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One of the most common diseases among women of reproductive age is bacterial
vaginosis (BV). However, the etiology of BV is still unknown. In this paper, we use a
network to model a temporal sample of the vaginal microbiome and study the relationship
between the edges of the network and BV. We use the machine learning algorithms
decision tree and ReliefF to select the network feature edges that are related to BV and
then validate those features using logistic regression and support vector machine. We
discover that a few features are required to achieve high BV classification accuracy;
logistic regression and support vector machine performs nearly identically under the same
feature edges; decision tree feature edges outperform ReliefF feature edges in
classification performance, and the feature edges selected by those two algorithms are
very different. The feature edges may serve as indicators for personalized diagnosis of BV
and may aid in the clarification of a more mechanistic interpretation of its etiology.
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9 Abstract

10 One of the most common diseases among women of reproductive age is bacterial vaginosis 
11 (BV). However, the etiology of BV is still unknown. In this paper, we use a network to model a 
12 temporal sample of the vaginal microbiome and study the relationship between the edges of the 
13 network and BV. We use the machine learning algorithms decision tree and ReliefF to select the 
14 network feature edges that are related to BV and then validate those features using logistic 
15 regression and support vector machine. We discover that a few features are required to achieve 
16 high BV classification accuracy; logistic regression and support vector machine performs nearly 
17 identically under the same feature edges; decision tree feature edges outperform ReliefF feature 
18 edges in classification performance, and the feature edges selected by those two algorithms are 
19 very different. The feature edges may serve as indicators for personalized diagnosis of BV and 
20 may aid in the clarification of a more mechanistic interpretation of its etiology.
21 Keywords: Bacterial vaginosis; machine learning; network; feature edges;
22

23 Introduction

24 Bacterial vaginosis (BV) has been identified to be an independent risk factor for women's health 

25 (Koumans et al. 2001), including preterm delivery and low infant birth weight, the development of 
26 pelvic inflammatory disease increased susceptibility to HIV infection, and other chronic health 
27 issues (Hay et al., 1994; Ness et al., 2005; Sha et al., 2005a; Atashili et al., 2008; van de Wijgert et al., 

28 2008; Ma et al. 2012). BV is frequently characterized by changes in the vaginal microbiome; 
29 however, the causes of these changes are unknown (Redelinghuys et al.,2020). Historically, BV 
30 has been diagnosed using the Nugent score and/or Amsel's clinical criteria (Nugent et al., 1991; 

31 Amsel et al., 1983). The Nugent score is based on the presence or absence of lactobacilli on the 
32 Gram stain and generates a score ranging from 1 to 10. A score of seven or greater indicates a 
33 positive BV diagnosis. Three of the following four Amsel�s criteria yield a positive diagnosis: 1) 
34 the presence of a fishy-like odor, 2) the presence of a white discharge, 3) a vaginal pH of >4.5, 
35 and 4) a minimum of 20% �clue cells� detection. The �gold standard� for BV diagnosis is 
36 Amsel's criteria and the Nugent scoring system. These methods have the disadvantages of being 
37 difficult to standardize and subject to interobserver variability because the assessment of the 
38 diagnostic criteria is dependent on the observer�s skill and experience (Klebanof et al., 2004; 

39 Modak et al., 2011).
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40 The recent advancement of molecular and high-throughput sequencing technologies allows for 
41 the detection of a large number of unculturable microorganisms from clinical samples (Adzitey et 

42 al., 2013). As a result, high-throughput biomolecular data are used to track the history of BV or to 
43 identify the pathogens of BV (Srinivasan et al. 2010; Ravel et al. 2011, 2013, White et al. 2011, Gajer 

44 et al. 2012, Hickey et al. 2012, Ma et al. 2012, Romero et al. 2014; Doyle et al. 2018). Ravel et al. 
45 (2013), for example, report on the temporal dynamics of 25 vaginal communities over 10 weeks 
46 using daily samples collected from women who were diagnosed with symptomatic BV, 
47 asymptomatic BV, and healthy. Srinivasan et al. (2010) conducted deep sequencing of the 16S 
48 rRNA gene in an attempt to investigate the variety and composition of vaginal bacteria in BV-
49 positive women.
50

51 In the meantime, machine learning techniques have been used in this field. Baker et al. (2014) 
52 used genetic programming, random forests, and logistic regression machine learning methods on 
53 two BV datasets in the hopes of discovering BV-related microbial relationships. Later, Beck and 
54 Foster (2015) used random forests and logistic regression, in conjunction with ReliefF, to 
55 diagnose BV. Aeroccocus, Atopobium, Dialister, Eggerthella, and Gardnerella were identified as 
56 the most important bacteria associated with BV in their findings. Pérez-Gómez et al (2020) used 
57 a decision tree and the ReliefF algorithm as feature selectors, as well as the support vector 
58 machine and the logistic regression algorithm as classifiers to identify bacteria associated with 
59 BV. Loquet et al. (2021) designed classification and regression trees for BV to diagnosis in pregnant 

60 women. These works fall into the category of discovering BV-related feature bacteria (or OTU, 
61 Operational taxonomic unit).
62

63 Existing research indicates that BV is a systemic abnormality caused by multiple bacteria and 
64 that interactions between bacteria also play a role in the onset of BV (Srinivasan et al. 2010; White 

65 et al. 2011; Ravel et al., 2011, 2013; Gajer et al. 2012; Romero et al. 2014; Doyle et al. 2018). As a 
66 result, studying bacterial interactions is required to gain insight into BV signaling pathways. The 
67 bacterium can be defined as a network node, and interactions between bacteria can be defined as 
68 network edges. The challenge now is to identify network edges (interactions between two 
69 bacteria) that can characterize the state of the vaginal microbiome. Efforts to find reliable feature 
70 edges rely on information about bacterial interactions, so temporal sample datasets are required. 
71 The dataset reported by Ravel et al. (2013) provides ideal material to investigate this topic. In 
72 this paper, we model each temporal dataset of the vaginal community from Ravel et al. to a 
73 network, and then we build 25 networks. We apply supervised machine learning methods to 25 
74 networks to find feature edges that are related to BV. We hope that these feature edges will aid in 
75 the diagnosis of BV and promote research into the pathogenesis of BV.
76
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77 Materials & Methods

78 Vaginal Microbiome Dataset

79 The dataset was originally reported by Ravel et al. (2013). Ravel et al. (2013) sequenced vaginal 
80 communities collected daily for ten weeks from 25 women diagnosed with symptomatic BV 
81 (SBV: n = 15 women), asymptomatic BV (ABV: n = 6), or healthy (HEA: n = 4). In total, Ravel 
82 et al. (2013) sequenced 1,657 samples (median = 67 per woman) and obtained 420 8,757,681 
83 high-quality sequenced reads of the V1�V3 hypervariable region of 16S-rRNA genes, with a 
84 median of 5,093 reads per sample. The dataset is freely accessible to the public (Ravel et al., 
85 2013). 

86 Feature Selection Algorithms

87 Feature selection aims to find the optimal subset of features. Feature selection can be used to 
88 eliminate irrelevant or redundant features, reduce the number of features, filter out features 
89 related to class information, and improve model accuracy. The general process of feature 
90 selection:
91 1. Generate subsets: search for feature subsets and provide feature subsets for the evaluation 
92 function;
93 2. Evaluation function: evaluate the quality of the feature subset;
94 3. Stopping criteria: related to the evaluation function, generally a threshold, the search can be 
95 stopped after the evaluation function reaches a certain standard;
96 4. Verification process: verify the validity of the selected feature subset on the verification data 
97 set. 
98 Decision tree (Bramer 2007) and ReliefF (Robnik-�ikonja et al., 2003) are used in this work, 
99 they are belonging to the surprised feature selection method. These methods are implemented 
100 function by function in the Python modules skfeature (Li et al, 2018) and sklearn.
101

102 Classification Algorithms

103 A classification algorithm has two phases: learning and classification. The classification model is 
104 trained on the given dataset and its label information during the learning phase; during the 
105 classification phase, the classification model assigns the label to the new dataset. The 
106 classification model in this paper uses logistic regression (Han et al., 2011) and support vector 
107 machine (SVM, Wang et al., 2018), both of which are classic binary classification models that are 
108 widely used in a variety of fields.

109 Given a training dataset of feature space , where , 1 1 2 2( , ), ( , ),..., ( , )N NT x y x y x y n

ix R

110 , , is th feature vector,  is the class label. For a given dataset and  1 1iy   ， 1,2,..i N ix i iy T

111 hyperplane , the distance between the sample point and hyperplane can be defined as 0w x b  
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112 . The minimum value of the geometric interval of the hyperplane with 
i i i
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y x
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

 
   

 
113 respect to all sample points is . According to the above definition, SVM can be min i

i
 

114 represented as

115  .
,
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

 
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116

117 In logistic regression, for a given dataset , the aim of the algorithm is still to find the decision T

118 boundary  (named hyperplane in SVM). Based on the likelihood theory in statistics, 0w x b  
119 the optimization model of the model is

120 , where .1( ) [ ( )] [1 ( )]i iy y

i iL w p x p x
  

( )

1
( )

1
Tw x b

p x
e 




121 Leave-One-Out Validation

122 The dataset will divide into the training set and validation set. The training set is used to train the 
123 model, while the validation set is used to assess the model's generalizability. If the size of the 
124 dataset  is , then use pieces of data for training, and use the remaining piece of data as D N 1N 
125 validation. A total of times are calculated for each group taken from D as the verification set N

126 until all samples have been verified as the set, and finally the verification error is averaged. This 
127 method is called leave-one-out cross-validation (Torgo 2010).

128 Performance Measures

129 Assume there are only two categories (positive and negative, usually the class of interest is the 
130 positive class, and the other classes are the negative class). The confusion matrix is as follows 
131 (table 1):

132 Accuracy: the ratio of correctly classified samples to total samples, is calculated as .
TP TN

P N




133 Precision: the ratio of the number of true positive cases to the number of positive cases judged as 

134 positive, is calculated as .
TP

TP FP
135 Recall: the ratio of the number of positive cases correctly determined to the total number of 

136 positive cases, is calculated as .
TP

P
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137 Experimental Studies

138 We construct the networks and perform machine learning algorithms to find BV related feature 
139 edges. 
140 1.The OTU in each table is taken as the network node for the OTU table of 25 vaginal 
141 microbiomes; the Spearman's rank correlation coefficients are calculated as the weight of edge 

142 between the OTUs, then 25 networks ,  are obtained. Each network assigned labels iA 1,2, 25i  L

143 SBV, ABV, and H according to the diagnosis of the corresponding women.
144 2. Divided the 25 networks into four groups according to the research intention (BV = 
145 ABV+SBV vs. H; SBV vs. H; ABV vs. H; SBV vs. ABV)
146 3. To find feature edges in each group, use a feature selection and classification algorithm. The 
147 specific procedure is as follows: the significance of each edge is scored using a feature selection 
148 algorithm under leave-one-out cross-validation, and the scores are recorded in each run. After 
149 leave-one-out cross-validation, the importance scores of each edge are averaged. Edges are 
150 sorted in descending order by mean importance score. Again, using cross-validation, according 
151 to the mean value of the edge's importance score, a select subset of edges as feature edges to 
152 train the classification model on the training set and classify on the prediction set. The indicators 
153 (accuracy, precision, and recall) are used to evaluate classification performance after cross 
154 validation. The process is depicted in the diagram below.
155

156 Results

157

158 We performed the results of the four groupings, as shown in Table 2.
159 From the calculation results, we get the following conclusions.
160 1. Machine learning can distinguish different vaginal microbiome states (BV, ABV, SBV, H) 
161 based on bacterial interaction. It captures the difference between BV, SBV, ABV, and H better 
162 than that between SBV and ABV is weak.
163 2. Selecting the top 5 feature edges of importance can achieve the best accuracy for the feature 
164 selection and classification model. In some cases, the increase of the number of feature edges 
165 will reduce the performance of the classification algorithm.
166 3. The feature edges selected by decision tree outperform those selected by ReliefF in terms of 
167 classification algorithm logistic regression and SVM performance; however, there is almost no 
168 difference between classification algorithm logistic regression and SVM on the same feature 
169 edges.
170 4. The two feature selection algorithms have great differences in the importance of ranking of 
171 edges. Using the top 5 edge set as an example, the feature edges chosen by the two algorithms 
172 have almost no intersection.
173
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174 Discussion

175 The feature edges that we discovered can distinguish the state of the vaginal microbiome (BV vs. 
176 H; SBV vs. H; ABV vs. H); however, the ability to distinguish between SBV and ABV is 
177 limited. In conclusion, our results show that there are differences in the expression of feature 
178 edges (interaction between the bacteria) under different vaginal environmental conditions. As a 
179 result, these feature edges may be useful in the diagnosis of BV. The feature edges chosen by 
180 different feature selection algorithms are inconsistent, a problem that has also been observed in 
181 previous studies (Baker et al., 2014; Beck and Foster, 2015). This adds to the complexity of the 
182 interpretability of feature edges. Similarly, Ma et al., (2021a) found 15 different types of network 
183 markers (motif, interactions among three species) that were present only in the BV microbiome 
184 and absent in the healthy microbiome, and which were validated on other BV datasets. We take 
185 the result of the decision tree algorithm to compare with the result of Ma et al. (2021a). We 
186 found that there was no overlap between them. It implies that the identification of BV associate 
187 feature edges may not be unique and that finding universal feature edges is difficult and 
188 complex, necessitating the mining of more sample data.
189 Further insights can be shed on the ecological mechanisms of BV by distinguishing key bacteria, 
190 or by the identifications of the critical pathway of interactions. However, BV is still poorly 
191 understood. However, the BV �single causative agent� theory is no longer widely accepted. 
192 Alternatively, BV is thought to be polymicrobial in nature. There are evidences that interspecies 
193 interactions characterize the vaginal microbiota with BV. Gardnerella spp. may provide a 
194 favorable environment for the growth of other BV-associated bacteria during the onset of BV, 
195 according to Pybus and Onderdonk (1997). Srinivasan and Fredricks (2008) proposed that BV 
196 occurs when BV-associated bacteria enter the vagina and displace lactobacilli. Furthermore, BV-
197 associated bacteria (Bacteroides spp., Enterococcus faecalis, Vaginal G., Mobiluncus spp., and 
198 Peptoclococcus spp.) can inhibit Lactobacillus growth. And in a healthy vaginal environment, 
199 lactobacillus species produce hydrogen peroxide (H2O2) to inhibit the overgrowth of anaerobic 
200 bacteria. The reduction of Lactobacillus spp. was therefore considered to indicate vaginal 
201 dysbiosis. Those arguments imply, logically, that interactions between certain bacteria are related 
202 to BV. Feature edges (interaction between bacteria) have the potential to reveal the dysbiosis 
203 pathway and signaling associated with BV. However, several risk factors have been identified in 
204 the pathogenesis of BV, such as age, socio-economic status, antibiotic usage, sexual behavior, 
205 and ethnicity (Brumley, 2012; Singh et al., 2015; Ranjit et al., 2018). As a result, while the road to 
206 discovering the full face of BV remains long, our research provides important candidate 
207 materials (feature edges) and tools to further our understanding of BV risk and etiology.

208 Conclusion

209 The feature edges discovered by the machine learning algorithm can accurately distinguish BV 
210 and the health status of the vaginal microbiome. These features can also help reveal the 
211 pathogenesis of BV. However, different machine learning algorithms find different feature 
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212 edges, which increases the complexity of feature interpretation. Furthermore, the data set used in 
213 the study is insufficient, and the sample size is unbalanced. Because only the Spearman 
214 correlation coefficient is used when building the sample network, more work is required. In the 
215 future, we will also try to use different correlation measures to build a sample network, collect 
216 more data, and consider sample balance for research, in the hopes of obtaining more reliable 
217 results and promoting BV diagnosis and pathogenesis.
218
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Table 1(on next page)

The indicators to evaluate the classification performance.

* The AB mode in the table: the first indicates whether the predicted result was correct or
incorrect, and the second indicates the predicted category. For example, TP means True
Positive, that is, the correct prediction is a positive class; FN means, False Negative, that is,
the wrong prediction is a negative class.
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1

Actual category Prediction category

Positive Negative Summarize

Positive TP FN  (Actually positive)P

Negative FP TN  (Actually negative)N

2
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Table 2(on next page)

Tables corresponding to calculation results.

* The results of feature selection only list the top 5 feature edges of importance.
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1

Groups Feature selection Performance of 

classifiers

BV vs. H Table 3 Table 4

SBV vs. H Table 5 Table 6

ABV vs. H Table 7 Table 8

SBV vs. ABV Table 9 Table 10

2
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Table 3(on next page)

Top 5 feature edges of importance for BV vs. H group selection by Decision tree and
ReliefF feature selection algorithms.
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1

Decision tree ReliefF

Feature edges
Import 

value
Feature edges

Import 

value

Streptococcus anginosus

Veillonellaceae
0.38

Lactobacillus iners

Lactobacillus crispatus
1429.8

Actinomycetales

Prevotella buccalis
0.228

Atopobium vaginae

Megasp3aera
1340.52

Peptonip3ilus

Stap3ylococcus
0.04

Atopobium vaginae

Stap3ylococcus aureus
1311.08

Streptococcus anginosus

Prevotella buccalis
0.04

Lactobacillus iners

Atopobium vaginae
1273.84

Atopobium vaginae

Parvimonas micra
0.03

Clostridiales

Prevotella
1251.24
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Table 4(on next page)

The performance of two classification algorithms on different quantities of features for
BV vs. H.
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1

Feature Selection                          Decision tree/ReliefF

Classifiers Logistic regression SVM

Feature 

number
Acc Pre Recall Acc Pre Recall

5 0.92/0.84 0.95/0.84 0.95/1 0.92/0.84 0.95/0.84 0.95/1 

10 1.00/0.84 1.00/0.84 1.00/1 1.00/0.84 1.00/0.84 1.00/1 

15 1.00/0.84 1.00/0.84 1.00/1 1.00/0.84 1.00/0.84 1.00/1 

20 1.00/0.84 1.00/0.84 1.00/1 1.00/0.84 1.00/0.84 1.00/1 

25 0.96/0.84 0.95/0.84 1.00/1 0.96/0.84 0.95/0.84 1.00/1 

30 0.96/0.84 0.95/0.84 1.00/1 0.96/0.84 0.95/0.84 1.00/1 

50 0.96/0.84 0.95/0.84 1.00/1 0.96/0.84 0.95/0.84 1.00/1 

80 0.84/0.84 0.84/0.84 1.00/1 0.84/0.84 0.84/0.84 1.00/1 

100 0.84/0.84 0.84/0.84 1.00/1 0.84/0.84 0.84/0.84 1.00/1 

200 0.84/0.84 0.84/0.84 1.00/1 0.84/0.84 0.84/0.84 1.00/1 

Mean 0.93/0.84 0.93/0.84 1.00/1 0.93/0.84 0.93/0.84 1.00/1 
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Table 5(on next page)

Top 5 feature edges of importance for SBV vs. H group selection by Decision tree /
ReliefF feature selection algorithms.
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Decision tree ReliefF

Feature edges
Import 

value
Feature edges

Import 

value

Lactobacillus iners
Bifidobacteriaceae

0.21 
Lactobacillus jensenii
Streptococcus 
salivarius

1347.42 

Actinomycetales
Prevotella buccalis

0.17 
Stap3ylococcus
Eggert3ella

1315.68 

Lactobacillus iners
Eggert3ella

0.13 
Lactobacillus iners
Atopobium vaginae

1314.79 

Streptococcus anginosus
Veillonellaceae

0.09 
Lactobacillus iners
BVAB2

1314.26 

Megasp3aera sp. type 2
Streptococcus anginosus

0.05 
Lactobacillus iners
Lactobacillus jensenii

1299.16 
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Table 6(on next page)

Top 5 feature edges of importance for ABV vs. H group selection by Decision
tree/ReliefF feature selection algorithms.
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Feature seles����                    D�s����� treet������	

C�
�������� L������s regressio� S
�

Feature 
number

Acc Pre Recall Acc Pre Recall

5 0.95/0.95 0.94/0.94 1/1 0.95/0.95 0.94/0.94 1/1
10 0.95/0.89 0.94/0.88 1/1 0.95/0.89 0.94/0.88 1/1
15 0.95/0.89 0.94/0.88 1/1 0.95/0.89 0.94/0.88 1/1
20 0.95/0.89 0.94/0.88 1/1 0.95/0.89 0.94/0.88 1/1
25 0.95/0.89 0.94/0.88 1/1 0.95/0.89 0.94/0.88 1/1
30 0.95/0.84 0.94/0.83 1/1 0.95/0.84 0.94/0.83 1/1
50 0.95/0.79 0.94/0.79 1/1 0.95/0.79 0.94/0.79 1/1
80 0.79/0.79 0.79/0.79 1/1 0.79/0.79 0.79/0.79 1/1
100 0.79/0.79 0.79/0.79 1/1 0.79/0.79 0.79/0.79 1/1
200 0.79/0.79 0.79/0.79 1/1 0.79/0.79 0.79/0.79 1/1
Mean 0.90/0.85 0.90/0.85 1/1 0.90/0.85 0.90/0.85 1/1
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Table 7(on next page)

Top 5 feature edges of importance for ABV vs. H group selection by Decision tree /
ReliefF feature selection algorithms.
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Decision tree ReliefF

Feature edges
Import 

value
Feature edges

Import

value

Sneat3ia sanguinegens
Megasp3aera

0.2
Megasp3aera sp. type 1
Megasp3aera

1431.7

Lactobacillus iners
Peptostreptococcus

0.1
BVAB2
Peptonip3ilus 
asacc3arolyticus

1384

Bacteria
Lactobacillus vaginalis

0.1
Lactobacillus crispatus
Gammaproteobacteria

1377.4

Dialister sp. type 2
Sneat3ia sanguinegens

0.1
Megasp3aera sp. type 2
Streptococcus

1374.3

BVAB2
Clostridiales

0.1
Atopobium vaginae
Prevotella bivia

1352.7
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Table 8(on next page)

The performance of two classification algorithms on different quantities of features for
ABV vs. H.
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Feature ���������                       �������� tree��������

�����������  �!����� regressio� �"#

Feaure 
number

Acc Pre Recall Acc Pre Recall

5 1/0.3 1/0.43 1/0.5 1/0.3 1/0.43 1/0.5
10 1/0.3 1/0.43 1/0.5 1/0.3 1/0.43 1/0.5
15 1/0.5 1/0.56 1/0.83 1/0.5 1/0.56 1/0.83
20 1/0.5 1/0.56 1/0.83 1/0.5 1/0.56 1/0.83
25 1/0.5 1/0.56 1/0.83 1/0.5 1/0.56 1/0.83
30 1/0.6 1/0.6 1/1 1/0.6 1/0.6 1/1
50 1/0.6 1/0.6 1/1 1/0.6 1/0.6 1/1
80 1/0.6 1/0.6 1/1 1/0.6 1/0.6 1/1
100 0.7/0.6 0.67/0.6 1/1 0.7/0.6 0.67/0.6 1/1
200 0.6/0.6 0.6/0.6 1/1 0.6/0.6 0.6/0.6 1/1

Mean 0.93/0.51 0.93/0.55 1/0.85 0.93/0.51 0.93/0.55 1/0.85
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Table 9(on next page)

Top 5 feature edges of importance for SBV vs. ABV group selection by Decision
tree/ReliefF feature selection algorithms.
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Decision tree ReliefF

Features
Import 

value
Features

Import 

value

Megasp3aera sp. type 2
Stap3ylococcus

0.29 
BVAB1
Firmicutes

1246.48 

Megasp3aera sp. type 2
Enterococcus faecalis

0.22 
Prevotella genogroup 1
Prevotella buccalis

1240.57 

Megasp3aera sp. type 2
Actinomycetales

0.19 
Gemella
Sneat3ia sanguinegens

1240.10 

Stap3ylococcus aureus
Megasp3aera

0.05 
Actinobacteria .class.
Clostridiales Family XI. 
Incertae Sedis

1224.48 

Prevotella buccalis
Bifidobacterium

0.05 
Eggert3ella
Prevotella genogroup 3

1219.38 
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Table 10(on next page)

The performance of two classification algorithms on different quantities of features for
SBV vs. ABV
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Feature $%&%'()*+                          ,%')-)*+ tree./%&)%01

2&3--)0)%4- 5*6)-()' regressio+ $78

Feature 
number

Acc Pre Recall Acc Pre Recall

5 0.86/0.67 0.93/0.70 0.87/0.93 0.86/0.67 0.93/0.70 0.87/0.93
10 0.67/0.67 0.7/0.70 0.93/0.93 0.67/0.67 0.7/0.70 0.93/0.93
15 0.62/0.71 0.68/0.71 0.87/1 0.62/0.71 0.68/0.71 0.87/1
20 0.57/0.71 0.67/0.71 0.8/1 0.57/0.71 0.67/0.71 0.8/1
25 0.57/0.71 0.67/0.71 0.8/1 0.57/0.71 0.67/0.71 0.8/1
30 0.62/0.71 0.68/0.71 0.87/1 0.62/0.71 0.68/0.71 0.87/1
50 0.67/0.71 0.7/0.71 0.93/1 0.67/0.71 0.7/0.71 0.93/1
80 0.67/0.71 0.7/0.71 0.93/1 0.67/0.71 0.7/0.71 0.93/1
100 0.71/0.71 0.71/0.71 1/1 0.71/0.71 0.71/0.71 1/1
200 0.71/0.71 0.71/0.71 1/1 0.71/0.71 0.71/0.71 1/1
Mean 0.67/0.70 0.72/0.71 0.9//0.99 0.67/0.70 0.72/0.71 0.9//0.99
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Figure 1
Conceptual diagram of experimental process
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