luo et al., 2021; Meng & Qiu,
2020; Tsiapalis & O’Driscoll, 2020;Wei et al., 2019; Zhao et al., 2020a; Zhao et al., 2020b).

Osteoarthritis
Osteoarthritis is an age-related degenerative joint disorder that affects ∼7% of the
global population (Hunter, March & Chew, 2020), and it is characterized by articular
cartilage destruction, synovial inflammation, sclerosis of subchondral bone, and loss
of extracellular matrix (ECM) (Sacitharan, 2019; Taghiyar et al., 2021). The dysfunction
of osteoimmunology has been confirmed to be closely related to the occurrence and
and progression of osteoarthritis. In the early stage of osteoarthritis, macrophages and
neutrophils infiltrate in the synovial and produce inflammatory factors such as IL-1
and TNF-α (Woodell-May & Sommerfeld, 2020). These inflammatory cytokines stimulate
chondrocytes to producematrix degrading enzymes, which can increasematrix degradation
and accelerate the progress of osteoarthritis (Griffin & Scanzello, 2019; Woodell-May
& Sommerfeld, 2020). In recent years, MSC-derived EVs have emerged as a promising
approach to treating osteoarthritis for its immunoregulatory functions (Sokolove & Lepus,
2013). Several studies have shown that EVs can alleviate the development of osteoarthritis
by inhibiting inflammation, protecting cartilage and regulating extracellular matrix (ECM)
synthesis and catabolism (Kim et al., 2021; Mianehsaz et al., 2019). For instance, exosomes
derived from bone marrow mesenchymal stem cells (BMSCs) have been found to alleviate
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cartilage damage, reduce osteophyte formation and synovial macrophage infiltration,
inhibit the production of activated pro-inflammatory phenotype (M1) macrophages, and
promote the generation of activated M2 macrophages (Zhang et al., 2020a). Another study
found that EVs derived from human umbilical cord mesenchymal stem cells (hUCMSCs),
by carrying proteins and miRNAs, produced anti-inflammatory and immunomodulatory
effects, thus interfering with the occurrence and development of osteoarthritis (Li et al.,
2022). EVs can also act through PI3K-Akt signaling to promote polarization of M2
macrophage and reduce levels of pro-inflammatory factors TNF-α, IL-1 and IL-6, giving
them strong immunomodulatory potential (Li et al., 2022). In another study, hUCMSC-
derived EVs polarized macrophages to the M2 type, based on analysis of the polarization
markers CD14, IL-1β, IL-10 and CD206 (Tang et al., 2021). These EVs through PI3K-Akt
signaling to stimulate chondrocyte activity andmatrix remodeling within the inflammatory
environment. MSCs-derived EVs have been shown to contain miRNAs that have been
associated with development and progression of osteoarthritis, and some miRNAs from
EVs derived from adipose mesenchymal stem cells (ASCs) have been shown to exert anti-
inflammatory and protective effects on macrophages, T cells and inflamed chondrocytes
in vitro (Ragni et al., 2021). For example, miR-155-5p is crucial for regulatory T cell
(Treg) proliferation because it induces the IL-2 receptor; while miR-24-3p overexpression
significantly inhibits macrophage activation and M1 polarization (Ragni et al., 2021).

Protecting cartilage is one of the important therapeutic aims in osteoarthritis. BMSCs-
derived EVs can promote the proliferation and migration of chondrocytes, while reducing
apoptosis by downregulating IL-1β-activated pro-inflammatory signal involving Erk1/2,
PI3K-Akt, TAK1 and NF- κB. This alleviates osteoarthritic cartilage injury in vitro (Li
et al., 2020). In addition, ASCs-derived EVs can promote the proliferation and migration
of chondrocytes and slow the development of osteoarthritis by inhibiting IL-1β and
inflammatory responses (Woo et al., 2020).

Taken together, the available evidence indicates that MSC-derived EVs can alleviate
the symptoms of osteoarthritis by preventing the apoptosis of chondrocytes while
promoting their proliferation and migration, by regulating immune cells and by inhibiting
inflammatory responses. Nevertheless, their complex composition and multiple functions
need to be further explored.

Osteoporosis
Osteoporosis is a chronic metabolic bone disease that arises through an imbalance between
osteogenesis and osteoclastogenesis (Armas & Recker, 2012). With the development of
society and longer average life expectancy, this disease has become one of the most
widespread and complex skeletal disorders worldwide, especially among postmenopausal
women and the elderly (Clynes et al., 2020), yet effective treatments are lacking
(Dimitriou et al., 2011; Ensrud & Crandall, 2019). An increasing number of evidence
has attributed the pathogenesis of osteoporosis to the dysfunction of immunoregulation
(Livshits & Kalinkovich, 2022). Immune cells such as over-activated M1 macrophages,
neutrophils, and mast cells release a great quantity of reactive oxygen species (ROS), pro-
inflammatory cytokines or chemokines (Dou et al., 2018; Livshits & Kalinkovich, 2022).
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These inflammatory mediators cause bone loss and subsequent osteoporosis by directly
or indirectly inhibiting osteogenic differentiation of BMSCs and inducing apoptosis of
osteocytes, osteoblasts and BMSCs.

EVs secreted by MSCs exert important immunoregulatory effects on bone repair in
osteoporosis. For example, ASCs-derived EVs can significantly inhibit the osteoclast
differentiation of macrophages, promoting the migration of BMSCs (Lee et al., 2021).
Those EVs inhibited osteoclast differentiation through osteoprotegerin (OPG), mir-21-5p
and let-7b-5p, and they downregulated genes related to bone resorption. In addition,
the lncRNA NRON inside BMSCs-derived EVs that have been induced by bioactive glass
nanoparticles can activate transcription factors of NFAT family, inhibiting the nuclear
translocation of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and thereby the
osteoclast differentiation of macrophages (Yang et al., 2022). Another study showed that
hUCMSCs-derived exosomes can effectively inhibit the differentiation of macrophages into
osteoclasts, enhance bone formation, reduce bone marrow fat accumulation and reduce
bone resorption in osteoporoticmice, ultimately reducing bone loss (Hu et al., 2020). ASCs-
derived exosomes effectively inhibited osteocyte apoptosis induced by hypoxia and serum
deprivation, and they exerted these effects by upregulating Bcl-2/Bax and by suppressing the
production of reactive oxygen species, production of cytochrome C, activation of caspases-
3/-9 and downregulation of the expression of RANKL (Ren et al., 2019). Tissue engineering
has developed rapidly, and MSCs-derived exosomes have shown strong potential in this
regard (Shahrezaee et al., 2018; Wang et al., 2020). In one study, MSCs-derived exosomes
were modified with polycaprolactone (PCL) and S-nitrosoglutathione (GSNO), and the
resulting vesicles significantly reduced the inflammation stimulated by inflammatory
macrophages and inflammatory cytokines (IL-6, TNF-α, iNOS, IL-1β). The modification
also further accelerated osteogenic differentiation of MSCs (Wang et al., 2020).

The inflammatory response plays a crucial role in bone formation, during which the
immune system responds to a variety of cytokines to recruit and activate a variety of cell
types, such as MSCs (Kovach et al., 2015). MSCs-derived EVs play an important role in
regulating inflammation, so whetherMSCs-derived EVs can interfere with the pathogenesis
of osteoporosis by regulating inflammation is an important direction for future research.

These results indicate that MSCs-derived EVs may serve as a promising agent for
osteoporosis treatment by regulating the differentiation of osteoblasts and osteoclasts and
promoting bone regeneration. As the exploitation of EVs expands, studying the various
reactions that they mediate will be a direction for future study.

Intervertebral disc degeneration
Intervertebral disc degeneration (IDD) is a pathological condition associated with
degeneration of the intervertebral disc, which comprises an inner nucleus pulposus
surrounded by an annulus fibrosus (Dowdell et al., 2017). IDD progression is characterized
mainly by increased cell death, ECM destruction (Freemont et al., 2002), and accumulation
of inflammatory factors (Ding, Shao & Xiong, 2013). AlthoughMSCs themselves were once
considered a potential treatment against IDD due to their strong ability to differentiate and
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modulate immune responses, recent research suggests that MSCs-derived EVs and their
miRNAs may exert even stronger therapeutic effects (Lu et al., 2021).

Inflammatory reactions are one of the important pathological drivers of IDD. During
development of the disease, IL-1β in the nucleus pulposus significantly increases, followed
by an increase in the levels of inflammatory mediators such as COX-2, NO, and NOS (Zhu
et al., 2020). MSCs-derived exosomes can interfere with the occurrence and development
of IDD by inhibiting apoptosis of nucleus pulposus cells (NPCs); reversing IL-1β-induced
secretion of the inflammatory cytokines TNF-α, IL-6, IL-8, IL-12 and IL-18; and activating
mitogen-activated protein kinase (MAPK) (Zhu et al., 2020). In a rat model of IDD,
EVs secreted by metformin-treated MSCs ameliorated intervertebral disc cell senescence
(Cui & Zhang, 2021), and the miR-129-5p within the EVs inhibited apoptosis of nucleus
pulposus cells, ECM degradation, and polarization of M1 macrophages (Cui & Zhang,
2021). In addition, BMSC-derived exosomes inhibited activation of the NACHT, LRR,
and PYD domain-containing protein 3 (NLRP3) inflammasome in NPCs, producing
anti-inflammatory effects (Xia et al., 2019). BMSC-derived exosomes can downregulate
levels of ROS in NPCs and thereby attenuate their apoptosis, while also downregulating
ECM-degrading proteases to protect the ECM; both effects can protect against IDD
(Xia et al., 2019). Overproduction of reactive oxygen species is common in degenerative
IDD: the oxidative stress enhances matrix degradation and inflammation and reduces
the number of viable, functional cells in the IDD microenvironment (Hu et al., 2022).
MSC-derived exosomes carrying miR-31-5p act via the ATF6-related ER-stress pathway to
inhibit apoptosis and calcification in endplate chondrocytes (EPCs) under oxidative stress
(Xie et al., 2020).

These studies have shown that MSC-derived EVs and their miRNAs can significantly
mitigate IDD through regulation of inflammatory responses. Additional research should
focus on how MSC-derived EVs can modulate inflammatory responses by immune cells as
a strategy to delay or even reverse IDD.

Osteonecrosis
Osteonecrosis, also known as ischemic necrosis, is a multifactorial orthopedic disease
that is progressive, devastating and refractory (Hernigou et al., 2016). It is characterized
by a stereotypical pattern of cell death and a complex repair process involving bone
resorption and formation. The earliest pathological feature of osteonecrosis is the necrosis
of hematopoietic cells and adipocytes, followed by interstitial bone marrow edema (Shah
et al., 2015). Vascular injury, inflammation, mechanical stress and increased intraosseous
pressure are considered to be important causes of osteonecrosis (Elgaz, Bonig & Bader,
2020; Loi et al., 2016). With the rapid development of cell-based therapies, MSCs have been
extensively studied as a treatment for osteonecrosis.

More recent work suggests that EVs derived from MSCs can treat the disease. For
example, MSC-derived EVs prevented zoledronic acid-induced senescence in stem cells,
osteoblasts, and fibroblasts, while reducing levels of the inflammatory cytokines IL-6
and IL-8 as well as matrix MMP 1 and 3 (Watanabe et al., 2020). Furthermore, MSC-
derived EVs can prevent senescence of cells involved in wound healing and the spread
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of chronic inflammation around senescent cells, thus promoting angiogenesis and bone
regeneration and preventing bisphosphonate-related osteonecrosis of the jaw (Watanabe
et al., 2020). Exosomes secreted by BMSCs show potential against osteonecrosis of the
femoral head (ONFH) by affecting mainly ONFH osteogenesis (Fang, Li & Chen, 2019),
whereas exosomes derived from human-induced pluripotent stem cell-derived MSCs can
protect against ONFH by promoting local angiogenesis and preventing bone loss (Liu
et al., 2017). BMSC-derived EVs carrying miR-148a-3p were found to improve ONFH
by suppressing Smad ubiquitination regulatory factor-1, which in turn increased BMSC
osteogenic proliferation and differentiation (Huang et al., 2020). Similarly, exosomal miR-
135b alleviated ONFH by reducing programmed cell death protein 4(PDCD4)-induced
apoptosis of osteoblasts (Zhang et al., 2020b).

Taken together, the available evidence suggests that MSC-derived EVs loaded with
miRNAs can alleviate osteonecrosis progression by promoting the proliferation and
differentiation of osteoblasts, while enhancing osteogenesis and angiogenesis and reducing
inflammatory responses.

Table 1 and Fig. 1 shows and depicts the immunomodulatory functions of different
types of MSCs-derived EVs in aforementioned orthopedic diseases.

CONCLUSIONS AND EXPECTATIONS
MSC-derived EVs play an important role in bone regeneration, and multiple studies
have shown that they can alleviate the progression of orthopedic diseases by protecting
chondrocytes from apoptosis; regulating the proliferation, migration, and differentiation
of chondrocytes, osteoblasts, and osteoclasts; inhibiting the inflammatory response;
regulating osteoimmunity; and promoting angiogenesis. In addition to the succession
of biological function of MSCs, MSCs-derived EVs has prominent superiority of lower
cytotoxicity and immunogenicity, more convenientmanufacturing and storage, and greater
stability and bio-activity. These results provide new insights into the pathophysiology of
orthopedic diseases, as well as guide the discovery of promising treatments. However,
the pathophysiological mechanism of interactions among MSCs-derived EVs, immune
system, and skeletal system involving orthopedic diseases still remains inadequate. The
lack of clinical evidence of MSCs-derived EVs in the treatment of orthopedic diseases also
creates a gap between theory and clinical practice. Future studies should continue with
the exploration of the potential and mechanisms of MSCs-derived EVs against orthopedic
diseases. At the same time, relevant clinical studies are expected to be furthered with a view
to facilitating the transformation from theoretical research to clinical application as soon
as possible.
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Table 1 Immunomodulatory functions of MSCs-derived EVs in orthopedic diseases.

Diseases Sources Cargos Immunomodulatory
functions

Results

BMSCs Not mentioned Anti-inflammation;
macrophages phenotype
regulation

Reduce osteophyte formation
and synovial macrophage infil-
tration; promote chondrocytes
proliferation and migration

hUCMSCs miR-100-5p Anti-inflammation;
macrophages phenotype
regulation

Stimulate chondrocytes activity
and matrix remodeling

Osteoarthritis
ASCs miR-155-5p; miR-24-

3p
Anti-inflammation;
macrophages phenotype
regulation; Treg proliferation
regulation

Promote chondrocytes prolifera-
tion and migration

BMSCs lncRNA NRON;
bioactive glass
nanoparticles

Inhibit osteoclast differentiation
of macrophages

Prevent bone loss

hUCMSCs CD9; CD63; CD81;
TSG101

Inhibit osteoclast differentiation
of macrophages

Reduce bone marrow fat accu-
mulation; prevent bone loss

ASCs miR-21-5p; let-7b-5p Anti-inflammation; inhibit ox-
idative stress; inhibit osteoclast
differentiation of macrophages

Inhibit apoptosis of osteocyte

Osteoporosis

MSCs PCL; GSNO Anti-inflammation Promote osteogenic differentia-
tion

IDD MSCs miR-142-3p; miR-
129-5p miR-31-5p

Anti-inflammation;
macrophages phenotype
regulation; inhibit oxidative
stress

Inhibit apoptosis of NPCs and
EPCs; inhibit ECM degradation

BMSCs miR-148a-3p; SOX9
protein

Anti-inflammation Promote osteogenic differentia-
tion

Osteonecrosis
MSCs miR-135b Anti-inflammation Reduce apoptosis of osteoblasts;

prevent bone loss; induce angio-
genesis and bone regeneration

Notes.
IDD, Intervertebral disc degeneration; BMSCs, Bone marrow mesenchymal stem cells; hUCMSCs, human umbilical cord mesenchymal stem cells; ASCs, adipose mesenchy-
mal stem cells; PCL, polycaprolactone; GSNO, S-nitrosoglutathione; NPCs, nucleus pulposus cells; EPCs, endplate chondrocytes; ECM, extracellular matrix.
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Figure 1 Biological properties of MSCs-derived EVs in orthopedic diseases. Abbreviations: OA, os-
teoarthritis; OP, osteoporosis; IDD, intervertebral disc degeneration; M1, pro-inflammatory phenotype
macrophages; M2, anti-inflammatory phenotype macrophages; Treg , regulatory T cell; RANKL, recep-
tor activator for nuclear factor κ B ligand; OPG, osteoprotegerin; NPCs, nucleus pulposus cells; EPCs,
endplate chondrocytes; ECM, extracellular matrix; MMP1/3, matrix metalloproteases 1 and 3; iNOS, in-
ducible nitric oxide synthase; PCL, polycaprolactone; GSNO, S-nitrosoglutathione; TNF-α, tumor necro-
sis factor-α.

Full-size DOI: 10.7717/peerj.14677/fig-1
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