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ABSTRACT
The construction of high-speed roads has resulted in large amounts of steep and exposed
cut slopes, posing more potential hazards in areas with mountains and hills. Vegetation
restoration is an effective and environmentally-friendly way to restore exposed slopes
using outside soil spray seeding, though it is difficult to establish a vegetation cover.
Spraying artificial soil on high and steep slopes is a challenging task as it is difficult to
keep the fluidmixture on sloped surfaces. Because of these challenges, this study applied
different combinations of cement and soil aggregates in artificial soil, measuring final
soil properties after one growing season. Experimental results showed that there were
substantial differences in all basic soil parameters and in the soil quality index after
different treatments. In particular, adding 5–10% cement content could improve the
adhesion of artificial soil without remarkably reducing soil quality; adding 0.09% of soil
aggregate was also beneficial to soil nutrient availability. These findings indicate that
the combination of cement and soil aggregates could be applied in artificial soils for
the ecological restoration of steep slope vegetation. Adding cement to the soil increased
the alkaline levels of the soil, so it is important to reduce artificial soil pH in the future.
The application of a cement and soil aggregate should be considered in the field for
the ecological restoration of slope vegetation, and the impact of this addition on slope
stability and vegetation growth should be explored with further research.

Subjects Ecology, Plant Science, Soil Science
Keywords Cutting slops, Vegetation restoration, Artificial soil, Cement, Soil aggregate, Soil
quality index

INTRODUCTION
In China, the rapid construction of high-speed roads has resulted in large amounts
of steep and exposed cut slopes (Tong, Liu & Yu, 2014), damaging the original topsoil
and vegetation environment through soil erosion and degradation, landslides, and rock
displacement, as well as a series of ecological environmental issues (Hjort et al., 2022). Cut
slopes pose more potential hazards in areas with mountains and hills. Landslides have
caused disastrous traffic accidents; in 2007, 24,993 geomorphological accidents occurred
in China, of which 15,478 were landslides (Gao & Sang, 2017) and 10% (1,543) of those
were highway landslide disasters (Yin et al., 2020). Nearly 1,100 fatalities and $5–10 billion
USD worth of damage have been caused by landslide disasters in China annually since 2000
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(Hong et al., 2017). Improving the safety of the exposed cut slopes along the expressway is
urgently needed.

In most regions, multiple effective approaches have been applied to restore cut slopes,
but vegetation restoration is an effective and environmentally-friendly approach for slope
restoration (Stokes et al., 2014). This is because plant roots can resist soil erosion, stranded
precipitation, slow runoff, and reduce water infiltration (Tong, Liu & Yu, 2014). Plant
roots are also crucial to improving the quality of the slope soil (Chau & Chu, 2017; Li et
al., 2018) and enhancing soil erosion resistance (Fattet et al., 2011). Increasing soil surface
litter could remarkably improve the physical and chemical properties of the soil, microbial
community dynamics (Angst et al., 2017), and the soil water holding capacity, but it is
difficult to establish vegetation cover on high and steep slopes through natural succession,
so some artificial restoration is needed to restore these exposed slopes (Chen et al., 2016).
One common method is the ‘outside soil spray seeding’ method, in which protective nets
are affixed and surface hardeners (e.g., cement) are sprayed on the bare cut slopes (Huang
et al., 2017). The surface hardeners are mixed with different herb, shrub, and tree seeds,
which can retain soil surface litter, reduce soil erosion, and increase the rainfall infiltration
rate on the slopes. This type of restoration can improve soil quality and enhance the
structure stability of the slopes. The ‘outside soil spray seeding’ method has been applied
in southwest and northwest China in areas with steep slopes lacking plant growth (Li et
al., 2018). The use of appropriate additives to keep the artificial soils on the surface of
the steep slopes is still limited. Adding cement may increase the adhesion of the artificial
soil mixtures, preventing soil loss induced by rainwater erosion (Bischetti et al., 2021). The
current artificial soil mixtures also do not have effective soil aggregates, likely affecting
seed germination and growth. A combination of cement and soil aggregate added to the
artificial soil is likely the best, as cement improves the shear strength of the soil and reduces
soil loss, and soil aggregate enhances the soil quality of artificial soil mixtures (Chen et al.,
2013; Yuan et al., 2016).

In recent years, some researchers have started to study ecological slope restoration
using vegetation restoration models (Araújo & Costa, 2013; Chau & Chu, 2017; Karim
&Mallik, 2008; Lenka et al., 2012; Matesanz & Valladares, 2007; Yang et al., 2016), while
others have focused on the potential of woody plants, especially trees, on the reduction of
topsoil landslides (Liang et al., 2017; Stokes et al., 2009). However, the impact of different
plant combinations and substrates on ecological vegetation restoration is still unknown.
Therefore, it important to explore the best kind of artificial soil to use for prompt plant
growth on slopes.

Artificial soils used should have normal physical, chemical, and biological properties,
which can be assessed using the soil quality index (SQI) with minimum data sets (MDS;
Andrews, Karlen & Cambardella, 2004), allowing researchers to select the representative
soil indicators and improve the validity of the evaluation data (Doran & Parkin, 1994).
Three steps are applied to calculate soil SQI: (Andrews et al., 2003; Brejda et al., 2000): (1)
MDS selection, (2) scoring MDS indicators, and (3) calculating integrated SQI values.
It is crucial to perform a principal component analysis (PCA) and Pearson’s correlation
analysis, selecting the best and representative indicators for MDS. The SQI index can
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directly and accurately evaluate soil quality (Xu et al., 2009). As illustrated by previous
studies, the SQI effectively evaluates the impact of soil quality on crop yield and soil
conditions under different land-use patterns (Askari, O’Rourke & Holden, 2015; Paz-Kagan
et al., 2014). For example, the indexwas able to assess the success of an ecological restoration
of rangeland soils in a semi-arid environment, and reveal the vegetation restoration and
plant productivity of the abandoned croplands, as found in theMediterranean region (Imaz
et al., 2010; Sánchez-Navarro et al., 2015). More work is needed, however, to determine the
sensitivity of the SQI needed for assessing soil quality within other soil types (Imaz et al.,
2010).

In this study, the SQI was applied in a warm temperature zone to assess the artificial
soil quality with different levels of cement and soil aggregates added. Previous studies have
indicated that some fundamental parameters (e.g., soil pH, water content, and organic
carbon content) could reflect changes in artificial soil quality. Total nitrogen, phosphorus,
and potassium are essential elements for cell metabolism and plant growth (Sung et al.,
2015). Available nitrogen, phosphorus, and potassium can be used as indexes to evaluate
soil fertility (Tian et al., 2021). Therefore, these essential factors were used as indicators of
artificial soil quality in this study. Some indexes for evaluating the structural characteristics
of artificial soil were also used, such as supply source and soil storage of effective nutrients
(Jones et al., 2013). Microbial carbon in soil, which is closely related to soil nutrition quality
(Gu et al., 2009) was also used to assess artificial soil nutrition quality (Tu, Ristaino & Hu,
2006).

In the present study, different levels of cement and soil aggregates were added to artificial
soils. These soils were then compared to determine which combination type was the best
for the ecological restoration of vegetation, had the highest soil nutrition quality, and
increased slope stability the most. The objectives of this study were to (1) use the SQI
and the physical/chemical characteristics of the soil to evaluate the structural stability
and quality of artificial soils with different cement and soil aggregate combinations; (2)
determine the key indicators that can promote the development of artificial soils and the
ecological restoration of vegetation. The results of this study provide a theoretical and
practical reference for vegetation restoration on cut slopes and further research should test
these study results on cut slopes.

MATERIALS & METHODS
Experimental design
To investigate the effects of cement and soil aggregate on seedling survival and growth,
an orthogonal experimental design with two factors was adopted in this study. A PO-32.5
cement (Yaobai, Shaanxi, China) was applied in the experiment with cement content tested
at 0%, 5%, 10%, 15%, and 20%, according to the methods outlined by Chen et al. (2013).
These levels of cement were combined with different levels of soil aggregate (Lvmeng,
Fujian, China), according to the manufacture’s recommendations, with 0.00%, 0.03%,
0.06%, and 0.09% soil aggregate tested. This study used a 5 × 4 orthogonal experiment
design; there were 20 groups of treatments with three replicates per treatment for a total of
60 pots in this experiment.
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Table 1 Physical and chemical traits of loose loamy soil in the experiment.

pH Organic
matter
(g/kg)

Total
nitrogen
(g/kg)

Total
phosphorus
(g/kg)

Total
potassium
(g/kg)

Alkali-hydrolyzed
nitrogen
(mg/kg)

Available
phosphorus
(mg/kg)

Available
potassium
(mg/kg)

7.78 18.20 1.69 0.68 20.53 58.20 3.08 165.94

Elymus nutans, a perennial herb (Mao et al., 2019), is an ideal pioneer plant for ecological
restoration in alpine grassland areas of China (Gu et al., 2009; Tan et al., 2020). Mature
Elymus nutans seeds were collected from the Qinghai-Tibet Plateau in China (36◦57′N,
105◦51′E, 3140 m asl) in 2020. There were 60 seeds per pot (pot size: 32.5 cm depth and
25.5 cm diameter), sown by hand to a depth of two cm. The 32.5 cm pot depth was suitable
for root growth because the root systems of herbaceous plants are densely distributed in the
top 30 cm soil layer (Burylo et al., 2012). The substrate used in this study was a combination
of loose, loamy soil (Table 1) and organic matter (3:1). Each pot was filled with a different
combination of cement and soil aggregate with the same weight of mixed substrate added,
according to the experiment design. The pots were each watered to saturation and then
maintained at 60% of the maximum field water holding capacity by weighing the pots
daily and replenishing the water to the desired weight. All cells under the experimental
treatment were isolated from each other to prevent the competition effect. To minimize
the effect of the pot position, the pots were randomly rotated every three days.

After six months of growth (Fig. 1), the plant samples with a stubble height of two cm
were cutting by hand during a vigorous growth period. The soil samples were collected,
ground, and mixed well; 20% of the soil samples were tested for soil indexes. The dry plant
biomass of the plant samples was measured after oven drying (65 ◦C, 24 h). After removing
stones and plant and animal debris, the air-dried soil samples were ground and then passed
through a 100 mesh (0.15 mm) nylon screen (Chen et al., 2015). The samples were then
stored in a dark place at a low temperature for chemical analysis.

Sample analysis and experimental methods
The treated samples were preserved and analyzed for the physical-chemical index analyses.
The soil organic carbon (SOC) was determined using the potassium dichromate oxidation
method. Soil/water suspension (1:2.5 ratio) pHwas tested using the potentiometricmethod.
Matric suction and unconfined compressive strength were tested using a densiometric
(2100F) and strain-controlled triaxial (TSZ-3) testing apparatus (Zhang et al., 2022).
Alkali-hydrolyzed nitrogen (AN) was tested using the alkali solution diffusion method;
available phosphorus (AP) was measured using the spectrophotometric colorimetry
method (Olsen, 1954); available potassium (AK) was measured using flame Xphotometry;
microwave digestion and the Kjeldahl method were used to measure total nitrogen (TN);
the sodium hydroxide melt-molybdenum antimony colorimetric method was used to
measure total phosphorus (TP); total potassium (TK) was measured using the sodium
hydroxide melt-flame photometry method (Zheng et al., 2020); and the concentration of
microbial biomass carbon (MBC) was tested using the chloroform fumigation-extraction
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Figure 1 Site and plant growth conditions of the experiment.
Full-size DOI: 10.7717/peerj.14657/fig-1

method (Vance, Brookes & Jenkinson, 1987). Dry soil samples had distilled water added
for the microbial activity culture (Wollum, 1983). Soil samples were then divided into
fumigated and unfumigated groups with the pretreatment process based on previously
published methods (Khan et al., 2010). The microbial biomass carbon (MBC) content
was measured using an automated Total Organic Carbon analyzer (Shimazu, TOC-5000,
Japan). MBC = 2.22 (Cfumigated −Cnon fumigated), in which C was extracted from the
fumigated and non-fumigated soil samples, respectively (Khan et al., 2010).

Evaluation of soil quality indexes
The SQI can assess soil nutrition quality using minimum data sets (MDS; Andrews et
al., 2003), which allows investigators to select representative soil indicators to improve
the validity of the evaluation data (Doran & Parkin, 1994). Calculating the SQI requires
three steps (Andrews et al., 2003; Brejda et al., 2000): (1) selecting the minimum data set
(MDS), (2) scoring the MDS indicators, and (3) calculating the integrated SQI values.
A principal component analysis (PCA) and a Pearson’s correlation analysis are used
to identify the appropriate indicators for selecting the MDS (Doran & Parkin, 1994).
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According to previous studies (Andrews et al., 2003; Andrews, Karlen & Cambardella,
2004), only principal components (PCs) with eigenvalues ≥1 that explain at least 5% of
the total variation can be considered for the MDS (Andrews et al., 2003). Within each PC,
the indicators with absolute loading values in the highest 10% (Bastida et al., 2006) or
indicators that were well correlated (r ≥ 0.6) were selected as vital indicators (Andrews,
Karlen & Cambardella, 2004). After selecting the indicators of the MDS, a non-linear
scoring function was used to transform the soil indicators into scores that ranged from 0 to
1. The sigmoidal function (Eq. (1)) was used as follows (Andrews, Karlen & Cambardella,
2004):

In this study, it was assumed that different soil parameters played various roles in
maintaining soil quality, so the soil quality of different treatments was determined using
the SQI, which was calculated using the selected soil factor membership values and their
weights, as presented below (Andrews et al., 2003; Lin et al., 2017; Masto et al., 2008):

SQI =
n∑

i=1

Wi×Q(xi) (1)

where Wi denotes the weight of soil quality factor i (soil property), Q (xi) represents the
membership value of each soil quality factor, and n signifies the number of the selected
soil quality factors. The Q (xi) values were assessed with different variation functions
(Zheng et al., 2005). The pH value was a decreasing function, where the higher the pH
value, the higher the alkalization degree; an ascending function was applied for SOC, AN,
AP, AK, TN, TP, TK, and MBC (Xu et al., 2009), where higher values indicated a greater
contribution to the SQI. The ascending and descending functions were calculated using
the following formulas:

Q(xi)= (xij−ximin)/(ximax−ximin) (2)

Q(x1)= (ximax−xij)/(ximax−ximin) (3)

where xij denotes the value of the selected fundamental parameters for the SQI calculation;
ximax and ximin represents the maximum and minimum values of the soil property i under
various combinations of cement and soil aggregate.

In this study, a PCA analysis was employed to determine the component capacity score
coefficient, and the weight of the soil quality factor (Wi) was calculated according to the
score coefficient, as presented below (Xu et al., 2009):

Wi=
Ci∑n

i=1(Ci)
(4)

where Ci represents the score coefficient of soil quality factor i while n denotes the number
of selected soil quality factors.

Data analysis
Analysis of variance was used to compare the soil properties under various treatments.
Fisher’s least substantial difference (LSD) was used for the mean separation at 0.05 or
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0.01, Spearman’s test was used to determine correlations among soil properties, and linear
regression was used to calculate the PSD fractal dimensions. All analyses were conducted
using the SPSS software (19.0; SPSS, Inc., Chicago, IL, USA).

The statistical analysis was conducted using SPSS Ver. 19. An analysis of variance was
applied to compare the soil properties under different treatments, Fisher’s least substantial
difference was used for the mean separation at a significance level of P < 0.05 or P < 0.01,
a linear regression analysis was used to measure the physical and chemical soil properties,
a Pearson’s test determined the correlations between selected soil parameters, and a PCA
analysis was used for factor extraction. Three replicates were separated for independent
testing in the laboratory and for statistical analysis.

RESULTS
Biomass and soil weight
The results indicated that cement had a more dramatic impact on biomass and soil weight
than the control (CK), as shown in Fig. 2. Increasing cement content levels in the soil first
increased the biomass of the pots, but then the biomass descended gradually. Themaximum
biomass (26.50–32.77 g DW/pot) was obtained under 10% cement treatment, which was
a statistically higher biomass (P < 0.01) compared with other cement percentages. Soil
weight also increased as cement percentage increased, with soil weight differing significantly
(P < 0.01) under different cement percentages. The analysis of variance further indicated
that the addition of cement significantly impacted (P < 0.01) both biomass and soil weight.

The soil aggregate additions had a varied impact on biomass and soil weight. With
the same percentage of cement added, the influence of soil aggregates on biomass was
more substantial at low concentrations (0.03% and 0.06%); the biomass after 0.09% soil
aggregate addition was lower than CK. In contrast, soil weight was higher with the addition
of lower concentrations of soil aggregate compared to CK, but the difference was not
statistically significant.

Soil physical properties
Soil physical properties were influenced by both cement and soil aggregate addition (Fig. 3).
Matric suction gradually increased with cement addition, and there were significant
differences between different levels of added cement (P < 0.01). The highest matric suction
was observed with 20% cement addition, which was 29%–57% higher than CK. The
same trend was found in unconfined compressive strength, which increased with cement
addition. There was no significant difference between 5% cement addition and CK, but
unconfined compressive strength was significantly higher with a 10% cement addition than
with a 5% cement addition and significantly lower than a 15%–20% cement addition, and
there was no significant difference between 15% and 20% cement addition. Conversely,
the level of soil bulk density decreased with cement addition. The soil bulk density level
after a 10%–20% cement addition was significantly lower than in CK, but there was no
significant difference in soil bulk density between 10% and 20% cement additions.

The influence of soil aggregate on different soil physical properties varied (Fig. 3).
Without cement addition, the addition of soil aggregate made the matric suction stronger
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Figure 2 The influence of cement and soil aggregate addition on aboveground biomass and soil weight
per pot. (A) Aboveground biomass. (B) Soil weight per pot. Different uppercase letters indicate statisti-
cally significant difference between cement additions (P < 0.01), different lowercase letters indicate statis-
tically significant difference between soil aggregate treatments (P < 0.01).

Full-size DOI: 10.7717/peerj.14657/fig-2

than in CK. Matric suction value was higher in the 0.03% soil aggregate pot than in both
the 0.06% and 0.09%. However, with more cement addition, soil aggregate addition made
the matric suction stronger than in both the 10% and 15% cement addition pots, but
weaker than the 5% and 20% cement addition pots. The analysis further revealed that
statistical significance varied among the treatments. The influence of soil aggregate on
unconfined compressive strength was more consistent: unconfined strength increased with
more cement addition. Soil bulk density was less influenced by soil aggregates: without
cement addition, soil bulk density decreased significantly; with more cement addition,
the soil bulk density value was relatively stable, but increased significantly with 0.09% soil
aggregate (3.75%–14.22% higher than in CK).

Soil Ph, SOC, and BMC
The influence of cement and soil aggregate on soil pH, SOC, and BMC is shown in Fig. 4.
These results revealed that soil pH increased with cement addition and varied between 8.05
and 8.64. Both 5% and 10% cement addition had less influence on soil Ph; 15% and 20%
cement addition increased Ph levels, but not significantly. In contrast, the SOC content
with 10% cement addition was higher compared with other treatments, whereas the impact
of soil aggregate on the SOC content was more significant. The SOC content with 0.09%
soil aggregate addition under 0–15% cement was significantly higher compared with other
treatments.

The impacts of various soil aggregate treatments onMBCwere not significantly different,
but the MBC content was higher under 5% (0.56–0.79 mg/kg) and 10% (0.66–0.89 mg/kg)
cement addition treatments compared with CK (0.51–0.56 mg/kg). The results indicate
that cement and soil aggregates might have an interaction effect on MBC, which was
remarkable with a low cement addition and higher soil aggregate addition.
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statistically significant difference between soil aggregate treatments (P < 0.01).

Full-size DOI: 10.7717/peerj.14657/fig-3

Plant element
Cement and soil aggregate addition had different influences on plant elements (N, P,
and K, as presented in Fig. 5), with the most significant differences found in N and P.
Specifically, N content increased with increased cement and soil aggregate content, with
N content reaching the highest level with 10%–20% cement addition and 0.06% soil
aggregate addition. P content increased with cement addition, but decreased with soil
aggregate addition in CK, with impacts to P content varying under other treatments.
Similarly, K content was influenced by both cement and soil aggregates, increasing with 5%
and 10% cement addition but decreasing with 15% and 20% cement addition. K content
in CK increased with 5% cement addition, maintained with 10% cement addition, and
decreased with 15% and 20% cement addition.
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Soil element
Soil element contents were influenced by both cement and soil aggregate addition (Fig. 6).
The N level decreased with increased cement addition, with N levels significantly lower
with 15%–20% cement addition compared with CK. Soil aggregates had no substantial
influence on N levels without cement addition, but this interaction of cement and soil
aggregate varied under different cement additions. The N level increased with increased
soil aggregate content, especially with low cement addition. The influence of cement and
soil aggregates on P level was roughly consistent. P level decreased with the addition of
cement and plummeted with 15%–20% cement addition, but was slightly affected by
different soil aggregate additions.
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K level trends were more consistent. The K level decreased significantly with increased
cement, but there were no changes to K levels observed under different soil aggregate
additions, indicating that cement had more influence on K content than soil aggregates.
Total soil silicon (Si) content increased significantly with cement addition (P < 0.01), but
did not significantly differ under different soil aggregate additions.

Available soil nutrients
Cement and soil aggregates both impacted available nutrients in the soil (Fig. 7). AN
content decreased with cement addition (5%–20%), with decreases significant with low
cement levels but not significant with high cement levels. In contrast, the AN level increased
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with soil aggregate addition, with significant increases observed with less cement addition
(5% and 10%), but insignificant increases with higher cement addition (15% and 20%).

Soil AP content increased with cement addition, with varied increases under different
treatments. The highest level of AP was found with 5% cement addition (with 0 and 0.03%
soil aggregate) and 15% cement addition (with 0.06% and 0.09% soil aggregate). However,
soil aggregates had a different influence on AP, which was more significant with less soil
aggregate addition and 5% cement addition as well as withmoderate soil aggregate addition
with 15% cement addition. These results might indicate that there is an interaction effect
of cement and soil aggregate addition on AP.

AK was significantly impacted by both cement and soil aggregates. Compared with the
control group, the AK content was lower with 5%–10% cement addition but higher with
15%–20% cement addition, being lowest with 10% cement addition and highest with 20%
cement addition. With increased soil aggregates, AK level was higher with 5% and 10%
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cement addition, lower with 15% cement addition, and stable with 20% cement addition.
The variance analysis indicated that the AK level with 15% and 20% cement addition was
substantially higher (P < 0.01) than with 5% and 10% cement addition.

The influence on the SQI of artificial soils
SQI was introduced to explore the effect of the combination of cement and soil aggregates
on artificial soils. The first step was to obtain the constant weight of the soil parameters.
After a Varimax rotation, a PCA analysis produced four principal components (PCs;
Table 2). PC1-4 explained 80.54% of the variability in the measured soil parameters,
most representing the original parameters. Therefore, the weight of each parameter was
calculated through PC1-4 in this study (Table 2). After determining the weight of each
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Table 2 Results of principal component analysis of soil quality indicators.

Principal components PC1 PC2 PC3 PC4 Score coefficient Weight
Eigenvalue 4.209 1.335 1.291 1.219
Percent 42.09% 13.35% 12.91% 12.19%
Eigen vectors Loading values

pH 0.4179 0.0817 0.0665 0.2726 0.2838 11.24%
SOC 0.0315 0.7933 0.0696 0.0467 0.1662 6.58%
MBC 0.0528 0.0397 0.8130 0.1968 0.1943 7.69%
TN 0.1950 0.4205 0.1152 0.5040 0.2664 10.55%
TP 0.3492 0.3584 0.0335 0.2219 0.2809 11.12%
TK 0.4617 0.0617 0.0647 0.0968 0.2765 10.95%
AN 0.4046 0.0228 0.0655 0.1738 0.2520 9.98%
AP 0.1974 0.0753 0.1105 0.6205 0.2273 9.00%
AK 0.2863 0.2135 0.5425 0.2722 0.3132 12.40%
Si 0.4047 0.0388 0.0198 0.2877 0.2647 10.48%

Notes.
The high loading values (absolute values) represent the dominant factor in the soil. PC1, first principal component; PC2, second principal component; PC3, third principal com-
ponent; PC4, fourth principal component.
SOC, soil organic carbon; MBC, microbial biomass carbon; TN, total nitrogen; TP, total phosphorus; TK, total potassium; AN, available nitrogen; AP, available phospho-
rus; AK, available potassium.

Table 3 Soil quality index of artificial soil with cement and soil aggregate addition.

Soil aggregate
Cement

0% 0.03% 0.06% 0.09%

0 0.53 0.58 0.57 0.58
5% 0.40 0.36 0.41 0.47
10% 0.36 0.40 0.37 0.39
15% 0.24 0.27 0.30 0.26
20% 0.19 0.27 0.34 0.27

soil index, the membership value of each soil index [Q (xi)] was determined using Eqs. (2)
and (3). Finally, Eq. (1) was applied to calculate the SQI (Table 3). The results indicated
that SQI value decreased with cement addition but increased with moderate soil aggregate
addition, with the highest value in CK (0.53–0.58) and the lowest with 20% cement addition
(0.19–0.34).

To further distinguish the relationship among the different soil physicochemical
properties, Pearson’s correlation coefficients were applied in the analysis (Table 4). The
results showed that Si content was positively correlated with pH (P < 0.01), AP, and
AK, but negatively correlated with TN, TP, TK, and AN. Conversely, TN was positively
correlated with TP, TK, and AN; TP was positively correlated with TK and AN; and TK was
positively correlated with AN. In summary, TN, TP, TK, and AN were positively correlated
with each other, but negatively correlated with Si. Cement addition, the primary source of
Si and an accelerant for soil solidification, restricts TN, TP, TK, and AN levels, explaining
the relationship between Si and other soil physiochemical properties. In addition, soil pH
was negatively correlated with the TN, TP, TK, and AN of artificial soil (Table 4), while
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Table 4 Pearson’s correlation coefficients among different soil physicochemical properties.

Mean STD pH SOC MBC TN TP TK AN AP

pH 8.389 0.213 1
SOC 4.151 0.289 0.119 1
MBC 0.619 0.179 0.048 0.125 1
TN 4.106 0.458 −0.388** 0.240 0.214 1
TP 0.659 0.034 −0.669** 0.230 0.044 0.569** 1
TK 15.349 1.304 −0.811** 0.008 0.016 0.473** 0.735** 1
AN 125.498 41.926 −0.713** −0.002 0.022 0.504** 0.517** 0.754** 1
AP 17.228 6.036 0.511** 0.027 −0.097 −0.320* −0.402** −0.438** −0.445** 1
AK 309.322 59.778 0.302* −0.232 −0.352** −0.250 −0.479** −0.544** −0.436** 0.200
Si 23.744 5.629 0.780** 0.062 −0.005 −0.495** −0.541** −0.841** −0.722** 0.464**

Notes.
*p< 0.05
**p< 0.01
SOC, soil organic carbon; MBC, microbial biomass carbon; TN, total nitrogen; TP, total phosphorus; TK, total potassium; AN, available nitrogen; AP, available phospho-
rus; AK, available potassium.

TN content was positively correlated with TP, TK, and AN. Soil pH was also positively
correlated with SMC, which was related to cement addition, as shown in Table 4. In
conclusion, the Pearson correlation indicated that there was a positive correlation between
soil physical and chemical parameters.

DISCUSSION
Our results illustrated a positive correlation between soil physical and chemical parameters
while considering the weight coefficient, suggesting that chemical parameters play a more
essential role in improving soil quality than physical properties. Therefore, improving
artificial soil quality and promoting vegetation ecology restoration should focus on
improving the physical and chemical parameters of the soil. In this study, the physical
properties of the soil were influenced by both cement and soil aggregate addition, with
levels increasing with increased cement addition. As for chemical properties, cement
addition impacted PH, TP, TK, AN, AK, and Si, with different relationships observed
between these properties. Further analysis indicated that pH was negatively correlated with
the TN, TP, TK, and AN of artificial soil, while TN content was positively correlated with
TP, TK, and AN, consistent with previous research (Barre et al., 2017; Wiesmeier et al.,
2014). These results could be explained as follows: (1) higher TN content could provide
more N resources (Davidson & Janssens, 2006) and increase AN content in artificial soils,
thereby promoting plant growth and increasing the input of plant protein; (2) cement
addition could raise soil pH and reduce the level of TN, TP, and TK, indicating that more
cement is not beneficial to soil nutrients because it decreases soil fertility by limiting N
mineralization and release (Caravaca et al., 2017).

SQI was applied to assess artificial soil quality, which was established through a PCA
analysis and score function analysis combined with soil information (Xu et al., 2009; Zheng
et al., 2005). We found that less cement and more soil aggregate addition resulted in
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a higher SQI of artificial soils. However, less cement reduced the adhesion of artificial
soil mixtures and the structure stability of slopes (Tan et al., 2020). Although proper soil
aggregate addition was improved soil nutrition, the influence was largely limited. Thus,
more effective management measures should be taken to reduce the effect of cement on
the physicochemical characteristics of soil.

In practical application, more cement addition reduces the soil nutrition quality and
response to soil solidification, decreasing root respiration and limiting plant growth (Ji et
al., 2014). Soil pH was positively correlated with Si. A previous study (Andrews, Karlen &
Cambardella, 2004) found that the optimal pH value of soil is between 6 and 7, but the
pH levels of all treatments in this study were remarkably higher than that range. In this
study, soil pH was an essential parameter of artificial soils, as optimal pH levels help soil
optimization, but soil aggregates could not reduce the pH of artificial soils. Sulfur fertilizer
effectively reduces soil pH and also provides an essential nutrient for plant growth (Mahar
et al., 2016; Sönmez, Turan & Kaya, 2016). Therefore, in future experiments, the addition
of sulfur fertilizer to artificial soils should be studied.

For vegetation restoration, it is important to maintain adequate soil nutrition and a
healthy root environment, which requires restricting cement addition, but this reduces the
stability of slopes and increases soil erosion. Applying biochar and slow-release fertilizer
to artificial soil may effectively reduce alkaline soil and improve nutrient use efficiency
(Atkinson, Fitzgerald & Hipps, 2010), as well as provide a more stable and long-term
supply of carbon, nitrogen, and phosphorus nutrients (Atkinson, Fitzgerald & Hipps, 2010;
Yilmaz & Sönmez, 2017). Thus, in future studies of ecological vegetation restoration, the
composition of artificial soils should be adjusted appropriately using fertilizers.

CONCLUSIONS
This study aimed to identify the optimal combination of cement and soil aggregate in
artificial soils for the ecological restoration of vegetation. The results suggested that different
levels of cement addition had different impacts on the nutrition of artificial soils, but a low
cement concentration had no significant effect on soil properties. The results comparing
the physical and chemical soil properties with the SQI index indicated that herbs could
tolerate the addition of 5% and 10% cement. However, TN, TP, TK, and AK are negatively
correlated with soil pH, with soils more alkaline with more cement addition, meaning that
more cement addition had an adverse effect on soil chemical properties. Furthermore, with
cement addition, the SQI index was substantially reduced, but this impact was remedied
with soil aggregate addition. This finding supports the previous conclusion that cement +
soil aggregates is a better choice for ecological vegetation restoration. The more important
finding of this study was that an optimal combination of cement content and soil aggregate
could improve the basic parameters and structural properties of the slope soil, preventing
landslides and soil erosion. Therefore, the results of this study are a valuable reference for
vegetation restoration in warm and humid regions, and the optimal treatment found in
this study could be applied in regions with the same climate and soil type as the study areas.

In order to promote the ecological restoration of steep slope vegetation, we make the
following recommendations: (1) cement and soil aggregate can be applied in artificial soils
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for the ecological restoration of vegetation; (2) adding 5%–10% cement could improve
the adhesion of artificial soils; (3) and 0.09% soil aggregate addition is beneficial to soil
nutrient availability.

This study did not monitor the ecological stability of slope vegetation over a long period
of time. Thus, further work needs to study slopes with different gradients to monitor the
long-term ecological stability of slope vegetation. Testing the feasibility and outcome of
the application of cement and soil aggregate in the field could effectively prompt future
development of slope vegetation restoration.
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