Non-avian theropod phalanges from the marine Fox Hills Formation (Maastrichtian), western South **Dakota, USA (#72426)**

First submission

Guidance from your Editor

Please submit by 5 May 2022 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the materials page.

Custom checks

6 Figure file(s)

1 Table file(s)

Field study

Have you checked the authors field study permits?

Are the field study permits appropriate?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

-	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Non-avian theropod phalanges from the marine Fox Hills Formation (Maastrichtian), western South Dakota, USA

John A. Chamberlain, Jr. $^{\text{Corresp., 1, 2}}$, Katja Knoll 3 , Joseph JW Sertich $^{4, 5}$

Corresponding Author: John A. Chamberlain, Jr. Email address: johnc@brooklyn.cuny.edu

We report here the first dinosaur skeletal material described from the marine Fox Hills Formation (Maastrichtian) of western South Dakota. One find consists of a single theropod pedal phalanx recovered from the middle part of the Fairpoint Member in Meade County, South Dakota. Comparison with pedal phalanges of other theropods suggests strongly that it is a right pedal phalanx III-2 from a large ornithomimid. The bone comes from massively bedded and cross-bedded marine sands containing small, discontinuous, lenticular lag deposits and large hematitic concretions and concretionary horizons. Associated fossils include osteichthyan teeth, fin spines and otoliths, and abundant teeth of common Cretaceous nearshore and pelagic chondrichthyans. Leaf impressions and other plant debris, blocks of fossilized wood, and Ophiomorpha burrows are also common. We interpret the depositional environment as a beachfront or nearshore sandbar subject to tidal flux and frequent storms, and lying close to a river distributary. Orthogonal cracks in the cortical bone, and the absence of shark bite marks or other signs of marine scavenging activity suggest that the bone has a complex taphonomic history involving reworking into this marine setting long after post-mortem exposure in a more terrestrial depositional environment. The Fairpoint bone bed probably lies within the Hoploscaphites nicolletii Ammonite Zone of the early Late Maastrichtian, and would thus have an approximate age of 69 Ma. We also report the presence of an undescribed Fox Hills theropod phalanx, attributable to a medium-bodied non-avian theropod, in the collection of the Yale Peabody Museum. The Yale specimen is from the Iron Lightning Member in Ziebach County, SD. It comes from a marginal marine depositional environment similar to that of the Fairpoint bone, and appears to have a similar taphonomic history, but it is somewhat younger in age than the Fairpoint specimen.

Department of Earth and Environmental Sciences and Department of Biology, City University of New York, Graduate School and University Center, New York City, New York 10016, United States

² Department of Earth and Environmental Sciences, City University of New York, Brooklyn College, Brooklyn, New York 11210, United States

Paria River District, US Bureau of Land Management, Kanab, Utah 84741, United States

⁴ Department of Earth Sciences, Denver Museum of Nature and Science, Denver, Colorado 80205, United States

Department of Geosciences, Warner College of Natural Resources, Colorado State University, Fort Collins, Colorado 80523, United States

1 2	Non-avian theropod phalanges from the marine Fox Hills Formation (Maastrichtian), western South Dakota, USA
3	
4 5	John A. Chamberlain, Jr. ^{1,2} ; Katja Knoll ³ ; Joseph J. W. Sertich ^{4,5}
6 7 8	1. Department of Earth and Environmental Sciences, City University of New York, Brooklyn College, Brooklyn, NY 11210, USA
9 10 11	2. Department of Earth and Environmental Sciences and Department of Biology, City University of New York, Graduate School and University Center, New York, New York 10016, USA
12 13	3. Paria River District , US Bureau of Land Management, Kanab, UT 84741, USA.
14 15 16	4. Department of Earth Sciences, Denver Museum of Nature and Science, 2001 Colorado Blvd, Denver, CO 80205, USA.
17 18	4. Department of Geosciences, Warner College of Natural Resources, Colorado State University, Fort Collins, CO 80523 USA.
19	
20	Corresponding Author:
21	
22	John Chamberlain
23 24	31 Graham Avenue, Metuchen, New Jersey, 08840, USA
24 25 26 27 28	Email: johnc@brooklyn.cuny.edu
29	
30	
31	
32	
33	

34	ABSTRACT: We report here the first dinosaur skeletal material described from the marine Fox
35	Hills Formation (Maastrichtian) of western South Dakota. One find consists of a single theropod
36	pedal phalanx recovered from the middle part of the Fairpoint Member in Meade County, South
37	Dakota. Comparison with pedal phalanges of other theropods suggests strongly that it is a right
38	pedal phalanx III-2 from a large ornithomimid. The bone comes from massively bedded and
39	cross-bedded marine sands containing small, discontinuous, lenticular lag deposits and large
40	hematitic concretions and concretionary horizons. Associated fossils include osteichthyan teeth,
41	fin spines and otoliths, and abundant teeth of common Cretaceous nearshore and pelagic
42	chondrichthyans. Leaf impressions and other plant debris, blocks of fossilized wood, and
43	Ophiomorpha burrows are also common. We interpret the depositional environment as a
44	beachfront or nearshore sandbar subject to tidal flux and frequent storms, and lying close to a
45	river distributary. Orthogonal cracks in the cortical bone, and the absence of shark bite marks or
46	other signs of marine scavenging activity suggest that the bone has a complex taphonomic
47	history involving reworking into this marine setting long after post-mortem exposure in a more
48	terrestrial depositional environment. The Fairpoint bone bed probably lies within the
49	Hoploscaphites nicolletii Ammonite Zone of the early Late Maastrichtian, and would thus have
50	an approximate age of 69 Ma. We also report the presence of an undescribed Fox Hills
51	theropod phalanx, attributable to a medium-bodied non-avian theropod, in the collection of the
52	Yale Peabody Museum. The Yale specimen is from the Iron Lightning Member in Ziebach
53	County, SD. It comes from a marginal marine depositional environment similar to that of the
54	Fairpoint bone, and appears to have a similar taphonomic history, but it is somewhat younger in
55	age than the Fairpoint specimen.

INTRODUCTION

59	The Fox Hills Formation is a silty to sandy, fossiliferous nearshore to onshore deposit of
60	Maastrichtian age that separates the marine shales of the Pierre Formation from the overlying
61	terrestrial, dinosaur-rich Hell Creek and Lance formations of the Late Maastrichtian. In South
62	Dakota, the Fox Hills Formation is exposed along a sinuous outcrop belt that curves around the
63	northern and western flanks of the Black Hills (Figure 1A). To the east of the Black Hills lie
64	two Fox Hills outliers, separated from the main trend of Fox Hills exposures, and from each
65	other by erosion of the Cheyenne River and its tributaries. These outliers are referred to here as
66	the Fairpoint-Enning area (green in Fig. 1A) and the Badlands National Park area (red in Fig.
67	1A). In the Fox Hills Type Area (blue, Fig. 1A), and in its extension in North Dakota, the lower
68	part of the Fox Hills Formation (Trail City and Timber Lake members) is interpreted as a wedge
69	of marine sand and silt prograding southwestward across the western interior basin (Waage
70	1961; Waage 1968; Landman and Waage, 1993). The sandy upper unit of the Type Area Fox
71	Hills Formation (Iron Lightning Member) and the sandy Fox Hills exposures to the west of the
72	Type Area represent the eastward and southeastward progradation of deltaic and shoreline
73	deposits, referred to as the Sheridan Delta in Wyoming and Montana by Gill and Cobban
74	(1973). These patterns of sediment migration are associated with the final closing of the
75	Western Interior Seaway during the Late Maastrichtian and Early Danian (Waage, 1968;
<mark>76</mark>	Erickson, 1969; Gill and Cobban 1973). Although terrestrial, lignitic horizons occur in the Fox
77	Hills Formation of South Dakota (Waage, 1961; 1968; Black, 1964; Pettyjohn, 1967), this unit
78	is primarily composed of marine sediments containing a macrofauna dominated by marine
79	invertebrates, particularly gastropods (Erickson, 1974), bivalves (Speden, 1970; Erickson,
80	1978), and ammonites (Landman and Waage, 1993).

Remains of terrestrial animals, and dinosaurs in particular, are only rarely recovered from
the Fox Hills Formation, even from its terrestrial beds. Hoganson et al. (2007) describe small
theropod tooth fragments recovered from sites in the Bullhead lithofacies of the lowermost Iron
Lightning Member in southcentral North Dakota. Waage (1968, p.127 and again on page 133)
mentions a similar collection of fragmentary dinosaur remains, primarily tooth and claw
fragments, from a channel deposit in the Colgate lithofacies of the Iron Lightning Member in
the Fox Hills Type Area of northcentral South Dakota. In his paper erecting the Fairpoint and
White Owl Creek members as formal units of the Fox Hills Formation in the Fairpoint-Enning
area of western South Dakota, Pettyjohn (1967) mentions anecdotally that he encountered
dinosaur bones in the middle part of the Fairpoint Member ("a few dinosaur and turtle bones as
well as shark teeth were found throughout this unit", Pettyjohn, 1967, pg. 1364). He did not
describe this material, however. The fate of Pettyjohn's Fox Hills dinosaur material is unknown,
and as far as can be discerned, it does not appear that it was retained for future study.

In this paper we describe two small theropod phalanges from marine beds of the Fox Hills Formation. The first of these is from the Fairpoint Member in the Fairpoint-Enning area of western South Dakota (Fig. 1A), recovered as a by-product of earlier work by one of us (JAC) on fossil fish occurring in these same beds (Becker et al., 2004; 2009). The second is from a small assemblage of undescribed dinosaur material reported by Waage (1968) from the Iron Lightning Member in Ziebach County, South Dakota, about 190 km northeast of the Fairpoint locality (Fig. 1A), and now deposited in the vertebrate paleontology collections of the Yale Peabody Museum. Given the overall rarity of dinosaur remains in the Fox Hills Formation, particularly in western South Dakota, a formal description of these bones is warranted.

REPOSITORIES

The specimen from the Fairpoint-Enning area of South Dakota described here has been deposited in the vertebrate paleontology collections of the Denver Museum of Nature and Science (DMNS, formerly DMNH), Denver, CO, USA, and is identified by the catalogue number: DMNH EPV.138575. The specimen from the Fox Hills type Area in Ziebach County, South Dakota, is in the Yale Peabody Museum of Natural History (YPM), New Haven, CT, USA, and carries the catalogue number: YPM VP.061705.

COLLECTING LOCALITIES

DMNH EPV.138575: Specimen DMNH EPV.138575 was collected in Section 35, T7N, R14E (DMNH loc. 19383), about 13 km southeast of Enning, southeastern Meade County, South Dakota (Fig. 1B). This is the same site that yielded chondrichthyan teeth described in Becker et al., (2004) and osteichthyan remains detailed in Becker et al. (2009). DMNH EPV.138575 was recovered from a soft, laminated, well-sorted sandstone, white to tan in color, exposed near the top of a hillside above Pine Creek (Fig. 2). The sandy beds form pedestals arrayed beneath a dense pattern of hard, well-cemented, reddish-brown hematitic concretions, some up to 3 m in diameter. The concretions are ovoid in shape and coalesce in places, forming well defined horizons resistant to weathering and erosion. The sandstone is massively bedded, with hummocky, high-angle tangentially cross-stratified beds occurring at some horizons below the fossil beds (Fig. 3A). Some smaller fossils, including the teeth and other piscine material figured in Becker et al. (2004; 2009), occur in small, discontinuous, lenticular, pebbly lags visible in the sandstone pedestals (Fig. 3B). Many of the teeth are sediment polished and missing delicate crown and root elements. However, most small fossils are found weathered out of the sandstone

and lying in the piles of loose sand distributed around the bases of the pedestals or in the debris 127 mounds of harvester ant colonies located in the outcrop area (Becker et al. 2004). DMNH 128 EPV.138575 was found lying in situ, and parallel to bedding, in the sandstone about a meter to 129 the right of the lag shown in Figure 3B. Ophiomorpha burrows (Fig. 3C) are found both in the 130 soft sand as well as in the hard concretions. Leaf impressions (Fig. 3D) and plant debris occur 131 132 within the concretions overlying the phalanx horizon, and small blocks of fossil wood are scattered throughout the loose sand at the base of the pedestals. 133 YPM VP.061705: Waage (1968) indicates that specimen YPM VP.061705 was found in Sec. 33, 134 T14N; R19E, Ziebach County, SD (YPM locality 74). The YPM specimen comes from Waage's 135 (1968) type section of the Iron Lightning Member where it was measured in the SW corner of a 136 drainage divide in the badlands located to the east of the gravel road running northward from 137 Highway 212 to the village of Iron Lightning near the Moreau River. Waage (1968, p. 133) 138 describes the Colgate lithofacies sand body containing YPM VP.061705 as a sandy, very fine to 139 140 medium grained subgraywacke about 12 m thick, which weathers grayish white. Present are thin bands of iron stained shale and some carbonaceous laminae. Cross bedding is prominent in these 141 beds. Also common are brown-colored ovoid concretions up to 4 m long. The basal portion of 142 143 the unit contains rich fossil lenses and channel cuts preserving Corbicula, Crassostrea, Anomia, and fish teeth, primarily of the ray Myledaphus bipartitus. Also present are otoliths, wood 144 fragments, mammal teeth, and fragmentary dinosaur remains. The latter consists of broken 145 146 hadrosaur, ceratopsid, and theropod teeth, fragmentary theropod claws, and YPM VP.061705. In his measured Iron Lightning type section, Waage (1968, pg. 133) indicates that this channel cut 147 148 dinosaur horizon in the Colgate lithofacies lies about 14 m below the base of the overlying Hell 149 Creek Formation.

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

GEOLOGIC SETTING

DMNH EPV.138575: Pettyjohn (1967) recognized two stratigraphically distinct members in the Fox Hills Formation in the Fairpoint-Enning area of western South Dakota: the Fairpoint Member and the White Owl Creek Member. The Fairpoint Member, which lies on top of the Pierre Shale, is the lower of the two members. It is about 50 m thick and consists primarily of light-colored marine sands containing channel incisions, cross beds, with occasional horizons of dark, hematitic concretions. The uppermost part of the Fairpoint Member takes on a distinctly continental character in that it contains numerous lignite beds (the Stoneville Lithofacies of Pettyjohn (1967)). The White Owl Creek Member consists of massively bedded sands with large iron stained concretions and an upper unit of shales, silts, and sands, brightly colored by postdepositional paleosol development (Retallack, 1983; Jannett and Terry, 2008). Because our bone locality (Fig. 2) lies near the top of a hill, beds significantly higher in the sequence than the bone horizon have been removed by erosion at our recovery site. The theropod site discussed here lies in the Fairpoint Member, about 40 m above the contact with the Pierre Shale (Figure 4). Pettyjohn (1967) states that his enigmatic dinosaur bones were found in a channel cut at the contact between what he considered the lower and middle parts of the Fairpoint Member. The approximate stratigraphic position of this bone bearing channel, about 20 m below our theropod site, is also indicated in Figure 4. However, the actual site of Pettyjohn's (1967) bone discovery is about 45 km northwest of our site. YPM VP.061705: Waage (1968) defines the Fox Hills Formation in the north central part of South Dakota (the "Type Area" in Corson, Dewey, and Ziebach Counties) as consisting of the Trail City, Timber Lake, and Iron Lightning Members, the latter of which Waage (1968) created

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

by combining two sandy lithofacies characteristic of the upper part of the Fox Hills Formation in the Type Area. Speden (1970) and Landman and Waage (1993) used this tripartite stratigraphic framework as the basis of their investigations of the Fox Hills bivalve and ammonite faunas. The Trail City is the lowermost of these members and according to Waage (1968) its thickness varies from about 21 m in the eastern part of the type area to about 70 m in the west. It consists primarily of fine clayey silt and contains richly fossiliferous concretionary horizons (Waage, 1968, figs. 24, 25 26). The Trail City Member is distinguished from the Pierre Shale below it by its higher silt content and the presence of jarosite beds in many localities. The Timber Lake Member consists primarily of sandstone locally variable in grain size, clay content and bedding. It too contains horizons preserving abundant fossil-rich concretions. The Timber Lake Member also varies in thickness across the type area. More than 30 m thick in central Dewey County, it rapidly pinches out westward and is no longer present in western Dewey County (Waage, 1968, fig. 20). The contact of the Timber Lake Member with the Trail City Member below tends to be gradational, but southwestward in the Type Area the contact can often be recognized in terms of distinctive jarosite beds. Together with the Trail City Member, the Timber Lake Member represents a wedge-shaped sand body migrating southwestward into the shallow Western Interior Seaway near the close of the Cretaceous (Waage, 1968; Landman & Waage, 1993). As conceived by Waage (1968), the Iron Lightning Member, the uppermost of the three Fox Hills members, consists of two contrasting sandy lithofacies, both of which differ from the sandy, clayey members of the Fox Hills Formation below it. The Bullhead Lithofacies consists primarily of finely bedded sand and silty clay usually having a brown color, while the Colgate Lithofacies is a white to gray, lithic sandstone commonly occurring in lenticular bodies often

showing prominent cross-bedding and large, often dark colored, ovoid concretions. It also contains channel cuts, often with coarse debris, including fossils, preserved in the base, and, as described above, it is in one of these channel deposits about 14 m below the base of the overlying Hell Creek Formation, in which YPM VP.061705 was collected (Waage, 1968, pg. 133). Although the Bullhead Lithofacies occurs at the base of the Iron Lightning Member, and beds of the Colgate Lithofacies at the top of this member, Waage's (1968) stratigraphic sections from different parts of the Type Area (e.g., Waage, 1968; Figs 10, 25, and 26; Landman and Waage, 1993; Fig. 3) show that sand bodies of the two lithofacies are interspersed irregularly throughout the middle parts of the Iron Lightning Member. Lithologically, the Iron Lightning Member resembles Pettyjohn's (1967) Fairpoint Member in western south Dakota, and probably represents the later eastward migration of the Sheridan Delta near the close of the Maastrichtian rather than the westward advance of sedimentation of the Trail City and Timber Lake members.

GEOLOGIC AGE

DMNH EPV.138575: The absence of distinctive, time-indicative fossils, ammonites in particular, in the Fox Hills Formation of the Fairpoint-Enning area of South Dakota has historically been a major impediment to building a solid understanding of Fox Hills age relationships in this area. It also obfuscates correlation of Fairpoint Area lithology with that of the Type Area – a point recognized by both Waage (1968) and Pettyjohn (1967). Becker at al. (2004) suggest that in view of the eastward progression of Fox Hills deposition in western South Dakota, the middle to upper part of the Fairpoint Member near Enning in which DMNH EPV.138575 was preserved, is most likely time correlative to the lower parts of the Fox Hills Formation in its type area to the northeast. This would imply that the Fairpoint Member lies

219	within the time interval represented by the Hoploscaphites nicolletii Ammonite Zone as defined
220	in the Fox Hills type area by Landman and Waage (1993). Pettyjohn (1967) states that in the
221	Fairpoint-Enning area the base of the Fox Hills Formation lies about 7 m above the <i>Baculites</i>
222	clinolobatus Ammonite Zone in the uppermost Pierre Shale. In the Fox Hills type area, the base
223	of the Fox Hills Formation is about 80 m above the B. clinolobatus Zone (Landman and Waage,
224	1993). These differences in relative positioning of the Fox Hills/Pierre contact, as noted in
225	Landman et al. (2013, Fig. 5), suggest to us that the middle to upper Fairpoint Member in the
226	Fairpoint-Enning area corresponds to the lower part of the <i>H. nicolletii</i> Zone in the Fox Hills
227	Formation Type Area. We interpret these observations to mean that the Fairpoint horizon from
228	which our specimen derives is from the lower part of the upper Maastrichtian sequence in
229	western South Dakota. Cobban et al. (2006) and Merewether et al. (2011) record a radiometric
230	age of 69.59±0.36 Ma for the <i>B. clinolobatus</i> Zone. More recently, Lynds and Slattery (2017)
231	date the <i>B. clinolobatus</i> Zone at 70.08±0.37 Ma. Their data also indicate that the base of the <i>H</i> .
232	nicolletii Zone has an age of about 69.3 Ma. This would suggest that the approximate age of
233	DMNH EPV.138575 is on the order of about 69 Ma.
234	YPM VP.061705: The fact that the geologic age of Fox Hills beds rises to the east in South
235	Dakota means that the age of the Yale specimen Waage (1968) recovered in the Fox Hills Type
236	Area is likely to be younger than the Fairpoint specimen even though both occur in sandy
237	Colgate style lithologies. YPM VP.061705, as reported by Waage (1968), was found at the base
238	of a channel cut in the Iron Lightning Member about 14 m below its contact with the overlying
239	Hell Creek Formation. In the type area, the H. nebrascensis Ammonite Zone, which overlies the
240	H. nicolletii Zone, extends from just below the top of the Timber Lake Member, through the Iron
241	Lightning Member, and into the overlying Hell Creek Formation where remains of the signature

242	species, <i>H. nebrascensis</i> , have been found in the Breien Member of the Hell Creek Formation
243	(Hartman and Kirkland, 2002; Landman, in Hoganson and Murphy, 2002; Landman, 2022,
244	personal communication). Since the Breien Member lies about 2 to 9 m above the contact with
245	the Fox Hills Formation (Hoganson and Murphy, 2002), the top of the <i>H. nebrascensis</i> Zone is
246	about 16 to 23 m above the Iron Lightning Member horizon containing YPM VP.061705. This
247	places YPM VP.061705 squarely in the <i>H. nebrascensis</i> Zone, and thus makes it significantly
248	younger than DMNH EPV.138575. How much younger is more difficult to determine due to
249	geographically variable thicknesses and ages of the beds in question. However,
250	magnetostratigraphy provides a clue. The magnetostratigraphy data of Hicks et al. (2002, Figs.
251	11, 13) from southwestern North Dakota and the data of Lund et al. (2002; Fig. 10) from
252	southcentral North Dakota, suggest that the base of the C30n polarity chron, which Lynds and
253	Slattery's (2017) range data indicate to be about 68 Ma, lies about 10 m below the Hell
	• • • •
254	Creek/Fox Hills contact. This is roughly the position of the bed containing YPM VP.061705 (14
	Creek/Fox Hills contact. This is roughly the position of the bed containing YPM VP.061705 (14 m below the Hell Creek/Fox Hills contact). Thus, the age of this bone would probably be in the
254	
254 255	m below the Hell Creek/Fox Hills contact). Thus, the age of this bone would probably be in the
254255256	m below the Hell Creek/Fox Hills contact). Thus, the age of this bone would probably be in the range of slightly more than 68 Ma, or nearly 1 Myr younger than that of DMNH EPV.138575
254255256257	m below the Hell Creek/Fox Hills contact). Thus, the age of this bone would probably be in the range of slightly more than 68 Ma, or nearly 1 Myr younger than that of DMNH EPV.138575 SYSTEMATIC PALEONTOLOGY
254255256257258	m below the Hell Creek/Fox Hills contact). Thus, the age of this bone would probably be in the range of slightly more than 68 Ma, or nearly 1 Myr younger than that of DMNH EPV.138575 SYSTEMATIC PALEONTOLOGY Dinosauria Owen 1842 sensu Padian and May 1993
254255256257258259	m below the Hell Creek/Fox Hills contact). Thus, the age of this bone would probably be in the range of slightly more than 68 Ma, or nearly 1 Myr younger than that of DMNH EPV.138575 SYSTEMATIC PALEONTOLOGY Dinosauria Owen 1842 sensu Padian and May 1993 Theropoda Marsh, 1881 sensu Gauthier 1986
254 255 256 257 258 259 260	m below the Hell Creek/Fox Hills contact). Thus, the age of this bone would probably be in the range of slightly more than 68 Ma, or nearly 1 Myr younger than that of DMNH EPV.138575 SYSTEMATIC PALEONTOLOGY Dinosauria Owen 1842 sensu Padian and May 1993 Theropoda Marsh, 1881 sensu Gauthier 1986 Tetanurae Gauthier, 1986 sensu Sereno et al. 2005
254 255 256 257 258 259 260 261	m below the Hell Creek/Fox Hills contact). Thus, the age of this bone would probably be in the range of slightly more than 68 Ma, or nearly 1 Myr younger than that of DMNH EPV.138575 SYSTEMATIC PALEONTOLOGY Dinosauria Owen 1842 sensu Padian and May 1993 Theropoda Marsh, 1881 sensu Gauthier 1986 Tetanurae Gauthier, 1986 sensu Sereno et al. 2005 Coelurosauria von Huene, 1914 sensu Sereno et al. 2005

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

mediolateral widths. The proximal articular facet is concave and subtriangular in proximal outline and overgrown with framboidal pseudomorphic (pyrite) hematitic concretions. These concretions conceal detailed morphological features over much of the proximoventral portion, and where mechanically removed dorsally, have invaded and dissolved much of the cortical surface and dorsal morphology. Similarly, the distal articular facet, including the distal-most section of the condyle, has been obliterated by erosion, likely upon exhumation. We suspect that if the distal condyle were intact, the minimum length of the phalanx would likely be closer to 85mm, and perhaps even greater.

The shaft is arched ventrodorsally and slightly mediolaterally constricted just proximal to the plane corresponding with the arch's apex. In dorsal and ventral views, the shaft appears very slightly curved toward the larger collateral ligament fossa (here tentatively identified as the medial fossa), and neither proximal nor distal articular areas expand laterally. Just proximoventral to the larger (medial) ligament fossa, there is a slight protuberance that extents to the ventral surface of the bone. The shaft is oval in cross section, and in medial and lateral views, broadens toward the proximal end, terminating in framboidal hematitic concretionary growths. Apart from longitudinal and transverse fractures and some spalling of the dorsal cortex, the shaft is in better condition than both distal and proximal ends. The ventral surface of the specimen is moderately flattened and slightly asymmetrical. Proximally, the ventral surface includes two parallel plantar ridges running longitudinally towards the proximal facet. The medial of the two ridges is confluent with a subtriangular, rugose plantar surface. Distally, the ventral surface is weakly indented with a circular post-condylar depression. The dorsal surface of the shaft features a relatively rounded, gently medially curved ridge that runs longitudinally, becoming more exaggerated toward the proximal end. In dorsal view, the proximal facet is notably asymmetrical,

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

sloping medially. A shallow depression of the extensor fossa is located dorsally, just behind the distal condylar surface.

The distal end is subrectangular in cross section, bearing a smooth, rounded articular condyle where not lost to diagenesis. The ventral margins of the distal condyle exhibit some pitting where true rugosities are apparent. The lateral collateral ligament pits are well developed, asymmetrical, teardrop shaped, relatively deep, and large, the medial pit being significantly larger than the other. Although some erosion has occurred, there is no indication that the dorsal surface of the condyle is significantly narrower than the ventral surface, thus the collateral fossae are not clearly visible in dorsal view. In addition, there is a very slight oval depression just distal of the proximal articulation facet on what we here identify as the lateral side (the side featuring the smaller ligament fossa). Comparisons. DMNH EPV.138575: The Fairpoint phalanx shares similarities with those reported from various tyrannosaurid taxa. These include: a slightly sloping long axis, ventral rugosities near the proximal articular facet and an arched ventral surface in medial and lateral views (Brochu, 2003); a shallowly concave proximal facet (evident in proximal phalanges; Lambe, 1917); deep and asymmetric collateral ligament fossae (a trait shared by all phalanges apart from those belonging to digit III, which are equal in size (Lambe, 2017; Brochu, 2003, figs. 107 and 108; Brusatte et al., 2012); and a relatively shallow extensor pit (Brusatte et al., 2012, fig. 80; Brochu, 2003, fig. 105). However, there are also dissimilarities, the most glaring ones of which are the relatively small size (smaller than all but the distal-most phalanges of digit IV in the adult Tyrannosaurus rex, see Brochu, 2003) and the lack of expanded distal and proximal articular regions relative to the shaft in dorsal and ventral views (Brochu 2003). Moreover, the ratio of proximodistal length to mediolateral midshaft width is larger than 3, if the abraded distal

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

condyle is taken into account, a value greater than that identified for Tyrannosauridae (Brusatte, 2010, SOM). All in all, the Fairpoint phalanx appears slightly more gracile than the pedal phalanges of adult tyrannosaurs known from North America of a similar stratigraphic age. We suspect that this could be due to ontogenetic variation, and that DMNH EPV.138575, if indeed tyrannosaurid in nature, could potentially have belonged to a subadult individual. Its size is consistent with the phalanges described from the Upper Cretaceous Horseshoe Canyon tyrannosaurid of Alberta, Canada (Mallon et al., 2020, Table 1). In fact, DMNH EPV.138575 bears striking similarities with pedal phalanx II-2 of the Horseshoe Canyon tyrannosaurid in that both have a shallow extensor fossa, deep collateral ligament pits, and a minimally mediolaterally constricted and slightly curved diaphysis (Mallon et al., 2020, fig. 16). However, the Horseshoe Canyon specimen exhibits a proximally projecting dorsal lip at the proximal articular facet, a feature that is not apparent in our specimen but may have been destroyed as the bone shows damage here. As observed in the phalanges of many tyrannoaurids, the distal condyle in the Horseshoe Canyon specimen narrows dorsally, revealing the collateral fossae in dorsal view and resulting in a subtrapezoidal, rather than subrectangular, cross section. DMNH EPV.138575 also possesses morphological features comparable to those observed in the proximal pedal phalanges of various ornithomimids. These characteristics, which are also represented in tyrannosaurids, include a shallowly concave proximal articular facet, (Kobayashi and Barsbold, 2005; Cullen et al., 2013; Osmólska et al., 1972, Chinzorig et al. 2017), a shallow extensor fossa (Shapiro et al., 2003, fig. 1; Cullen et al., 2013, figs. 2 and 3; Sues and Averianov, 2016, fi.g 24; Claessens and Loewen, 2015, figs. 5, 6 and 8) and deep and distinct collateral ligament fossae (Smith and Galton, 1990; Kobayashi and Barsbold, 2005; Shapiro et al., 2003, fig.1). Interestingly, DMNH EPV.138575 shares similarities specifically

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

with phalanx II-1 of an unnamed ornithomimid from Uzbekistan's Late Cretaceous Bissekty Formation (Sues and Averianov, 2016, fig. 24) and *Ornithomimus velox* of the Late Maastrichtian Denver Formation (Claessens and Loewen, 2015; figs. 5, 6 and 8). These include a slightly deflected ridge running longitudinally across the dorsal surface; deep, asymmetrical collateral ligament pits; a slight protuberance emanating just proximoventrally from the larger ligament pit; and a shallow extensor fossa. However, in DMNH EPV.138575, the proximodistal length is significantly greater (by about 30 mm) and the ventral ridges near the proximal facet are notably less pronounced, though possibly abraded. The most consistent placement based on overall morphology is a right phalanx III-2, comparing most closely with TMP2015.007.0315, an ornithomimid foot from the Dinosaur Park Formation of Alberta. Morphologically similar but more size-equivalent with our specimen is the pedal material belonging to unidentified members of Ornithomimidae recovered from a Late Cretaceous bone bed in Alberta, Canada (Cullen et al., 2013; figs 2 and 3), or *Beishanlong*, a giant ornithomimosaur from the Early Cretaceous of China (Makovicky et al., 2010; fig. 3). Other anomalously large ornithomimid elements are known from other Cretaceous deposits in the Western Interior or North America, including the Dinosaur Park Formation (Longrich, 2008), suggesting the presence of unidentified large-bodied taxa or upper body size limits beyond expectations based on more complete materials. Because no other skeletal elements have been found associated with DMNH EPV.138575, and because some key morphological features are either destroyed or concealed by hematitic overgrowths, we cannot conclusively assign the element to a particular non-avian theropod clade. However, based on several morphological characteristics, size of the element, and stratigraphic age, we tentatively attribute the phalanx to a member of Coelurosauria, likely belonging to a large-bodied member of Ornithomimidae, specifically right pedal phalanx III-2.

Dinosauria Owen 1842 sensu Padian and May 1993
Theropoda Marsh, 1881 sensu Gauthier 1986
Tetanurae Gauthier, 1986 sensu Sereno et al. 2005
Coelurosauria von Huene, 1914 sensu Sereno et al. 2005
<i>Description.</i> – YPM VP.061705: While relatively robust, phalanx YPM VP.061705 is
significantly smaller than DMNH EPV.138575, with a proximodistal length of 44 mm (see Table
1 for additional measurements). The phalanx preserves much of its original surface, missing only
the dorsal half of the proximal articular surface to breakage. A weak, vertical medial ridge
divides the proximal articular cotyle into slightly concave medial and lateral portions. In
proximal view, the articular surface appears sub-triangular to moderately pentagonal in cross-
section, with the lateral sides nearly vertical (steep-sided). Ventrally on the proximal end, a
broad lip-like asymmetrical flange projects medially. The proximoventral surface is planar, with
two faint plantar ridges oriented longitudinally near the proximal facet indicated by a highly
vascularized cortical surface. The shaft is moderately arched dorsoventrally and mildly pinched
near the distal condyle. The proximal and distal areas are expanded relative to the shaft in
dorsoventral but especially in mediolateral view. The distal articular condyle is divided into two
highly asymmetrical distal hemi-condyles separated by a vertical sulcus. The medial hemi-
condyle is dorsoventrally significantly larger than its lateral counterpart, dorsally thickened, and
inclined dorsolaterally towards the sagittal midline. The lateral and medial ligament fossae are
ellipsoidal, the medial being deeper and modestly visible in dorsal view. On the dorsal surface
just proximal between both hemi-condyles, a relatively shallow extensor fossa is evident.
Macroscopically, YPM VP.061705 appears well-preserved. As in other vertebrate
appendicular elements capped by cartilaginous soft tissues, the texture of the articular surfaces is

distinctly rough contrasting the smooth, compact cortical surface of the shart. Some find pitting
of the cortex is apparent but whether this is diagenetic or pathologic is unclear. Where the bone
is spalled, the internal spongy tissue is porous, showing little to no diagenetic mineral infilling.
Comparisons. YPM VP.061705: Because many morphological traits of pedal phalanges are
shared by various coelurosaurian clades, particularly between the temporally relevant
Ornithomimidae and Tyrannosauridae, it is difficult to attribute this single, isolated specimen to
either group definitively. Nevertheless, because of its geographic and stratigraphic location, its
general morphology and size, we cautiously assign YPM VP.061705, like DMNH EPV.138575,
to Ornithomimidae, specifically left pedal phalanx II-2. Several attributes are consistent with
pedal phalanx II-2 of CMN 12068 described by Cullen et al. (2013), including its width to length
ratio, its pronounced proximoventral flange and its ginglymoid proximal articular facet (Cullen
et al., 2013, fig. 2 C). Likewise, we see considerable similarities with pedal phalanx II-2 of a
large lower Cretaceous ornithomimid from China's Ganzu province, such as deep medial
ligament fossa, the significantly enlarged distal condyle relative to shaft diameter, a shallow
extensor fossa, and overall shape and width to length ratio (Shapiro et al., 2003; fig. 1 C and D).
Dissimilarities in pedal phalanx II-2 of the stratigraphically similar North American
Ornithomimus velox indicate either a tentative assignment of YPM VP.061705 to
Ornithomimidae, or reveal undocumented variation in pedal phalangeal morphology within the
clade. Phalanx II-2 of O. velox is proximodistally and dorsoventrally more compressed than
YPM VP.061705, with a notably shorter shaft; a less exaggerated distal condyle relative to shaft
diameter; and shallower ligament fossae (Claessens and Loewen, 2015; fig. 8).

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

DISCUSSION

Depositional Environment of DMNH EPV.138575: Landman et al. (2013; Fig. 5) indicate that the western shoreline of the Western Interior Seaway (WIS) during the upper H. nicolletii Zone extended from SW to NE across South Dakota. Our collection site lay very close to, but on the seaway side, of the shoreline. They envision this shoreline as highly irregular and characterized by headlands, bays, estuaries, bars, and shoals, a view consistent with Hoganson et al.'s (2007) description of the shoreline in North Dakota, and that of Becker et al. (2004) for the paleoenvironment of the collection site itself. While deposition in a shifting, unstable, sandy shoreface environment seems apparent, Becker et al. (2004) also note that except for the beds shown in Figure 2, from which their specimens, and DMNH EPV.138575, derive, fossils are uncommon above and below the bone horizon. This, together with the observation that our White Owl assemblage consists of mixed terrestrial, freshwater, and marine faunal elements, suggests that the fossiliferous beds at White Owl may represent a condensed section resulting from a short-lived transgressive event in an otherwise overall sea-level regression associated with the retreat of WIS waters at the close of the Cretaceous and the development of the Dakota Isthmus (Erickson, 1978; 1999). Similar mixed assemblages deriving in part from short term transgressive events, are known from the Atlantic Coastal Plain, such as in the Campanian Black Creek Group of North Carolina (Schwimmer, 1997); the Campanian Marshalltown Formation at Ellisdale, New Jersey (Brownstein, 2018); and in the Type Area Iron Lightning member of the Fox Hills Formation itself (Waage, 1968). The discovery of scaphite shell fragments in the overlying Hell Creek Formation (Hoganson and Murphy 2002; Hartman and Kirkland 2002) and Lance Formation

(Jeletzky and Clemens, 1965) indicate that transgressive marine incursions are a feature of the

426	waning phases of the WIS. Deposition of the bone bed at our White Owl bone locality was
427	probably produced by a more transient, small-scale transgression than those observed in the
428	continental Hell Creek or Lance Formations.
429	Depositional Environment of YPM VP.061705: The depositional environment preserving the
430	Yale phalanx is essentially similar to the shallow, nearshore paleoenvironment in which the
431	Fairpoint phalanx occurs. Waage (1968) regarded the Iron Lightning Member as the product of
432	coastal, lagoonal, delta-topset deposits related to the eastward migration of the Sheridan Delta.
433	Channels of Colgate lithology were cut into these deposits by currents flowing across them.
434	Waage (1968) points out that the Yale phalanx was part of a basal channel accumulation
435	containing terrestrial, freshwater, and nearshore marine fossils. Thus, there is the possibility that
436	YPM VP.061705 is associated with a tidal or distributary channel associated with the deltaic
437	setting then beginning to dominate the northern parts of the Western Interior. The depositional
438	environment of YPM VP.061705 would appear, therefore, to have been somewhat more onshore
439	as compared to that of DMNH EPV.138575.
440	Temporal Significance : The inferred age of 69 Ma for the horizons preserving DMNH
441	EPV.138575 place it in a poorly-represented biochronological interval of the middle
442	Maastrichtian, representing an interval within the poorly defined 'Edmontonian' NALMA.
443	Contemporary Western Interior terrestrial faunas from this interval are known from the Prince
444	Creek Formation of Alaska (Mull et al., 2003); the Wapiti (Unit 5; Fanti and Catuneanu, 2009)
445	and Horseshoe Canyon (Tolman Member; Eberth and Braman, 2012) formations of Alberta; the
446	North Horn Formation (Unit 1; Difley and Ekdale, 2002) of Utah; the Ojo Alamo Formation
447	(Lucas et al., 2009) of New Mexico, the Javelina Formation (Lehman et al., 2006) of Texas; and
448	possibly portions of the lower Laramie Formation of Colorado (Raynolds, 2002; Wilson et al.,

2010). Many of these faunas preserve similar dinosaurian components, including hadrosaurid, 449 ceratopsid, pachycephalosaurian, and ankylosaurian ornithischians, and tyrannosaurid, 450 ornithomimid, oviraptorosaurian, and paravian theropods. The presence of an ornithomimid, or 451 tyrannosaurid, is therefore not surprising, though it does underscore the potential significance of 452 any terrestrial vertebrate remains from the Fox Hills Formation in understanding biotic 453 454 distribution and diversity of the Western Interior during the Edmontonian. Bone Taphonomy DMNH EPV. 138575: Apart from damage to the distal and proximal ends of 455 the phalanx as a result of hematitic overgrowth, the bone does not appear to be abraded to any 456 significant degree even though it was buried in what was clearly an unstable, shifting substrate. 457 However, there are several longitudinal and transverse cracks in the cortical bone. Although 458 some breakage occurs in acute or obtuse angles, the primary breakage pattern here appears to be 459 orthogonal, at right angles. Such a pattern has been observed in the fracturing of dry bone, i.e., 460 breakage that occurs in purely mineralized or permineralized bone after the loss of internal 461 462 organic material (Johnson, 1985; Morlan, 1984; Villa and Mahieu, 1991). In a few places, slivers and flakes of cortical bone have spalled off the specimen. These features are clearly seen in 463 Figure 5. This does not appear to be the result of predation or scavenging by sharks because the 464 shape of the elongated, irregular outline of the cracks is inconsistent with the often arcuate 465 repetitive incisions made by blade-like shark teeth as the shark shakes its head from side to side 466 after biting down (Schwimmer et al., 1997; Everhart and Ewell, 2006; Becker et al., 2006). 467 Moreover, the smooth surface of the bone precludes it having been digested in the gut of a 468 469 predator, the result of which would have been an eroded, broken-down bone surface (Chin et al. 1998; Varricchio, 2001; Everhart, 2003, 2004; Everhart and Ewell, 2006; Schwimmer et al. 470 2015b). It is also possible such bone loss was due to the impact of large pebbles or other objects 471

mobilized by storm or tidal flows, but the near absence of abrasion on the bone and the absence of large clasts in the sandstone argues against this alternative.

Small hematitic concretions adhere to the surface of the bone (Fig. 5). Two particularly evident hemispherical concretions, each about 1.5 cm in diameter, attach to the articulation surface at the proximal end of the bone (Fig. 5). The bone has a dark color where similar concretions have broken away from the bone surface on both proximal and distal extremities. In addition, smaller, flattened irregular concretions coat portions of the bone shaft and the surfaces of the collateral ligament pits. All of these concretions are composed of sedimentary grains, mostly quartz, cemented together and to the bone by microcrystalline hematite and probably other iron oxides as well. Pyrite crystals are not visible, although they were undoubtedly present when the concretions were forming diagenetically. The bone was recovered from clean sand well removed from any of the hematitic concretions or concretionary layers that occur in the outcrop (Figure 2), so that the formation of the bone concretions may reflect the localized microenvironment immediately surrounding the bone rather than more widespread parameters such as groundwater movements that created the large concretions and concretionary horizons.

Pyrite and iron oxides can replace organic material (Sawlowicz and Kaye, 2006; Canfield and Raiswell, 1991), and can form in and on fossil bone in various different ways (Pfretzschner, 2001, Bao et al.,1998). Decomposition of organic matter can nucleate concretions and spur their growth because of its effect on local pH and eH. The relative prominence of the concretions associated with articulation surfaces and ligament pits is interesting because it is these parts of the bone to which tendon and cartilage, which are soft tissues slow to decay, are attached. The concretions visible on DMNH EPV.138575 thus may mean that flesh still adhered to it when it was initially buried. Alternatively, these concretions could have precipitated on those surfaces

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

favorable to the decomposition of the bone's more durable internal organic compounds. As is the case in most long bones (Bishop et al., 2018; Moreira et al. 2019), the cortex of pedal phalanges appears thickest along the shaft (where the mineral density is higher), whereas near the proximal and distal articulation surfaces the cortex progressively thins and the internal space is dominated by more vascular cancellous bone tissue whose mineral density is lower. Near or at the articulation surfaces these conditions (thin cortex and porous bone texture) would allow for easier access to bone internal organic material, such as collagen, enabling microbial decomposition, the byproducts of which (i.e., sulfide) if combined with dissolved iron could have precipitated pyrite in and on the bone. This form of pyritization would have occurred during the early diagenetic stages (Pfretzschner, 2001, 2004). During late diagenesis, the pyrite could have oxidized while near the surface to form the hematitic concretions evident today. However, if the hematitic concretions are, in fact, the product of the oxidization of pyrite formed from the decomposition of organic matter in or on the bone, the dry bone fracture pattern stands in direct taphonomic contrast, because it suggests the absence of organic material when breakage occurred. This would imply that pyritization took place either before fracturing or not by means of the decay of organic compounds. The mode of iron oxide formation was not further studied in this paper so that a more complete taphonomic history of DMNH EPV.138575 remains unresolved.

Bone Taphonomy YPM VP.061705: We do not attempt to interpret the taphonomy of the Yale bone in detail because we were unable to examine the specimen first-hand due to COVID-19 pandemic restrictions in force at the time of the writing of this article. However, the overall exceptional preservation of the external bone surface, preserving minute details of vascularization and soft tissue attachments, suggest rapid burial with minimal transport.

526

536

SIGNIFICANCE	OF MARINE	PRESERVATION OF DINOSAUR	REMAINS
DICTIONICANCE		I NESERVALION OF DINOSAUR	NUMBER

Preservation of dinosaur skeletal elements in Cretaceous estuarine and marine sedimentary rocks of North America is unusual but not unknown. Occasionally, such preservation is associated with a find of spectacular proportion as the discovery in 1858 of a partial hadrosaur skeleton from the marine Woodbury Formation, an offshore glauconitic marl of Campanian age, in Haddonfield, New Jersey (NJ), USA (Leidy, 1859a, 1859b; Foulke, 1859). This was the first partly articulated dinosaur skeleton recovered in the western hemisphere. Its discovery heralds the great American dinosaur rush of the late 19th and early 20th centuries involving such celebrated dinosaur hunters as E.D. Cope, O.C. Marsh, H.F. Osborn, and B. Brown.

More often, dinosaur skeletal material recovered from coastal settings is dissociated, disseminated and fragmentary. Yet, such occurrences can be of prime importance in identifying the dinosaur fauna inhabiting adjacent land masses. This is the case of the Ellisdale site in western Monmouth County, NJ, where erosion by Crosswicks Creek of the Campanian Marshalltown Formation, a sandy, glauconitic marine marl, has uncovered a numerically abundant and taxonomically diverse assemblage of dinosaur skeletal fragments derived from hadrosaurs and other ornithopods, and theropods, including dromaeosaurs, ornithomimosaurs, and tyrannosaurs (Weishampel and Young, 2006; Brownstein, 2018). These fossils, as well as other dissociated dinosaur remains from other units of the Cretaceous sedimentary record of the Atlantic and Gulf Coastal Plains (Baird and Hoerner, 1979; Schwimmer et al., 1993; Kiernan and Schwimmer, 2004; Carr et al., 2005; Ebersole et al. 2011; Schwimmer et al., 2015a; Farke and Phillips, 2017) and Great Plains (Mehl, 1931, 1936; Eaton, 1960; Everhart and Hamm, 2005; Liggett, 2005), impart a reasonably detailed picture of the dinosaur fauna inhabiting Appalachia.

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

the somewhat isolated eastern portion of North America which was separated from western North America during much of the Cretaceous by the Western Interior Seaway (WIS).

The Cretaceous sedimentary record of dinosaur remains occurring in marine and estuarine settings of the WIS also has its spectacular finds, as for example the shark-bitten nodosaurid and hadrosaur bones described by Schwimmer et al. (1997) and Everhart and Ewell (2006), or the hadrosaur remains from the marine Bear Paw Shale first discovered by Douglass (1902), but not actually described until much later by Horner (1979). In his 1979 paper, Horner provides a listing of marine dinosaur finds for both the Western Interior and the eastern part of the USA, and points out the existence of a striking disparity in the abundance and diversity of eastern marine dinosaur occurrences as compared to those from the Western Interior. His tabulation shows that the Western Interior Cretaceous marine record contains fewer reports of far less dinosaur material than do descriptions of time-equivalent strata from the Atlantic and Gulf Coastal Plains. Horner (1979) attributes this dichotomy, not to an inherent paucity of dinosaur remains in Western Interior marine rocks, but rather, to the remarkable richness of dinosaur assemblages preserved in the widespread terrestrial rocks of the adjoining western landmass of Laramidia, which he felt has drawn the attention of dinosaur workers to the terrestrial Campanian-Maastrichtian sequence. His view, with which we agree, was that the rocks of the WIS may represent a more valuable target for informative dinosaur research than has been so far appreciated. In contrast, except for the Arundel Clay, a localized paludal deposit in eastern Maryland (Kranz, 1998; Frederickson et al., 2018), Appalachia has no significant Cretaceous terrestrial sedimentary record, and thus the Appalachian marine sequence has perforce become the preeminent resource for dinosaur workers in the eastern and southern USA.

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

Horner's tabulation (Horner, 1979) shows that the known occurrences of Western Interior marine dinosaur preservation are numerically greatest along the southeastern margin of the Seaway, in the states of Mississippi, Missouri, and Arkansas, and thus probably derive from animals inhabiting Appalachia. A few mid-Seaway occurrences, representing more offshore depositional settings are also known from the Pierre Shale of South Dakota and the Niobrara Formation of Kansas. On the western side of the Seaway are several occurrences in the nearshore portions of the Bear Paw Shale of Montana and the Thermopolis Shale of Wyoming. These finds would presumably represent animals once living in Laramidia. Several additional discoveries of Laramidian dinosaurs preserved in Seaway rocks have been made since Horner published his tabulation, including hadrosaurs (Fiorillo, 1990; Lucas et al., 2006), a nodosaur (Brown et al., 2017), and a therizinosaur (Zanno et al., 2009). Conspicuously missing from Horner's compilation is the Fox Hills Formation, a unit usually considered as the product of nearshore to coastal, and locally onshore, deposition along the western margin of the Seaway and shoreline of Laramidia for a large part of the Late Cretaceous (Waage, 1968; Erickson, 1974; Landman and Waage, 1993; Horner, 1989; Becker et al., 2004; Hoganson et al., 2007; Olariu et al. 2012). With Hoganson et al.'s (2007) broken

preserved in Late Maastrichtian marginal Seaway sediments holds considerable promise in

helping to interpret the complex depositional patterns and paleoenvironmental shifts that 585 occurred during the waning of the Western Interior Seaway in the Late Maastrichtian. 586 **ACKNOWLEDGMENTS** 587 We thank Alan Titus, Paria River District Paleontologist (Bureau of Land Management), and 588 Neil Landman (American Museum of Natural History) for their comments on an earlier version 589 590 of this paper. We also appreciate the help of Vanessa Rhue (Yale Peabody Museum) in tracking down and providing photographs of YPM VP.061705. 591 **REFERENCES** 592 Baird, D., and Horner, J.R., 1979. Cretaceous dinosaurs of North Carolina: *Brimleyana*, vol. 2, p. 593 1-28.594 Bao, H., Koch, P. and Hepple, R., 1998. Hematite and calcite coatings on fossil vertebrates. 595 Journal of Sedimentary Research. 68. 10.2110/jsr.68.727. 596 Becker, M.A., Chamberlain, J.A., Jr., and Terry, D.O., Jr. 2004. Chondrichthyans from the 597 Fairpoint Member of the Fox Hills Formation (Maastrichtian), Meade County, South 598 Dakota. Journal of Vertebrate Paleontology, vol. 24, pg. 780-793. 599 Becker, M.A., Chamberlain, J.A., Jr., and Goldstein, L., 2006. Evidence for a shark-bitten turtle 600 costal from the lowermost Navesink Formation (Campanian-Maastrichtian) Monmouth 601 County, New Jersey. Northeastern Geology and Environmental Science, vol. 28, pg. 174-602 603 181. Becker, M.A., Chamberlain, J.A., Jr., Robb, A., Terry, D.O., Jr., and Garb, M.P., 2009. 604 Osteichthyans from the Fairpoint Member of the Fox Hills Formation (Maastrichtian), 605 606 Meade County, South Dakota, USA. Cretaceous Research, vol. 30, pg. 1031–1040.

607	Bishop, P.J., Hocknull, S.A., Clemente, C.J., Hutchinson, J.R., Farke, A.A., Beck, B.R., Barrett,
608	R.S., and Lloyd, D.G., 2018. Cancellous bone and theropod dinosaur locomotion. Part I-an
609	examination of cancellous bone architecture in the hindlimb bones of theropods. PeerJ, 6,
610	e5778.
611	Black, D.F.B., 1964. Geology of the Bridger area of west-central South Dakota. South Dakota
612	Geological Survey, Reports of Investigations, vol. 92, pg. 1-17.
613	Brochu, C., 2003. Osteology of Tyrannosaurus rex: Insights from a Nearly Complete Skeleton
614	and High-Resolution Computed Tomographic Analysis of the Skull. Journal of Vertebrate
615	Paleontology Supplement 4, vol. 22. pg. 1-138. 10.1080/02724634.2003.10010947.
616	Brown, C.M., Henderson, D.M., Vinther, J., Fletcher, I., Sistiaga, A., Herrera, J., Summons,
617	R.E., 2017. An exceptionally preserved three-dimensional armored dinosaur reveals insights
618	into coloration and Cretaceous predator-prey dynamics. Current Biology, vol. 27, pg. 2514-
619	2521. doi:10.1016/j.cub.2017.06.071
620	Brownstein, C.D., 2018. The distinctive theropod assemblage of the Ellisdale site of New Jersey
621	and its implications for North American dinosaur ecology and evolution during the
622	Cretaceous. Journal of Paleontology, vol. 92, pg. 1115-1129.
623	Brusatte, S.L., Norell, M.A., Carr, T.D., Erickson, G.M., Hutchinson, J.R., Balanoff, AM.,
624	Bever, G.S., Choiniere, J.N., Makovicky, P.J., Xu, X., 2010. Tyrannosaur Paleobiology:
625	New Research on Ancient Exemplar Organisms. Science (New York, N.Y.). 329. 1481-5.
626	10.1126/science.1193304.

627	Brusatte, S.L, Carr, T.D. and Norell, M. A, 2012. The Osteology of <i>Alioramus</i> , A Gracile and
628	Long-Snouted Tyrannosaurid (Dinosauria: Theropoda) from the Late Cretaceous of
629	Mongolia. Bulletin of the American Museum of Natural History. 366. 1-197. 10.1206/770.1
630	Canfield, D. E., Raiswell, R., 1991: Pyrite formation and fossil preservation. In: Allison, P. A. &
631	Briggs, D. E. G. (eds), Taphonomy: Releasing the Data Locked in the Fossil Record. Topics
632	Geobiology, 9: pp. 337–387.
633	Carr, T.D., Williamson, T.E., and Schwimmer, D.R., 2005. A new genus and species of
634	tyrannosauroid from the Late Cretaceous (middle Campanian) Demopolis Formation of
635	Alabama. Journal of Vertebrate Paleontology, vol. 25, pg. 119–143.
636	Chamberlain, J.A., Jr., Terry, D.O., Jr., Stoffer, P.W., and Becker, M., 2001, Paleontology of the
637	K/T boundary, Badlands National Park, South Dakota, in Santucci, V.L., and McClelland,
638	L., eds., Proceedings of the 6th Fossil Resource Conference: National Park Service
639	Geological Resource Division Technical Report NPS/NRGRD/GRDTR-01/01,p. 11–22.
640	Chamberlain, J.A., Jr., Palamarczuk, S., Terry, D.O., Jr., Stoffer, P.W., Becker, M.A., Garb,
641	M.P., and Jannett, P. 2005. Biostratigraphy and age of the Lower Fairpoint Member of the
642	Fox Hills Formation (Maastrichtian), Badlands area of South Dakota. Geological Society of
643	America, Abstracts with Programs. Vol. 37, No. 7, p.370.
644	Chin, K., Tokaryk, T.T., Erickson, G.M., and Calk, L.W., 1998. A king-sized theropod coprolite
645	Nature, vol.393, pg. 680-682.
646	Chinzorig, T., Kobayashi, Y., Tsogtbaatar, K., Currie, P., Watabe, M., Barsbold, R., 2017. First
647	Ornithomimid (Theropoda, Ornithomimosauria) from the Upper Cretaceous Djadokhta
648	Formation of Tögrögiin Shiree, Mongolia. Scientific Reports 7, 5835
649	https://doi.org/10.1038/s41598-017-05272-6

- 650 Claessens, L.P.A.M., Loewen, M.A., 2015. A redescription of *Ornithomimus velox* Marsh, 1890
- 651 (Dinosauria, Theropoda). *Journal of Vertebrate Paleontology* e1034593,
- doi:10.1080/02724634.2015.1034593
- 653 Cobban, W.A., Walaszczyk, I., Obradovich, J.D., and McKinney, K.C., 2006. USGS Zonal
- Table for the Upper Cretaceous Middle Cenomanian—Maastrichtian of the Western Interior
- of the United States Based on Ammonites, Inoceramids, and Radiometric Ages. *United*
- States Geological Survey, Open-File Report 2006–1250. 45 p.
- 657 Cullen, T.M., Ryan, M.J., Schröder-Adams, C., Currie, P.J., & Kobayashi, Y., 2013. An
- ornithomimid (Dinosauria) bonebed from the Late Cretaceous of Alberta, with implications
- for the behavior, classification, and stratigraphy of North American ornithomimids. *PloS*
- one, 8(3), e58853. https://doi.org/10.1371/journal.pone.0058853
- Difley R.L., and Ekdale, A.A., 2002. Footprints of Utah's last dinosaurs: track beds in the Upper
- 662 Cretaceous (Maastrichtian) North Horn Formation of the Wasatch Plateau, Central Utah.
- 663 *PALAIOS*, vol. 17, pg. 327–346.
- doi:10.1669/08831351(2002)017<0327:FOUSLD>2.0.CO;2
- Douglas, E., 1902. Dinosaurs in the Fort Pierre Shales and underlying beds in Montana. Science,
- 666 n.s., vol. 15(366), pg. 31-32
- Eaton, T.H., Jr., 1960. A new armored dinosaur from the Cretaceous of Kansas. *The University*
- of Kansas Paleontological Contributions: Vertebrata, vol. 8, pg. 1-24.
- Ebersole, S.M., and King, J.L., 2011. A review of non-avian dinosaurs from the Late Cretaceous
- of Alabama, Mississippi, Georgia, and Tennessee. Bulletin of the Alabama Museum of
- 671 *Natural History*, vol. 28, pg. 81–93.

672	Eberth D.A., and Braman D.R., 2012. A revised stratigraphy and depositional history for the
673	Horseshoe Canyon Formation (Upper Cretaceous), southern Alberta plains. Canadian
674	Journal of Earth Sciences, vol. 49, pg. 1053-1086. doi:10.1139/e2012-035
675	Erickson, J.M. 1974. Revision of the Gastropoda of the Fox Hills Formation, Upper Cretaceous
676	(Maestrichtian) of North Dakota. Bulletins of American Paleontology, vol. 66, pg. 127-253.
677	Erickson, J.M., 1978, Bivalve mollusk range extensions in the Fox Hills Formation
678	(Maestrichtian) of North and South Dakota and their implications for the Late Cretaceous
679	geologic history of the Williston Basin. North Dakota Academy of Science Proceedings, vol.
680	32, p. 79–89.
681	Erickson, J.M., 1992. Subsurface stratigraphy, lithofacies, and paleoenvironments of the Fox
682	Hills Formation (Maastrichtian, Late Cretaceous) adjacent to the type area, North Dakota
683	and South Dakota - toward a more holistic view. in: Erickson, J.M., Hoganson, J.W. (eds.),
684	Proceedings of the F.D. Holland, Jr. Symposium, North Dakota Geological Survey
685	Miscellaneous Series, vol. 76, pg. 199–273.
686	Erickson, J.M., 1999. The Dakota Isthmus-closing the Late Cretaceous Western Interior
687	Seaway. Proceedings of the North Dakota Academy of Sciences, vol. 53, pg. 124–129.
688	Everhart, M.J., 2003. First records of plesiosaur remains in the lower Smoky Hill Chalk Member
689	(Upper Coniacian) of the Niobrara Formation in western Kansas. Kansas Academy of
690	Science, Transactions, vol. 106, pg. 139-148.
691	Everhart, M.J. 2004. Plesiosaurs as the food of mosasaurs; new data on the stomach contents of a
692	Tylosaurus proriger (Squamata; Mosasauridae) from the Niobrara Formation of western
693	Kansas. The Mosasaur, vol. 7, pg. 41-46.

694	Everhart, M.J., and Hamm, S., 2005. A new nodosaur specimen (Dinosauria: Nodosauridae)
695	from the Smoky Hill Chalk (Upper Cretaceous) of western Kansas. Transactions of the
696	Kansas Academy of Science, vol. 108, pg. 15-21.
697	Everhart, M.J., and Ewell, K., 2006. Shark-bitten dinosaur (Hadrosauridae) caudal vertebrae
698	from the Niobrara Chalk (Upper Coniacian) of western Kansas. Transactions of the Kansas
699	Fanti F., and Catuneanu O., 2009. Stratigraphy of the Upper Cretaceous Wapiti Formation, west-
700	central Alberta, Canada. Canadian Journal of Earth Sciences, vol. 46, pg. 263–286.
701	doi:10.1139/E09-020
702	Farke, A.A., and Phillips, G.E., 2017. The first reported ceratopsid dinosaur from eastern North
703	America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA. PeerJ 5:e3342; DOI
704	10.7717/peerj.3342
705	Fiorillo, A., 1990. The first occurrence of hadrosaur (Dinosauria) remains from the marine
706	Claggett Formation, Late Cretaceous of south-central Montana. Journal of Vertebrate
707	Paleontology, vol. 10, pg.515-517.
708	Foulke, W.P., 1859. Remarks on fossil bones, shells, and wood, particularly historical remarks
709	on the collection of Hadrosaurus foulkii Leidy. Proceedings of the Academy of Natural
710	Sciences of Philadelphia vol. 10, pg. 213–215.
711	Frederickson, Joseph A., Lipka, Thomas R., and Cifelli, Richard L. 2018. Faunal composition
712	and paleoenvironment of the Arundel Clay (Potomac Formation; Early Cretaceous),
713	Maryland, USA. Palaeontologia Electronica, 21.2.31A 1-24. https://doi.org/10.26879/847
714	palaeo-electronica.org/content/2018/2290-arundel-fauna-of-maryland-usa.
715	Gill, J.R. and W.A. Cobban, W.A., 1966. The Red Bird section of the Upper Cretaceous Pierre
716	Shale in Wyoming, with a section on a new echinoid from the Cretaceous Pierre Shalr of

717	eastern Wyoming, by P.M. Kier. United States Geological Survey, Professional Paper 393-
718	A, 73 pgs.
719	Gill, J.R. and W. A. Cobban, W.A., 1973. Stratigraphy and Geologic History of the Montana
720	Group and Equivalent Rocks, Montana, Wyoming, and North and South Dakota, United
721	States Geological Survey, Professional Paper 776. 37 pgs.
722	Hartman, J.H., Kirkland, J.I., 2002. Brackish and marine mollusks of the Hell Creek
723	Formation of North Dakota: Evidence for a persisting Cretaceous Seaway. In:
724	Hartman, J.H. Johnson, K.R., Nichols, D.J. (Eds.), The Hell Creek Formation of the
725	northern Great Plains: An integrated continental record of the end of the Cretaceous.
726	Geological Society of America Special Paper 361, pp. 271-296
727	Hicks, J.F., Johnson, K.R., Obradovich, J.D., Otauxe, L. and Clark, C. Magnetostratigraphy ans
728	geochronologyof the Hell Creek and basal Fort Union Formations of southwestern North
729	Dakota and a recalibration of the age of the Cretaceous-Tertiary boundary. Geological
730	Society of America Special Paper 361, pp.35-55.
731	Hoganson, J.W., Murphy, E.C., 2002. Marine Breien Member (Maastrichtian) of the
732	Hell Creek Formation in North Dakota: Stratigraphy, vertebrate record, and age.
733	In: Hartman, J.H., Johnson, K.R., Nichols, D.J. (Eds.), The Hell Creek Formation of
734	the northern Great Plains: An integrated continental record of the end of the
735	Cretaceous. Geological Society of America Special Paper 361, pp. 247-269.
736	Hoganson, J.W., Erickson, and J.M, Holland, D. F., Jr., 2007. Amphibian, reptilian, and avian
737	remains from the Fox Hills Formation (Maastrichtian): Shoreline and estuarine deposits of
738	the Pierre Sea in south-central North Dakota. in Martin, J.E., and Parris, D.C., eds., The
739	Geology and Paleontology of the Late Cretaceous Marine Deposits of the Dakotas,

740	Geological Society of America, Special Paper 427, p. 239–256, doi:			
741	10.1130/2007.2427(18).			
742	Horner, J.R., 1979. Upper Cretaceous dinosaurs from the Bearpaw Shale (marine) of south-			
743	central Montana with a checklist of Upper Cretaceous dinosaur remains from marine			
744	sediments of North America. Journal of Paleontology. vol. 53, pg. 566-577.			
745	Horner, J.R., 1989. The Mesozoic terrestrial ecosystems of Montana. Montana Geological			
746	Society Field Conference Guidebook, Billings, MT, vol. 1989, pg. 153-162.			
747	Jannett, P.A., and Terry D.O., Jr., 2008. Stratigraphic expression of a regional extensive			
748	impactite within the Upper Cretaceous Fox Hills Formation of southwestern			
749	South Dakota. In: Evans, K.R., Horton J.W., Jr., King D.T., Jr., Morrow, J.R. (Eds.),			
750	The sedimentary record of meteorite impacts. Geological Society of America			
751	Special Paper 437, pp. 199-213.			
752	Jeletzky, J.A., Clemens, W.A., 1965. Comments on Cretaceous Eutheria, Lance Scaphites			
753	and Inoceramus? ex. gr. tegulatus. Journal of Paleontology, 39, 952-959.			
754	Johnson, E., 1985. Current developments in bone technology. In Advances is Archaeological			
755	Method and Theory, (M.B. Shilfer, Ed.), vol. 8, pg 157-235. Orlando, FL: Academic Press.			
756	Kennedy, W.A., Landman, N.H., Christensen, W.K., Cobban, W.A., Hancock, J.M., 1998.			
757	Marine connections in North America during the late Maastrichtian: palaeogeographic and			
758	palaeobiologic significance of Jeletzkytes nebrascensis zone cephalopod fauna from the			
759	Butte Member of the Pierre Shale, SE South Dakota and NE Nebraska. Cretaceous			
760	Research 19, 745–775.			

- Kiernan, K., and Schwimmer, D.R., 2004. First record of a velociraptorine theropod (Tetanurae,
- Dromaeosauridae) from the eastern Gulf Coastal United States: *The Mosasaur*, vol. 7, pg.
- 763 89–93.
- Kobayashi, Y., Barsbold, R., 2011. Reexamination of a primitive ornithomimosaur,
- Garudimimus brevipes Barsbold, 1981 (Dinosauria: Theropoda), from the Late Cretaceous
- of Mongolia. Canadian Journal of Earth Sciences. 42. 10.1139/e05-044.
- Kranz, P.M. 1998. Mostly dinosaurs: a review of vertebrates of the Potomac Group (Aptian,
- Arundel Formation, USA). in Lucas, S.G., Kirkland, J.I., and Estep, J.W., eds., Lower and
- 769 *Middle Cretaceous Terrestrial Ecosystems*. New Mexico Museum of Natural History and
- Science, Bulletin 24, Albuquerque, pg. 235-238.
- Lambe, L.M., 1917. The Cretaceous theropodous dinosaur Gorgosaurus. Memoirs of the
- Geological Survey of Canada, v. 100, pg.1-84.
- Landman, N., and Waage, K., 1993. Scaphitid ammonites of the Upper Cretaceous
- (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. *American Museum of*
- Natural History Bulletin, vol. 215, pg. 1-257.
- Landman, N.H., Remin, Z., Garb, M.P., Chamberlain, J.A., Jr., 2013. Cephalopods from the
- Badlands National Park area, South Dakota: Reassessment of the position of the
- Cretaceous/Paleogene boundary. *Cretaceous Research*, vol. 42, pg. 1-27.
- Lehman, T.M., Mcdowell, F.W., and Connelly, J.N. 2006. First isotopic (U-Pb) age for the Late
- 780 Cretaceous *Alamosaurus* vertebrate fauna of west Texas, and its significance as a link
- between two faunal provinces. *Journal of Vertebrate Paleontology*, vol. 26, pg. 922–928.
- 782 doi:10.1671/0272-4634(2006)26[922:FIUAFT]2.0.CO;2

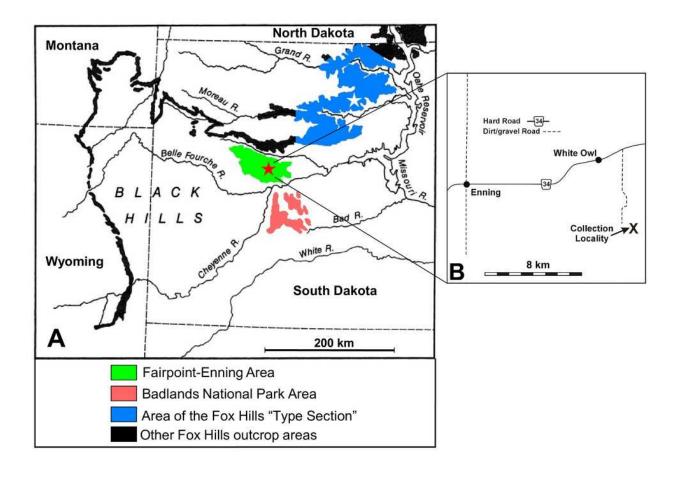
- Leidy, J., 1859a. *Hadrosaurus foulkii*, a new saurian from the Cretaceous of New Jersey.
- *Proceedings of the Academy of Natural Sciences of Philadelphia*, vol. 10, pg. 215-218.
- Leidy, J., 1859b. *Hadrosaurus foulkii*, a new saurian from the Cretaceous of New Jersey, related
- to the *Iguanodon*. *American Journal of Science*, vol. 77, pg. 266–270.
- 787 Liggett, G.A., 2005. A review of the dinosaurs from Kansas. *Transactions of the Kansas*
- 788 *Academy of Science*, vol. 108, pg. 1-14.
- Longrich, N., 2008. A new, large ornithomimid from the Cretaceous Dinosaur Park Formation of
- Alberta, Canada: implications for the study of dissociated dinosaur remains. *Palaentology*,
- 791 vol. 51, pg. 983-997.
- Lucas S.G., Sullivan, R.M., Cather, S.M., Jasinski, S.E., Fowler, D.W., Heckert, A.B.,
- Spielmann, J.A., and Hunt, A.P., 2009. No definitive evidence of Paleocene dinosaurs in the
- San Juan Basin. *Paleontologia Electronica*, vol. 12, pg. 1–10.
- Lucas, S., Spielmann, J., Kirkland, J., Foster, J, and Sullivan, R., 2006. A juvenile hadrosaurine
- from the middle Campanian (Late Cretaceous) interval of the Mancos Shale, Lucas, S. G.
- and Sullivan, R.M., eds. Late Cretaceous vertebrates from the Western Interior. *Bulletin of*
- the New Mexico Museum of Natural History and Science, vol. 35, pg. 281-292.
- Lund, S.P., Hartman, J.H., and Bannerjee, S.K. 2002. Magnetostratigraphy if interfingering
- 800 upper Cretaceous Paleocene marine and continental strata of the Williston Basin, North
- Dakota and Montana. Geological Society of America Special Paper 361, pg. 57-74.
- Lynds, R.M., and J.S. Slattery. 2017. Correlation of the Upper Cretaceous stratigraphy of
- Wyoming. Open File Report 2017-3. Wyoming State Geological Survey. Laramie,
- Wyoming.

Makovicky, P.J., Li, D., Gao, K. Q., Lewin, M., Erickson, G.M., & Norell, M.A., 2010. A giant 805 ornithomimosaur from the Early Cretaceous of China. *Proceedings. Biological sciences*, 806 277(1679), 191–198. https://doi.org/10.1098/rspb.2009.0236 807 Mallon, J.C., Bura, J.R., Schumann, D. and Currie, P.J., 2020. A Problematic Tyrannosaurid 808 (Dinosauria: Theropoda) Skeleton and Its Implications for Tyrannosaurid Diversity in the 809 810 Horseshoe Canyon Formation (Upper Cretaceous) of Alberta. Anatomical Record, vol. 303: 673-690. doi:10.1002/ar.24199 811 Mehl, M.G., 1931. Aquatic dinosaur from the Niobrara of western Kansas. Kansas Academy of 812 Science, Trasactions 108, pg. 1-14. 813 Mehl, M.G., 1936. Hierosaurus coleii: a new aquatic dinosaur from the Niobrara Cretaceous of 814 Kansas. Denison University Bulletin, Journal of the Scientific Laboratory, 31, pg. 1-20. 815 Merewether, E.A., Cobban, W.A., and Obradovich, J.D., 2011, Biostratigraphic data from Upper 816 Cretaceous formations—eastern Wyoming, central Colorado, and northeastern New Mexico: 817 United States Geological Survey Scientific Investigations Map 3175, 2 sheets, pamphlet, 10 818 819 p. Moreira, C.A., Dempster D.W., Baron R. Anatomy and Ultrastructure of Bone – Histogenesis, 820 Growth and Remodeling. [Updated 2019 Jun 5]. In: Feingold KR, Anawalt B, Boyce A, et 821 al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. 822 Morlan, R.E., 1984. Toward the definition of criteria for the recognition of artificial bone 823 824 alterations. Quaternary Res. 22, pg. 160-171. Mull C.G., Houseknecht D.W., Bird K.J., 2003. Revised Cretaceous and Tertiary stratigraphic 825 nomenclature in the Colville Basin, northern Alaska. US Geological Survey Professional 826 827 Paper vol. 1673, pg. 1–51.

328	Olariu, M.I., Carvajal, C.R., Olariu, C., and Steel, R.J., 2012. Deltaic processes and architectura				
329	evolution during cross-shelf transits, Maastrichtian Fox Hills Formation, Washakie Basin,				
330 332 334	Wyoming. American Association of Petroleum Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 96, pg. 1931–1956 Off Midskall Hungerland Problem Geologists Bulletin, vol. 9				
335	gen., n. sp. (Ornithomimidae) from the Upper Cretaceous of Mongolia: Acta				
336	Palaeontologica Polonica, v. 27, p. 103–143.				
337	Ostrom, J.H., 1990. Dromaeosauridae, in Weishampel, D.B., Osmólska, H,. and Dodson P., eds.,				
338	The Dinosauria: University of California Press, Berkeley, CA, pg. 269–279.				
339	Peppe, D.J., Erickson, J.M., and Hickey, L.J., 2007. Fossil leaf specimens from the Fox Hills				
340	Formation (Upper Cretaceous: North Dakota, USA) and their paleogeographic significance.				
341	Journal of Paleontology, vol. 81, pg. 550-567.				
342	Pettyjohn, W., 1967. New members of Upper Cretaceous Fox Hills Formation in South Dakota				
343	representing deltaic deposits. American Association of Petroleum Geologists Bulletin, vol.				
344	51, pg. 1361–1368.				
345	Pfretzschner, Hans-Ulrich. 2001. Iron oxides in fossil bone. Neues Jahrbuch fur Geologie und				
346	Palaontologie - Abhandlungen. 220. 417-429.				
347	Pfretzschner, Hans-Ulrich. 2001. Pyrite in fossil bone. Neues Jahrbuch fur Geologie und				
348	Palaontologie - Abhandlungen. 220. 1-23. 10.1127/njgpa/220/2001/1.				
349	Pfretzschner, Hans-Ulrich. 2004. Fossilization of Haversian bone in aquatic environments.				
350	Comptes Rendus Palevol. Vol. pg. 3. 605-616. DOI: 10.1016/j.crpv.2004.07.006.				
351	Raynolds, R.G., 2002. Upper Cretaceous and Tertiary stratigraphy of the Denver Basin,				
352	Colorado. Rocky Mountain Geology, vol. 37, pg. 111–134. doi:10.2113/gsrocky.37.2.111				

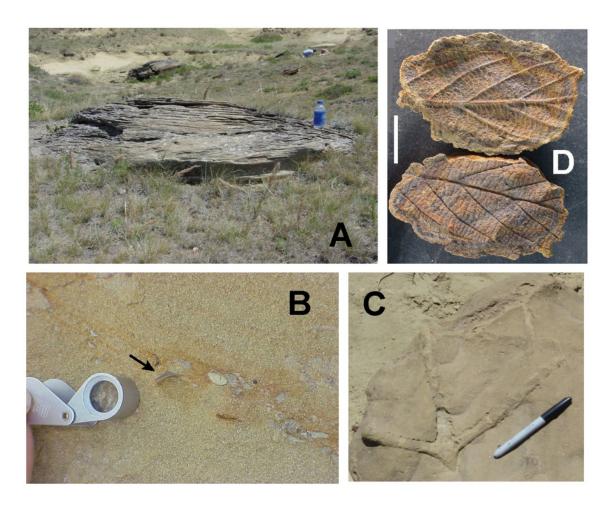
853	Retallack, G.J., 1983. Late Eocene and Oligocene paleosols from Badlands National Park, South			
854	Dakota. Geological Society of America, Special Paper 193, 82 pgd.			
855	Sawlowicz, Z. and Kaye, T.G., 2006. Replacement of iron sulphides by oxides in the dinosaur			
856	bone from the Lance Fm. (Wyoming, USA)-preliminary study. Mineral Polonica, Special			
857	Paper 29: pg. 184–187.			
858	Schwimmer, D.R., 1997, Late Cretaceous dinosaurs in Eastern USA: a taphonomic and			
859	biogeographic model of occurrences, in Wolberg, E., and Stump, E., eds., Dinofest			
860	International Proceedings: Philadelphia Academy of Natural Sciences, p. 203–211.			
861	Schwimmer, D.R., Sanders, A.E., Erickson, B.R., and Weems, R.E., 2015a. A Late Cretaceous			
862	dinosaur and reptile assemblage from South Carolina, USA. Transactions of the American			
863	Philosophical Society, vol. 105, pg. 1–157.			
864	Schwimmer, D.R., Weems, R.E., and Sanders, A.E., 2015b. A Late Cretaceous shark coprolite			
865	with baby freshwater turtle vertebrae inclusions. <i>Palaios</i> , vol. 30, pg. 707–713.			
866	Schwimmer, D.R., Stewart, J.D., and Williams, G.D., 1997. Scavenging by Sharks of the Genus			
867	Squalicorax in the Late Cretaceous of North America. Palaios, vol. 12, p. 71-83.			
868	Schwimmer, D.R., Williams, G.D., Dobie, J.L., and Siesser, W.G., 1993. Late Cretaceous			
869	dinosaurs from the Blufflown Formation in western Georgia and eastern Alabama. Journal			
870	of Paleontology, vol. 67, pg. 288–296.			
871	Shapiro, M. D., You, H., Shubin, N. H., Luo, Z. & Downs, J. P., 2003. A large ornithomimid pes			
872	from the Lower Cretaceous of the Mazongshan area, Northern Gansu province, People's			
873	Republic of China. Journal of Vertebrate Paleontology 23, 695–698.			

874	Smith, D. and Galton, P., 1990. Osteology of Archaeornithomimus asiaticus (Upper Cretaceous,
875	Iren Dabasu Formation, People's Republic of China). Journal of Vertebrate Paleontology
876	10, 255–265.
877	Speden, I.G., 1970. The type Fox Hills Formation, Cretaceous (Maestrichtian). South Dakota:
878	Part 2: Systematics of the Bivalvia. Peabody Museum of Natural History Bulletin, vol. 33,
879	pg. 1-222.
880	Stoffer, P.W., Messina, P., Chamberlain, J.A., Jr., and Terry, D.O., 2001, The Cretaceous-
881	Tertiary boundary interval in Badlands National Park, South Dakota: U.S. Geological
882	Survey Open-File Report 01-56, 49 p.
883	Sues, H.D. and Averianov, A., 2016. Ornithomimidae (Dinosauria: Theropoda) from the
884	Bissekty Formation (Upper Cretaceous: Turonian) of Uzbekistan. Cretaceous Research 57,
885	90–110.
886	Varricchio, D.J. 2001. Gut contents from a Cretaceous tyrannosaurid; Implications for theropod
887	dinosaur digestive tracts. Journal of Paleontology, vol. 75, pg. 401-406.
888	Villa, P. and Mahieu, P., 1991. Breakage patterns of human long bones. Journal of Human
889	Evolution, 21: pg. 27-48, DOI: 10.1016/0047-2484(91)90034-S
890	Waage, K. M., 1961, The Fox Hills Formation in its type area, central South Dakota, in
891	Symposium on Late Cretaceous Rocks; Wyoming Geol. Assoc. 16th Ann. Field Conf.
892	Guidebook, p. 229-240.


893	Waage, K. M., 1968. The type Fox Hills Formation, Cretaceous (Maastrichtian), South Dakota,			
894	Part 1. Stratigraphy and Paleoenvironments. Peabody Museum of Natural History Bulletin,			
895	vol. 27, pp. 1-175.			
896	Weishampel, D.B., and Young, L., 1996. Dinosaurs of the East Coast. Johns Hopkins University			
897	Press, Baltimore, MD. 275 pp.			
898	Weishampel, D.B., Barrett, P.M., Coria, R.A., Loeuff, J.L., Xing, X., Xijin, Z., Sahni, A.,			
899	Gomani, E.M.P., and Noto, C.R., 2004. Dinosaur distribution, in Weishampel, D.B.,			
900	Dodson, P., and Osmólska, H., eds., <i>The Dinosauria</i> , 2nd ed., Berkeley, CA, University of			
901	California Press, pg. 517–617.			
902	Wilson, G.P, Dechesne, M., and Anderson, I.R., 2010. New latest Cretaceous mammals from			
903	northeastern Colorado with biochronologic and biogeographic implications. Journal of			
904	Vertebrate Paleontology, vol. 30, pg. 499-520.			
905	Zanno, L.E., Gillette, D.D., Albright, L.B., and Titus, A.L., 2009. A new North American			
906	therizinosaurid and the role of herbivory in 'predatory' dinosaur evolution. Proceedings of			
907	the Royal Society Society B, vol. 276, pg. 3505-3511. doi:10.1098/rspb.2009.102			
908				

Locality Maps

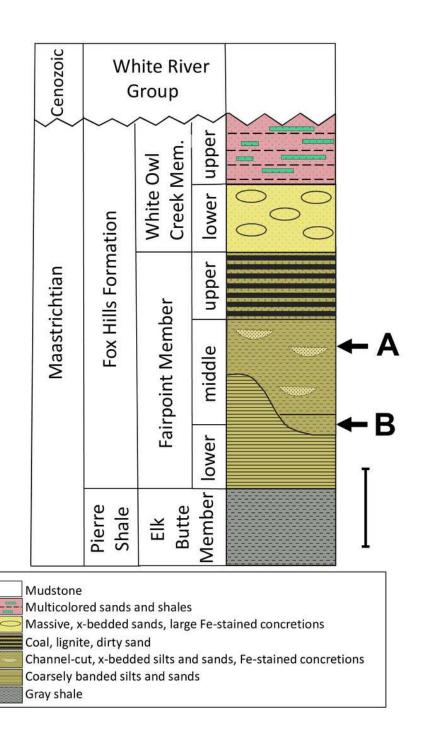
(A) Exposure area of the Fox Hills Formation surrounding the Black Hills of western South Dakota, USA. Modified from Landman & Waage, 1993, Fig. 1. Outcrop areas of primary interest in the present paper are the Fairpoint-Enning Area (green) studied by Pettyjohn, (1967); Becker et al. (2004, 2009); the Badlands National Park area (red) studied by Chamberlain et al. (2001); Stoffer et al. (2001); Jannett & Terry (2008); Landman et al (2013); and the Fox Hills Type Area (blue) studied by Waage (1961; 1968); Speden (1970); and Landman and Waage (1993). Red Star – collection site of the theropod phalanx DMNH EPV.138575. White Star – collection site of the theropod phalanx YPM VP.061075. (B) Detailed map of White Owl, South Dakota, showing the location of DMNH EPV.138575 outcrop discussed here Denver Museum of Science and Nature locality number 19383). Modified from Becker et al., 2004, Fig. 1. North is toward the top of the page in both maps A and B.


White Owl outcrop of the Fairpoint Member yielding DMNH EPV.138575

the view is southwesterly from the top of the hill on which the outcrop occurs. The bone was recovered from a soft sandstone pedestal standing beneath a hard, hematitic concretion at the position marked by the white square. Photo credit: John Chamberlain

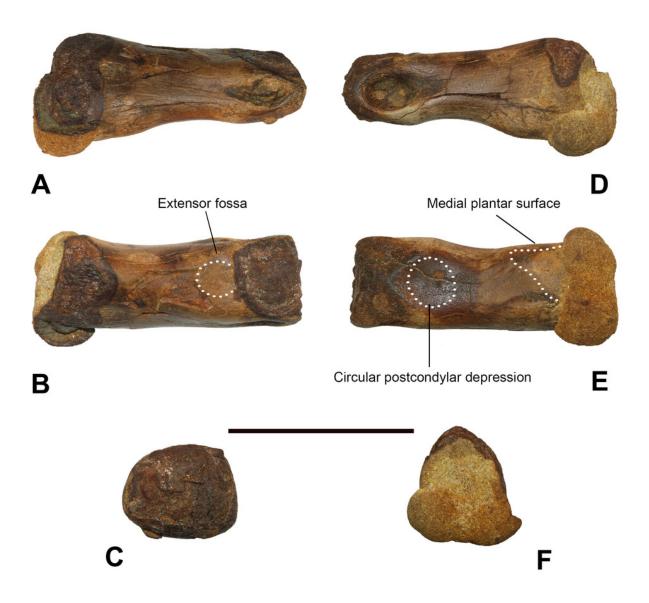
Sedimentary features and fossils of the White Owl theropod site

(A) Eroded sandstone block composed of hummocky and high-angle tangential cross-stratification; water bottle is 25 cm high. Modified from Becker et al. (2004, fig. 2B). (B) Pebbly, lenticular lag showing chondrichthyan tooth (arrow) eroding out of the sandstone; hand lens is 2 cm in diameter. Modified from Becker et al. (2004; fig, 2D). Theropod bone was found about a meter to the right of this lag. (C) *Ophiomorpha* burrow from a hematitic concretion, marker pen is 14 cm in length. (D) Positive and negative of leaf impression from a hematitic concretion. Scale bar = 2 cm. The specimen is probably a leaf fragment of the buckthorn, *Rhamnus salicifolius*, which is known from the Fox Hills Formation in North Dakota (Peppe et al. 2007). Photography by John Chamberlain

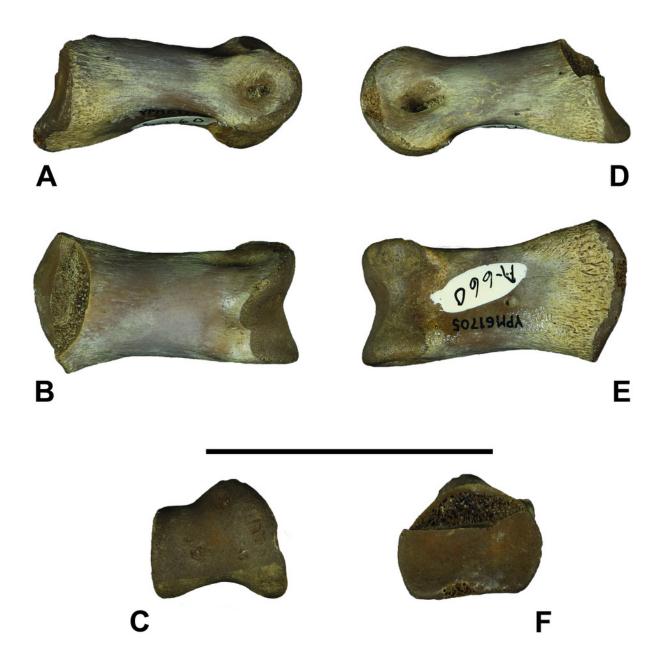


Stratigraphic column of the Fox Hills Formation in the Fairpoint-Enning area of western South Dakota.

(A) Stratigraphic horizon of the theropod phalanx described in this paper. (B) Stratigraphic horizon of the dinosaur bones anecdotally mentioned by Pettyjohn (1967). Scale bar = approximately 25 meters. This is a composite sketch modified from widely spaced localities studied by Pettyjohn (1967; Fig. 2); Stoffer et al. (2001; Fig. 13), Becker et al. (2004, Fig. 3), and Chamberlain et al. (2005, Fig. 6).



Fairpoint Member phalanx, White Owl, South Dakota; DMNH EPV.138575


(**A**) lateral, (**B**) dorsal, (**C**) distal, (**D**) medial, (**E**) ventral and (**F**) proximal views. Note that medial and lateral are tentative designations. Scale bar is 5 cm. Photography by Katja Knoll.

Iron Lightening Member phalanx, Ziebach County, South Dakota. YPM VP.061705.

(A) lateral, (B) dorsal, (C) distal, (D) medial, (E) ventral and (F) proximal views. Note that medial and lateral are tentative designations. Scale bar is 5 cm. Courtesy of the Division of Vertebrate Paleontology; Peabody Museum of Natural History, Yale University; Photography by Vanessa R. Rhue

Table 1(on next page)

Mensuration data for theropod phalanges DMNH EPV.138575 and YPM VP.061705

Measurements in mm. O is circumference Ø is diameter. Because YPM VP.061705 could not be examined in person due to pandemic restrictions in place during this research, some measurements could not be obtained.

PeerJ

CHARACTER		DMNH EPV.138575	YPM VP.061705
Length	Proximodistal	80	45
Distal	Dorsoventral	24	19
Width	Mediolateral	28	22
Proximal	Dorsoventral	35	19
Width	Mediolateral	27	24
Midshaft	Dorsoventral	25	12
Width	Mediolateral	27	18
Shaft O		82	
Medial	Depth	6	
Fossa	Proximodistal Ø	15	7
rossa	Dorsoventral Ø	11	5
Lateral	Depth	3	
Fossa	Proximodistal Ø	10	6
1.0554	Dorsoventral Ø	6	4