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The biogeographic region of Argentinean Puna mainly extends at elevations higher than
3000 m a.s.l. within the Andean Plateau and hosts diverse ecological communities highly
adapted to extreme aridity and low temperatures. Soils of Puna are typically poorly
evolved and geomorphology is shaped by drainage networks, resulting in highly vegetated
endorheic basins and hypersaline Salar basins. Although plant ecology has been
investigated for decades, Fungi distribution in the soils of Puna still lacks detailed research.
We collected soil samples from 28 points, following a nested design within three different
ecological environments, i.e. grazed or undisturbed shrublands and grasslands, a
hypersaline Salar basin area, and family-run crop fields. Total Fungi and Arbuscular
Mycorrhizal Fungi (AMF) occurrence was investigated through eDNA sequencing.
Furthermore, the importance of soil chemical parameters and environmental variables in
shaping AMF presence was assessed through a Generalized Mixed Model and Multi Model
Inference approach, highlighting the relevance of soil salinity and organic matter content
as significant predictors of AMF occurrence in dry Puna soils. It was also estimated if
intensive grazing by cattle and lama may reduce the presence of AMF in these highly
disturbed soils, driving major ecological changes in punean grasslands. Species
Distribution Modelling was performed within an environmental coherent area comprising
both phytogeographic regions of Puna and Altoandino above 27° latitude S. We modeled
AMF distribution with a maximum entropy approach, using both bioclimatic and edaphic
predictors, and plotted maps of environmental idoneity of the predicted area for AMF.
These approaches confirmed that lower suitability for AMF is predicted in hypersaline Salar
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areas, while grassland habitats and a wider temperature seasonality range appear to be
related to AMF enrichment, suggesting a main role of seasonal dynamics. The highest
abundance of AMF was however observed in Vicia faba crop fields while potato fields
yielded a very low AMF occurrence. Given the role of arbuscular mycorrhization in
enhancing plant growth dynamics and soil fertility, we set a new series of models
excluding the cultivated Chaupi Rodeo samples. These models were run to assess the
impact of farming, and highlighted that if these areas remained unmanaged habitats of
Puna and Altoandino then, large-scale soil features and local bioclimatic constraints would
likely support a lower idoneity for AMF.
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26 Abstract
27 The biogeographic region of Argentinean Puna mainly extends at elevations higher than 3000 m 
28 a.s.l. within the Andean Plateau and hosts diverse ecological communities highly adapted to 
29 extreme aridity and low temperatures. Soils of Puna are typically poorly evolved and 
30 geomorphology is shaped by drainage networks, resulting in highly vegetated endorheic basins 
31 and hypersaline Salar basins. Although plant ecology has been investigated for decades, Fungi 
32 distribution in the soils of Puna still lacks detailed research. 
33 We collected soil samples from 28 points, following a nested design within three different 
34 ecological environments, i.e. grazed or undisturbed shrublands and grasslands, a hypersaline 
35 Salar basin area, and family-run crop fields. Total Fungi and Arbuscular Mycorrhizal Fungi 
36 (AMF) occurrence was investigated through eDNA sequencing. Furthermore, the importance of 
37 soil chemical parameters and environmental variables in shaping AMF presence was assessed 
38 through a Generalized Mixed Model and Multi Model Inference approach, highlighting the 
39 relevance of soil salinity and organic matter content as significant predictors of AMF occurrence 
40 in dry Puna soils. It was also estimated if intensive grazing by cattle and lama may reduce the 
41 presence of AMF in these highly disturbed soils, driving major ecological changes in punean 
42 grasslands. Species Distribution Modelling was performed within an environmental coherent 
43 area comprising both phytogeographic regions of Puna and Altoandino above 27° latitude S. We 
44 modeled AMF distribution with a maximum entropy approach, using both bioclimatic and 
45 edaphic predictors, and plotted maps of environmental idoneity of the predicted area for AMF. 
46 These approaches confirmed that lower suitability for AMF is predicted in hypersaline Salar 
47 areas, while grassland habitats and a wider temperature seasonality range appear to be related to 
48 AMF enrichment, suggesting a main role of seasonal dynamics. The highest abundance of AMF 
49 was however observed in Vicia faba crop fields while potato fields yielded a very low AMF 
50 occurrence. Given the role of arbuscular mycorrhization in enhancing  plant growth dynamics 
51 and soil fertility, we set a new series of models excluding the cultivated Chaupi Rodeo samples. 
52 These models were run to assess the impact of farming, and highlighted that if these areas 
53 remained unmanaged habitats of Puna and Altoandino then, large-scale soil features and local 
54 bioclimatic constraints would likely support a lower idoneity for AMF. 
55
56 INTRODUCTION 
57 The South American biogeographic region of Puna extends within the Andes Mountain Range 
58 across Argentina, Bolivia, Perú and Chile at elevations higher than 3000 m a.s.l. In the Quechua 
59 local native language Puna means "high and cold lands" (Carilla et al., 2018), which meaning 
60 well matches the wide extent of biogeographical, ecological and geographical Puna concepts. 
61 These high Andean plateau regions encompass diverse ecological communities which share 
62 severe or extreme aridity and wide seasonal and daily temperature variations (Lugo & Menoyo, 
63 2019 and references therein). In the Argentinean Puna, the Puna geological province (Turner & 
64 Méndez 1979) is the geomorphological basement on which the Puna region (Morrone, 2001), the 
65 Puna and Altos Andes ecoregions (Matteucci, 2018a; Matteucci, 2018b), the phytogeographic 
66 provinces of the Dry, Humid and Desert Puna (Troll, 1959; Troll, 1968), the phytogeographic 
67 provinces Puneña and Altoandina (Cabrera, 1976; Cabrera & Willink, 1980; Carilla et al., 2018; 
68 Oyarzabal et al., 2018) and Puna floristic districts �Jujeño�, �Central�, �Cuyano�, and 
69 �Boliviano� (Martínez Carretero, 1995) are placed. All these floristic, biogeographical and 
70 ecological ecosystems of the Puna biome exceed the limits of the Puna geological province 
71 located at Catamarca Province (Turner & Méndez, 1979) and extend south to the Mendoza 
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72 Province (Martínez Carretero, 1995, Matteucci, 2018b) in Argentina. Immersed in this common 
73 geographic foundation of the Puna geological province with its different plant communities, 
74 there is a remaining strip of the Altoandina phytogeographic province included in the Puneña 
75 phytogeographic province (Cabrera 1976; Cabrera & Willink, 1980; Carilla et al., 2018; 
76 Oyarzabal et al., 2018), and a similar areal intrusion also occurred for Altos Andes and Puna 
77 ecoregions (Matteucci, 2018a; Matteucci, 2018b); due to the fact that these phytogeographic 
78 provinces and ecoregions are extending along similar territories, hereafter these are named Puna 
79 and Altoandino, respectively. The above-mentioned strip area of Altoandino is represented by 
80 Chaupi Rodeo (Jujuy, Argentina), one of the sampled sites of this work where a native people's 
81 settlement and their crops are placed. Puna and Altoandino are discriminated mainly by their 
82 distinct elevations, reaching 3,000-3400 m, and 4,000- 4,500 m, respectively (Carilla et al., 2018; 
83 Cabrera, 1976; Oyarzabal et al., 2018). Despite the different altitudinal range and its effect on 
84 vegetation features, physiognomic, phytosociological, and differing ecological categorizations 
85 between Puna and Altoandino regions of Northwest Argentina, similar geological, historical and 
86 ecological processes suffered along the time (Matteucci, 2018a; Matteucci, 2018b) led some 
87 authors to consider them as a unique and homogeneous area. These specific environmental 
88 conditions make this area an ideal region for studying the distribution patterns of AMF in 
89 relation to abiotic variables. Puna and Altoandino host shrub-dominated vegetation units and 
90 gramineous steppe, as well as other azonal communities such as halophyte within salt flats, the 
91 hypersaline endorheic basin named Salina or Salar areas, and Poaceae, Juncaceae, Cyperaceae 
92 within Vegas wet flooded endorheic basins; however, vegetation cover is not homogeneous 
93 within the same phytogeographical province or ecoregion (Martínez Carretero, 1995; Renison et 
94 al., 2013; Carilla et al., 2018;  Matteucci, 2018a; Matteucci, 2018b; Oyarzabal et al., 2018). 
95 Soils of Puna and Altoandino are typically poorly evolved, influenced by cryogenic processes 
96 and aridity (Panigatti, 2010). These ecosystems are highly exposed to desiccation, extreme 
97 environmental conditions such as large daily temperature amplitudes, an incident solar energy 
98 greater than 2200 KW/m2/year and intense UV irradiation (Martínez Carretero 1995; Carilla et 
99 al., 2018; Matteucci, 2018a; Matteucci, 2018b). These harsh conditions result in high community 

100 vulnerability when exposed to sudden ecological changes, mainly caused by the anthropic impact 
101 of extensive grazing of camelids and cattle, wildfires, mining, wood harvesting (Carilla et al., 
102 2018; Matteucci, 2018a; Matteucci, 2018b), and consequently, increasing desertification 
103 processes at an extremely high level for these ecosystems (Vorano & Vargas Gil, 2002). With 
104 regard to extensive grazing, livestock management in these areas usually follows the nomadic 
105 type with continuous migration of multispecies herds made up of sheep, goats and llamas 
106 (Vorano & Vargas Gil, 2002; Quiroga Mendiola & Cladera, 2018). Particularly, flocks of native 
107 camelids are represented by two wild species (huanaco, Lama guanicoe Statius Müller and 
108 vicuña, Vicugna vicugna Molina) and two domesticated species (llamas, Lama glama L. and 
109 alpacas, Vicugna pacos L.) but only in few areas there is cows and camelid flocks circulation, 
110 and in some cases llamas or llamas and cattle, are restricted by paddocks or corrals (Carilla et al., 
111 2018). This migratory grazing system likely turned natural grasslands into shrublands. 
112 Furthermore, this closure-based grazing system proved to have a greater impact on the vegetation 
113 than the extensive grazing by native camelids (Quiroga Mendiola & Cladera, 2018). 
114 Environmental exploitation impacts on soil fertility and ecosystem services that local 
115 subsistence-based native communities rely on, with direct effects on their economy and living 
116 conditions. In this perspective, investigating the microbiological diversity of these soils might be 
117 a valuable indicator of the ecological conditions and of the disturbance of these ecosystems. 
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118 Soil-borne fungi play a fundamental role in the ecosystem functioning, as decomposers of 
119 organic matter, inducing soil aggregation, as pathogens, or as mutualists assisting plants growth. 
120 Among soil fungal communities, arbuscular mycorrhizal fungi (AMF) are worldwide obligate 
121 symbionts belonging to Phylum Glomeromycota (Wijayawardene et al., 2020), that associate 
122 with plants and promote their growth by improving soil nutrients and water uptake as well as 
123 providing pathogen protection to their host (Smith & Read, 2008). Despite the AMF widely 
124 assessed ubiquity, their occurrence may be affected by environmental conditions (e.g. soil 
125 nutrients, pH, precipitation, temperature) and vegetation type (Veresoglou et al., 2013; Davison 
126 et al., 2021). For instance, in a global analysis Tedersoo et al., (2014) evidenced a positive 
127 relationship of AMF richness with potential evapotranspiration and soil pH, as well as a diversity 
128 increase in grassland and shrubland ecosystems. Therefore, AMF richness and distribution is 
129 expected to be affected by current land uses, such as cropping and grazing, and the study of the 
130 AMF community patterns in relation to climatic and edaphic conditions may help to predict their 
131 response to global change (Kivlin et al., 2017). Species distribution modeling (SDM) combines 
132 occurrence data with environmental variables to geographically predict potential suitable areas 
133 within the studied environments (Elith et al., 2009). This approach has been rarely used for 
134 estimating AMF distribution (Kivlin et al., 2017), mainly because of the difficulty in delimiting 
135 the potential area of occurrence for these soil-borne organisms. However, considering that 
136 geological, environmental and soil conditions have delimited the geographical boundaries of our 
137 study area, the  ecosystems of Puna include promising regions to predict AMF distribution. 
138 Mycorrhizal fungi are a main driver of soil nutrients and plant-soil ecology (Wurzburger et al., 
139 2017), thus representing an ideal target for a microbiological comparative analysis of soils from 
140 different habitats within Puna. Considering the paucity of research addressing the fungal profile 
141 of Puna soils (Lugo et al., 2008, Ontivero et al., 2020), and the importance of AMF in plant-soil 
142 dynamics (Davison et al., 2021, Dumbrell et al., 2010; Bonfante & Genre, 2015), in the present 
143 study we focused on this fungal group, relying on the fungal OTU table provided in Ontivero et 
144 al., (2020) and extending the analysis to new soil sampling points from grazed and undisturbed 
145 areas of Puna and from an endorheic Salar basin area within Puna. We first estimated the relation 
146 of environmental predictors with AMF occurrence by model weighting and averaging. Then, we 
147 performed a maximum entropy approach for SDM (Bradie & Leung, 2017; Zimmermann et al., 
148 2010; Austin, 2002) in order to predict the environmental suitability for AMF in the Argentinean 
149 Puna and Altoandino, phytogeographically and ecoregionally delimited as mapped by Oyarzabal 
150 et al., (2018), bounding it above 27° latitude S. To maintain a relatively homogeneous area of 
151 prediction and being both above indicated areas originated by a unique geomorphological event 
152 (Matteucci, 2018a; Matteucci, 2018b), we considered them as a unique geological province 
153 named Puna (Turner & Méndez, 1979). Since Chaupi Rodeo is located in a fringe of Altoandino 
154 extending into Puna and the current human agricultural use of soil in this area might have 
155 influenced AMF communities, we tested different models, including or not the Chaupi Rodeo 
156 sampling points, and compared the differential suitability of the predicted area for AMF. 

157 MATERIALS & METHODS

158 Soil sampling and environmental metadata

159 The sampling sites can be mostly included in Puna, and more specifically in the so-called Dry 
160 Puna (Troll, 1959; Troll, 1968) because their annual rainfall ranges between 100 and 400mm, 
161 and are restricted to the summer season with consequent very dry and cold winters. Although 
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162 Chaupi Rodeo sampling site presents the same climatic conditions of the other sampled areas, its 
163 geographical placement overlaps Altoandino boundaries. Soil samples have been collected from 
164 28 sampling points along transects within six different locations in northern Argentinean Jujuy 
165 Province belonging to three main different environments: (i) habitats of Puna grazed by lama or 
166 lama and cattle, or undisturbed for the locations named Dunas, Punto Susques, Puesto del 
167 Marqués, Abra Pampa, (ii) hypersaline Salar basin area for the location Salinas Grandes, and (iii) 
168 family-run crop fields for three Chaupi Rodeo locations in Altoandino (Ontivero et al., 2020), 
169 from now on named Chaupi Rodeo A, B and C (Fig.1). Multiple environmental predictors have 
170 been considered per each sampling point, namely elevation, grazing type, preceding habitat or 
171 crops in the previous year and plant cover. Soil physicochemical analyses were also carried out 
172 in the Soil Laboratory of INTA, EEA Villa Mercedes, San Luis, Argentina. Each soil sample was 
173 analyzed for pH, percentage of organic matter (Walkley Black method), soil carbon quantity 
174 (Walkley Black method), available phosphorus (Bray and Kurtz method) and electric 
175 conductivity as a proxy for salinity. Precise geolocation for each sampling point was recorded. 

176 Sequencing and bioinformatic analysis

177 DNA extraction, PCR amplification, amplicons sequencing and bioinformatic analysis have been 
178 performed as described in Ontivero et al., (2020). Soil samples were sieved through a 2-mm 
179 mesh size sieve. Genomic DNA was extracted from 250 mg of each soil sample by means of the 
180 DNeasy PowerSoil kit (Qiagen, CD Genomics Company, Shirley, NY 11967, USA) according to 
181 the manufacturer�s instructions. In order to investigate, not only the AMF biodiversity but also 
182 the total fungal communities, the ITS2 region, together with the AMF-specific barcode region, 
183 were amplified by a nested approach based on the protocol described by Berruti et al., (2017). 
184 The obtained PCR products were checked on 1% agarose gel, purified by means of Wizard SV 
185 Gel and PCR CleanUp System (Promega, Wisconsin, Madison, USA) quantified with Qubit 2.0 
186 (Thermo Fisher Scientific, Waltham, MA, USA) and sent to BMR Genomics (Padova, Italy) for 
187 Illumina MiSeq platform (2 × 300 bp) sequencing. For each sampling point, reads were 
188 sequences with forward and reverse reads in separate files. For all datasets, sequencing adapters 
189 and primers were removed, and the sequences were then analyzed by means of the microbiome 
190 bioinformatics platform QIIME2 (Quantitative Insights Into Microbial Ecology 2) version 
191 2019.7 (Bolyen et al., 2019). Denoising and quality control, including removal of chimeras, were 
192 achieved by means of the DADA2 (Callahan et al., 2016) plugin (qiime dada2 denoise-paired) 
193 and, to avoid low-quality sequences, reads were truncated (>280 bp for forward, >265 bp for 
194 reverse reads). Feature tables for AMF were generated by means of qiime vsearch cluster-
195 features-de-novo plugin using 97% as the identity threshold. The classifier adopted for the 
196 taxonomic assignment of the total fungal community was generated using the UNITE 
197 Community (2019): UNITE QIIME release for Fungi version 10.05.2021 (Abarenkov et al., 
198 2021). Ecological roles of the fungal communities at each sampled site were inferred using 
199 FUNGuild (Nguyen et al., 2016). Finally, the taxonomy of AMF OTUs was refined, performing 
200 BLAST against the MaarjAM database (https: //maarjam.botany.ut.ee/; pik et al., 2010). The data 
201 sets, composed of OTU table, taxonomy table and metadata were then imported in Rstudio and 
202 were used to create two phyloseq objects with the R package phyloseq (McMurdie and Holmes, 
203 2013) that were employed for all the following analyses. Krona plots were generated using 
204 Krona Tools and cpauvert/psadd library (Ondov et al., 2011). The dataset generated for this 
205 study can be found in the NCBI Sequence Read Archive (SRA-NCBI; https://www.ncbi. 
206 nlm.nih.gov/sra) under project accession number PRJNA835719.
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207 GLMM and model averaging

208 To analyze the AMF communities, the OTU (Operational Taxonomic Units) table was rarefied at 
209 an even sequencing depth of 19,882 sequences per sample and restricted to the Phylum 
210 Glomeromycota. Due to a non-normal distribution of data, a non-parametric Kruskal-Wallis 
211 analysis of variance was performed to test for the difference among locations using the function 
212 kruskal.test in the R stats package version 4.1.0 (R core Team, 2013). Post-hoc pairwise tests 
213 were then performed applying a Bonferroni correction by using the function pairwise.t.test in the 
214 R Stats package. Sample means were then grouped by location and plotted by each 
215 environmental predictor as listed above, using the R package ggplot2 version 3.3.5 (Wickham, 
216 2016). Because of the nestedness of the sampling design and the overdispersion of data, a 
217 negative binomial GLMM (Generalized Linear Mixed Model) approach was then performed, 
218 using the function glmer.nb in the R package blmeco version 1.4. (Korner-Nievergelt et al., 
219 2015), in order to account for any possible random effect of samples and locations. Collinearity 
220 among predictors was previously tested by means of Variance Inflation Factor approach using 
221 the R package car version 3.0-12 (Fox & Weisberg, 2019). A Pearson�s r coefficient value of 0.7 
222 was chosen as a collinearity threshold. The model selection was performed both through a 
223 Minimum Adequate Model and a Multi Model Inference approach using the R function drop1 
224 and the R function dredge in the package MuMIn version 1.43.17 (Barton, 2020). The sum of 
225 weights for each predictor was estimated from the best competing models, then model-averaged 
226 coefficients were estimated and the difference from zero tested for significance. Beta-diversity 
227 among different locations and among habitats was assessed by means of Non-metric Multi-
228 Dimensional Scaling (NMDS) ordination system using Jaccard dissimilarity index and statistical 
229 significance was verified performing a PERMANOVA test, using the software 
230 MycrobiomeAnalist (Chong et al., 2020; Dhariwal et al., 2017). 

231 Geographical Information Systems and Species Distribution Models

232 A Species Distribution Model approach was used to model the potential distribution of AMF by 
233 estimating the environmental suitability through the maximum entropy-based software MaxEnt 
234 (Phillips et al., 2004 2006, Elith et al., 2011, Warren & Seifert, 2011) version 3.4.1. A relatively 
235 biogeographically homogeneous area was selected to be modeled, following the boundaries of 
236 phytogeographic units of Puna and Altoandino as mapped in Oyarzabal et al., (2018).  Despite 
237 the site Chaupi-Rodeo is located below 4000 m.a.s.l and therefore it would not be strictly within 
238 the Alto-andina unit definition of Oyarzabal (2018), this site falls within the boundaries of this 
239 phytogeographic unit. Therefore, and considering that Chaupi-Rodeo sampling points also fall 
240 within the Altoandino or Altos Andes ecoregion sensu Matteucci, 2018a, we included Alto-
241 andina region within the predicted area. Due to similar tectonic and orogenic dynamics, 
242 Argentinean Puna and Altoandino can be considered as a unique region northern of 27° latitude 
243 S, therefore allowing to model the environmental suitability for both. Consequently, the 
244 estimated area was bounded southward by this latitude (Matteucci, 2018a; Matteucci, 2018b) to 
245 avoid excessive environmental heterogeneity for the predictions. Cartographic processing was 
246 performed through the software QGIS version 3.16 (QGIS Development Team, 2021) using the 
247 World Geodetic System WGS84 for rasters and vectors georeferencing. A set of climatic and 
248 environmental rasters were used as predictors of the suitability of AMF. Layers were previously 
249 clipped within the selected boundaries, and aligned to fit the georeferencing. Nineteen 
250 Worldclim 2 (Fick & Hijmans, 2017) bioclimatic variables regarding temperature and 
251 precipitation and elevation at maximum resolution of 30� were chosen as predictors along with 
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252 the following environmental rasters: Land Cover at 30� resolution by National Mapping 
253 Organizations - GLCNMO based on index LCCS developed by FAO; vegetation units 
254 (Oyarzabal et al., 2018) corresponding to Puna (dominated by Fabiana densa Remy and 
255 Baccharis boliviensis (Wedd.) Cabrera and Altoandino (dominated by Senecio algens Wedd. and 
256 Oxalys compacta Gillies ex Hook. & Arn.); soil nutrients retention and soil nutrients availability 
257 by FAO Geonetwork, and soil type by SMW-Digital Soil Map of the World - FAO (Fig. 2). The 
258 selection of climatic variables was performed stepwise and climatic variables collinearity was 
259 tested by means of the R package corrplot version 0.92 (Wei & Simko, 2021) and stepwise 
260 Multivariate Principal Components Analysis (PCA) were performed on the bioclimatic values 
261 matrix using the software Past 4 (Hammer et al., 2001). A first set of models were generated 
262 through MaxEnt using the 19 Worldclim bioclimatic variables. Permutation importance values 
263 and jackknife AUC (area under the receiver operating curve) graphs were cross-referenced with 
264 PCA plots to perform a final bioclimatic variables selection. The selected bioclimatic variables 
265 were added to the above described environmental and edaphic predictors and a new set of 10 
266 bootstrap MaxEnt models was generated, setting the test data to 30% and optimizing the process 
267 to maximum 5000 iterations and 10,000 background points of pseudo-absence. A last stepwise 
268 process of variable selection was then performed running multiple models in order to select the 
269 best model among those generated, by comparing AUC values, permutation importance of 
270 variables and jackknife AUC test results. A presence-absence threshold was then applied both to 
271 cloglog and cumulative outputs of the model, generating QGIS maps to show the predicted areas 
272 of presence and of absence. The presence-absence cumulative threshold was calculated as a 
273 mean of fixed cumulative 10% values of threshold generated by MaxEnt for each of the 10 
274 bootstrap model replicates, while the cloglog threshold was calculated as a mean of the 
275 thresholds generated by MaxEnt by balancing training omission, predicted areas and threshold 
276 values. Omission rates were calculated per each threshold and tested for significance. Since all 
277 the Chaupi Rodeo points of presence were sampled in agricultural soils, while the other samples 
278 were collected in unfarmed environments of Puna and Salar, the above-described modeling 
279 procedure was performed again on a subset of points of presence excluding the Chaupi Rodeo 
280 location by using the same variables selected for the full points model. This procedure not only 
281 accounts for the possible biases in predicting AMF suitability when considering both cultivated 
282 and uncultivated soils but also allows a direct comparison between the potential distribution 
283 predicted using all points and an unmanaged environment-based one.

284 RESULTS

285 Total fungal abundances and beta-diversity

286 The taxonomic analysis of the retrieved fungal communities showed that the highest number of 
287 reads belonged to the Phylum Ascomycota with more than 30,000 sequences per location, 
288 followed by Phylum Basidiomycota, ranging from more than 8,500 up to almost 32,000 
289 sequences across samples (Fig. 3, TableS1). The Phylum Glomeromycota showed a high 
290 abundance per sample above 900 sequences only in the croplands of Chaupi Rodeo, with the 
291 exclusion of potato fields, and in the sampling point Cal_D in Abra Pampa (Fig. 3, TableS2). 
292 Read counts higher than 300 sequences were also observed for the Phylum Mortierellomycota in 
293 Chaupi Rodeo B and C locations and in Salinas Grandes soils (Fig. 3), while all other Phyla 
294 showed read abundances lower than 100 sequences. Beta-diversity among different locations was 
295 assessed by means of Non-metric Multi-Dimensional Scaling (NMDS) ordination system using 
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296 Jaccard dissimilarity index and statistically tested by means of PERMANOVA, with a R-squared 
297 value of 0.41928 and p-value < 0.001 confirming significant differences among locations, 
298 Salinas Grandes samples clearly separated from the other locations (Fig. 4). Significant 
299 differences in Beta-diversity among habitats were also assessed, with a R-squared value of 
300 0.26045 and a p-value < 0.001, thus confirming differences among the considered sampling 
301 points in Puna, Salar and Chaupi Rodeo different crops.
302

303 Occurrence of Phylum Glomeromycota and ecological drivers

304 Kruskal-Wallis non-parametric test of variance showed an overall significant difference in AMF 
305 abundance among locations (chi-squared=54.393, p-value=1.966e-09; Fig. S1) and single 
306 samples (chi-squared=106.21, p-value=2.411e-11).  . As a matter of fact, a very scarce 
307 occurrence of AMF was observed in the surrounding areas of Salar (Dunas) where we found 
308 Glomeromycota sequences only in one sample, while no sequences were found in Salinas 
309 Grandes soil samples nor in two of the three potato fields in Chaupi Rodeo (CRP_B and 
310 CRP_C). Significant differences were also observed among habitats, i.e. Puna, Salar, corn crops, 
311 Vicia faba L. crops and potato crops (chi-squared 37.742, p-value 1.266e-07; Fig. 5), as well as 
312 among types of soil anthropic impact,  i.e. lama or lama and cattle grazed areas, undisturbed or 
313 farmed soils (chi-squared =27.814, p-value =3.973e-06; Fig. S2.A) and among samples with 
314 different land uses in the previous year (chi-squared= 20.993, p-value = 0.0003177; Fig. S2.B). 
315 Pairwise post-hoc tests with Bonferroni correction (Table S3) revealed that Chaupi Rodeo 
316 cropland soils were significantly different from the soils of the areas of Salinas Grandes and 
317 Dunas, respectively extracted from a Salar and from less saline surroundings of the Salar. Only 
318 one of the three locations in Chaupi Rodeo (Chaupi Rodeo_A) was significantly different from 
319 the area of Punto Susques, located within the Puna habitat. The above stated significances among 
320 locations were due to the samples CRF_A and CRF_B, both V. faba crops in Chaupi Rodeo, 
321 which were significantly different from all Dunas and Salinas Grandes samples, two Chaupi 
322 Rodeo potato crops (CRP_B and CRP_C) and samples PdM B and PS_C, these last two both 
323 belonging to Puna habitats. Significant differences in Glomeromycota reads were also observed 
324 among cultivated soils and soils of Puna grazed or not by Lama and among soils of crops grown 
325 at V. faba and all the other soils as well as among corn crops and Puna and Salar soils.
326 Adding soil biochemical parameters as predictors of AMF occurrence in a Generalized Linear 
327 Mixed Model approach assessed soil salinity and the quantity of organic matter in soil as 
328 significant drivers of AMF occurrence in the sampled areas (Table S4). Salinity showed the 
329 biggest size effect and a negative correlation thus reflecting how increasing salinity in the 
330 investigated soils seems to limit AMF occurrence while increasing organic matter may benefit 
331 AMF growth. The nested random effects of samples within locations showed variance values 
332 greater than zero, hence accounting for the spatial autocorrelation of data. Consistent results 
333 were obtained by a Multi Model Inference (MMI) approach. The sum of weights of predictors 
334 calculated from model weighting and the model-conditional averaged coefficients highlighted 
335 how salinity and organic matter appear to be the more influencing predictors on AMF occurrence 
336 in the investigated soils, with estimates significantly different from zero (Table 1).
337
338 Modeling AMF geographical and environmental suitability in Argentinian Puna
339 To model the distribution of AMF in the selected areas of Puna and Altoandino, a stringent 
340 stepwise climatic and environmental variables selection through an iterative maximum entropy 
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341 modeling approach, was carried out as described above. Principal Component Analysis (PCA) 
342 performed on bioclimatic and elevation values, extracted from each point of AMF presence, 
343 allowed to select separately a subset of temperature and precipitation variables likely explaining 
344 more variance to complement the importance percentages assigned by the software MaxEnt to 
345 variables (Fig. S3). The selected bioclimatic variables chosen to run the final set of models were 
346 minimum temperature of coldest month (bio6), temperature annual range (bio7), and coefficient 
347 variation of precipitation seasonality (bio15), which were added to the environmental predictors 
348 from the selected rasters as described above. Among a set of competing models with AUC values 
349 larger than 0.975 generated using MaxEnt, a best predictive model was chosen scoring a value of 
350 AUC of 0.978± 0.005 for the cloglog output and a value of AUC of 0.978 ± 0.007 for the 
351 cumulative output. MaxEnt permutation importance of variables values (Table S5) revealed that 
352 the variables with a larger contribution in explaining the model were temperature annual range 
353 (bio7), soil type and land cover, with lower contributions given by elevation, nutrient retention in 
354 soils, quantity of nutrients, vegetation type, and precipitation seasonality (bio15). An overall 
355 assessment of the cloglog and cumulative models can be inferred observing the plots showing the 
356 training omission rate and the predicted area as a function of the cumulative threshold (Fig. 6), 
357 averaged over the replicate runs, here complementing the AUC value and confirming a viable 
358 quality of the models for the predicted area, notably considering the limited number of presence 
359 points derived from the sampling design. Cloglog and cumulative suitability maps of AMF 
360 occurrence were generated as an output of the MaxEnt runs, respectively following a probability 
361 and a percentage scale. As expected, cumulative prediction expands the suitability to larger areas 
362 than the cloglog model (Fig. 7).
363 A threshold value was chosen among those calculated by MaxEnt for each of the ten model 
364 repetitions. Only thresholds corresponding to low or null omission rates and tested for 
365 significance (p-value<0.05) were considered as possible presence-absence cutoffs. The MaxEnt 
366 threshold generated as a balance among training omission, predicted area and threshold value 
367 was applied to the cloglog output, calculating the effective cutoff as a mean of all model 
368 repetitions threshold values, corresponding to a cutoff value of 0.0644, the areas below which 
369 were then considered as AMF non-idoneity zones and plotted in black on the resulting map (Fig. 
370 8A). A mean of all model repetitions values of 10 percent fixed cumulative thresholds 
371 transformed into cloglog probability values generated by MaxEnt was chosen as the effective 
372 cutoff for the cumulative output, corresponding to a value of 0.1266, the areas below which were 
373 also in this case considered as AMF non-idoneity zones and plotted in black on the cumulative 
374 output map (Fig. 8B). Actual absence points (resulting from the OTU table analysis) were not 
375 used in this process due to a non-systematic coverage of the predicted territory, thus preferring 
376 not to introduce biases in the MaxEnt only-presence environmental suitability predictions.
377 In a further set of models excluding Chaupi Rodeo points of presence, the values of importance 
378 of predictors were consistent with the full points model, except for elevation and type of 
379 vegetation. In these models, elevation exhibited negligible importance and the type of vegetation 
380 was uninformative, because the used points of presence were all included into the 
381 phytogeographic zone of Puna. Temperature annual range (bio7) and soil type appeared to be the 
382 best predictors also in this new set of models (Table S6). The output maps generated excluding 
383 Chaupi Rodeo points evidenced a lower AMF suitability of Chaupi Rodeo area relative to the 
384 full point outputs, suggesting that the agricultural land use may be a main driver of AMF 
385 distribution in this area. The threshold types chosen as presence-absence cutoffs were the same 
386 selected for the full points models respectively with values of 0.0474 and 0.1143 for the cloglog 
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387 and the cumulative models (Fig. 9A,B). According to the response curves of the generated 
388 MaxEnt models, the selection of climatic predictors indicates a positive effect of temperature 
389 seasonality in shaping the AMF Argentinean Puna distribution, while a higher altitude is 
390 negatively correlated with the presence of AMF (Fig. 10). 
391 According to the response curves of the generated MaxEnt models, the selection of climate 
392 predictors indicates  a positive effect of temperature seasonality in modeling the distribution of 
393 the Argentine Puna AMF, while a higher altitude is negatively correlated with the presence of 
394 AMF (Fig. 10 ).

395 DISCUSSION

396 Environmental metabarcoding outcomes indicated a high occurrence of Ascomycota and 
397 Basidiomycota in the investigated Argentinean Puna and Altoandino soils, as expected given the 
398 wide taxonomic diversity of these Phyla, and of the Phylum Mortierellomycota with lower 
399 number of reads. Even if other studies assessed a widespread dominance of Chytrids in high-
400 elevation periglacial soils (Freeman et al., 2009) we found very scarce occurrence of these taxa 
401 in Puna soil, likely due to an endemic aridity in most of the year which may not favor the Chytrid 
402 zoosporic reproductive stages. The Phylum Glomeromycota occurred at higher abundances in 
403 croplands than in uncultivated Puna and Salar soils, likely due to a greater density of host plants 
404 in the former ones relative to the typical scarce vegetation of the habitats of these areas. 
405 Enhanced mycorrhizal dynamics and nutrients exchange certainly contributed to shaping 
406 different physical and biochemical features in Chaupi Rodeo farmed soils, which are not 
407 intensively managed and likely turn out to be more fit to Glomeromycota growth than droughty 
408 and poorly evolved soils of Puna environments. Still, this is not a univocal trend, since potato 
409 crop fields showed a very low occurrence of AMF not only relative to corn and fava beans but 
410 also in comparison to other Puna soils, AMF being virtually absent in two potato crop samples 
411 out of three. In a previous study focused on the Chaupi Rodeo cropland soils, Ontivero et al., 
412 (2020) underlined how AMF communities were significantly shaped by calcium and nitrogen 
413 concentration in soils. Similarly, other studies highlighted how pH and calcium concentration 
414 was strongly correlated with fungal richness in soils, with particular significance of pH and 
415 evapotranspiration for Glomeromycota occurrence (Tedersoo et al., 2014). In a SDM research on 
416 the realized niche of AMF, Davison et al., (2021) showed how pH and temperature were the 
417 most significant drivers of the global AMF distribution, reinforcing the importance of climatic 
418 and biogeochemical features of soils for explaining the AMF distribution. 
419 Among all locations of Puna environments, Dunas samples and to follow both Puesto del 
420 Marqués and Punto Susques samples showed the lowest occurrence of AMF. If the higher 
421 salinity of Dunas soil might additionally contribute to lower the AMF presence, for all the above 
422 mentioned locations the AMF scarcity is likely related to soil disturbance due to grazing, flocks 
423 of llamas and cattle being restricted in paddocks or in corrals in Puesto del Marqués, and only 
424 llamas in Dunas and Punto Susques. The effects of grazing on AMF are however controversial 
425 because the responses of these biotrophic symbiotic fungi to herbivory are context-dependent 
426 and may be directly related to the carbon flux within the plant-AMF-soil network and to the 
427 intensity and extent of grazing over time, as well as to the specific mycorrhizal dependence of 
428 the given grazed plants and the adaptation of AMF and their host plants to grazing (van der 
429 Heyde et al., 2019). Modeling of AMF responses to grazing by considering soil hyphal length, 
430 host root colonization, composition of soil communities and their sporulation, highlighted that 
431 these parameters were driven by the extent of grazing time (van der Heyde et al., 2017) in 
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432 Canadian grasslands with 17 to 85 years of grazing by cattle and horses. In Puna, anthropogenic 
433 activity since the late Holocene, and for more than 2,000 years before the present, led to intense 
434 grazing, which is a major cause of shrubland expansion to the detriment of grassland habitats. 
435 Furthermore, grazing by domestic animals including cows and camelids proved to be a main 
436 driver of more drastic effects on vegetation than those caused only by wild camelid species 
437 (Carilla et al., 2018, Quiroga Mendiola & Cladera 2018), thus impacting on soil fungal dynamics 
438 and likely on AMF distribution as well. Overall, a global meta-analysis of livestock effect on 
439 AMF has shown the negative effect of heavy or moderate grazing on AMF abundance, as well as 
440 for longtime grazing and low annual precipitations, consequently triggering the reduction of host 
441 aboveground biomass (Yang et al., 2020), as recorded modeling the sequences of Puna. The 
442 relationship between AMF and soil total fungal profile with grazing-shaped vegetation dynamics 
443 in Puna ecosystems requires, however, further investigation. 
444 The occurrence of AMF in hypersaline Salar areas and surroundings, notably the locations of 
445 Salinas Grandes and Dunas is very scarce. No AMF sequences were recorded in any of the 
446 Salinas Grandes soils, while only one sampling point in Dunas displayed the occurrence of a 
447 single Diversisporaceae OTU. As the model averaged estimates statistically suggest, it is 
448 therefore likely that high levels of salinity in soils can have a negative impact on the overall 
449 AMF occurrence and abundance in these environments, this effect extending also to areas in 
450 moderately saline surroundings of the Salar. It must be noted however that Glomeromycota are 
451 obligate biotrophic symbionts of most vascular plants and the observed variability in abundance 
452 and distribution of sequences from these fungi among different points of the same locations 
453 might be partly driven by the chance that sampling occurred at different distances from nearby 
454 plants or plant root residuals and to plant-host specificity at the ecological group level (Opik et 
455 al., 2009). However, results obtained so far in AMF morphological studies in saline 
456 environments of Argentina did not show a clear pattern with regard to the effect of plant identity 
457 on AMF occurrence and abundance. Different native halophytes of Salinas of central Argentina 
458 showed in their rhizosphere a low diverse AMF community, with AMF species inconsistently 
459 varying in their sporulation among soil samples, seasons, plant species and soil depth (Becerra et 
460 al., 2014; Cofré et al., 2012; Soteras et al., 2012). Therefore, the effect of salinity on AMF 
461 occurrence is not straightforward.
462 Along with salinity, the abundance of organic matter in soil is suggested to be a significant 
463 predictor of AMF distribution in the investigated soils, in accordance with the importance of soil 
464 type and nutrient abundance and retention highlighted by MaxEnt models. Even if 
465 Glomeromycota are not saprotrophs, a larger amount of organic matter in soil may be an 
466 indicator of enhanced nutrient soil dynamics generated by a greater density of plants, thus once 
467 more likely explaining the abundance of AMF in crop soils compared to soils of Puna and Salar, 
468 typically poor in organic matter. MaxEnt response curves regarding edaphic and vegetation 
469 variables (Fig.10, Fig. S4-8) pointed out that grasslands, followed by sparse herbaceous and 
470 shrubs areas, are more suitable for the occurrence of AMF than bare areas, as expected for a 
471 taxon in obligate symbiosis with plant roots. Soil types predominantly associated with a greater 
472 occurrence of AMF in Puna environments are luvic yermosols, with a weak ochric A horizon and 
473 an argillic B horizon, aridic moisture regime and low organic carbon content, mainly 
474 corresponding to soil characteristics of Puna habitats. In a recent research Větrovský et al., 
475 (2019) assessed that climate is the primary environmental factor for the overall distribution of 
476 Fungi. Specifically, temperature proved to be a main driver for AMF distribution, as shown by 
477 Zhao et al., (2019) and Davison et al., (2021). 
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478 In Argentinean Puna sites, MaxEnt response curves also suggested that a wider annual 
479 temperature range showed a greater positive effect on the AMF distribution among the other 
480 bioclimatic predictors of AMF seasonality, while higher altitude was negatively correlated with 
481 AMF presence. The fact that an increasing temperature seasonality can be related to a greater 
482 occurrence of AMF might appear counter-intuitive because it suggests more extreme climatic 
483 conditions. The effect of temperature on AMF is related directly or indirectly to carbon and 
484 phosphorus AMF-host exchange and to translocations from soil to the host plants (Gavito et al., 
485 2005). Recent research highlighted that AMF showed differential patterns of growth depending 
486 on the environmental conditions of their habitats, with a higher resistance to high temperature in 
487 arid and semiarid ecosystems (Kilpeläinen et al., 2020). Therefore, in the ecological context of 
488 the Puna environment, it can be inferred that in the wet and warm season AMF can benefit from 
489 higher temperatures, enhanced water availability and metabolic activity, likely remaining 
490 dormant as spores in less favorable periods. The seasonal distribution of AMF is well known for 
491 their sporulation (Smith & Read 2008), measured in terms of spore abundance and sporulating 
492 species richness and root colonization, especially for other investigated South American highland 
493 grasslands such as the Pampa de Achala (Lugo & Cabello, 2002; Lugo et al., 2003) and different 
494 mountain environments (Soteras et al., 2019). The altitude negative trend might be related to less 
495 favorable environmental and climatic conditions at higher altitudes for plants and therefore for 
496 AMF, as it has been reported in Argentinean Puna considering sporulation (Lugo et al., 2008) 
497 and root colonization (Lugo et al., 2012). A study performed in the Andean Yungas Forest 
498 ecoregion (Geml et al., 2014) assessed how soil-fungal community structure is negatively 
499 correlated with elevation, in accordance with former studies on AMF distribution on Himalaya 
500 (Gai et al., 2012) and our results on AMF sequences distribution. Although a wider sampling in 
501 high elevation gramineous grasslands might be required to better explain the AMF ecology in 
502 these habitats, AMF community richness have already been assessed to be higher in grasslands at 
503 global (Tedersoo et al., 2014, Davison et al., 2015) and local scales (Grilli et al., 2019).
504 Given the evidence that croplands hosted a much greater abundance of Glomeromycota, we 
505 considered it advisable to account for the human intervention in cultivated soils in the modeling 
506 process of AMF distribution. Setting a new series of models excluding the cultivated Chaupi 
507 Rodeo samples allowed us to model the potential AMF distribution as if these areas were not 
508 cultivated, verifying how large-scale soil features and bioclimatic constraints would act on the 
509 AMF distribution if these soils had remained unmanaged habitats of Puna and Altoandino. Such 
510 a new set of models unveiled a much lower suitability of Chaupi Rodeo location for 
511 Glomeromycota than previously modeled, but also at a wider scale reshaped the distribution of 
512 AMF in the areas where climatic and soil type conditions were similar to Chaupi Rodeo 
513 locations. It is noteworthy that the new models excluded lithosols from high suitability: these 
514 soils are typically found in the unfarmed Chaupi Rodeo areas, but in the previous models they 
515 were inversely considered as good predictors of AMF occurrence (see Fig. S4-6). This confirms 
516 that shaping distribution models without accounting for human activity in the studied 
517 environment may prove misleading but likewise it allows to model potential distributions more 
518 accurately in a wider ecological perspective. 

519 CONCLUSIONS

520 To sum up, we performed an exploratory assessment of AMF environmental suitability in an 
521 ecologically homogeneous area of Argentinean Puna and Altoandino throughout three different 
522 representative ecosystems: punean grazed and ungrazed grasslands, a hypersaline endorheic 
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523 basin and family-farmed croplands. We concluded that the differential human impact on frail 
524 ecosystems like the Argentinean Puna should be assessed also for soil and microbiological 
525 dynamics, especially when investigating deep plant-related organisms like AMF so essential in 
526 preserving not only the ecosystems stability but also the farming productivity, this last 
527 unreplaceable in the subsistence-based human communities of Puna. Likewise, AMF distribution 
528 may be a good indicator of derangements from ecosystem equilibrium in those locations of Puna 
529 where exceeding intensive grazing, wood collection and mining activities risk jeopardizing the 
530 good functioning of these unique ecosystems. We encourage further investigations of the 
531 structure and composition of punean soil mycobiota at a larger scale and with an in-depth 
532 assessment of the differential impact of human activities on the many habitats composing this 
533 nowadays endangered biogeographical region.
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Figure 1
Geolocation of the analyzed sampling points within the Argentinean Jujuy province.

A. Points are clustered in locations labeled as follows: Unto4 (Salinas Grandes), Unto6
(Dunas), PS (Punto Susques), CaI (Camino al INTA Abra Pampa), PdM (Puesto del Marqués,
Abra Pampa), CR (Chaupi Rodeo). B. Sampling points are shown. Chaupi rodeo points are
labeled following the three sampling locations (A, B, C). Color legend shows different habitats
or crops: red=salar, blue= puna, green= fava bean crops, yellow=corn crops, brown=potato
fields.
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Figure 2
Georeferenced, clipped and aligned rasters of the selected environmental predictors
used for MaxEnt modeling along with the 19 Worldclim derived climatic variables.

A. Land Cover 30” (500m) (Global Land Cover by National Mapping Organizations - GLCNMO
based on index LCCS developed by FAO); B. Vegetational units (Oyarzabal et al. 2018): Puna
(Vegetation Unit 35), dominated by Fabiana densa and Baccharis boliviensis (light green) and
Altoandino (Vegetation Unit 36), dominated by Senecio algens and Oxalys compacta (dark
green). C. Soil nutrients retention, FAO Geonetwork. D. Soil nutrients availability, FAO
Geonetwork. E. Soil type, DSMW-Digital Soil Map of the World (FAO); F. Elevation 30”,
Worldclim.
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Figure 3
Taxonomic distribution of the retrieved fungal communities grouped per sample at the
Phylum level.

Green=Ascomycota; Orange: Basidiomycota; Blue=unidentified fungi;
Purple=Glomeromycota; Light green=Mortierellomycota; Yellow=Chytridiomycota;
Brown=Calcarisporiellomycota; Grey=Aphelidiomycota.
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Figure 4
Non-metric Multi-Dimensional Scaling (NMDS).

NMDS performed using Jaccard dissimilarity index and statistically tested by means of
PERMANOVA, with a R-squared value of 0.41928 and p-value < 0.001.
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Figure 5
Barchart of Glomeromycota read means among different habitats or land uses.

Samples habitats and land uses are indicated by colors as described in the legend. Different
letters indicate pairwise post-hoc test statistical significances with Bonferroni correction
(p<=0.05).
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Figure 6
Training omission rate and predicted area performed in MaxEnt as a function of
cumulative threshold.

Thresholds were averaged over the replicate runs respectively for Cloglog output (A) and for
Cumulative output (B).
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Figure 7
AMF environmental suitability as developed by MaxEnt iterative approach on the chosen
best model.

A. Cloglog MaxEnt suitability map on a probability scale; B. Cumulative MaxEnt suitability
map on a percent scale. Probabilities of occurrence are better represented by the cloglog
output while habitat suitability is better represented by the cumulative output. Colors
indicate a gradient from minimum suitability (deep blue) to maximum suitability (red).
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Figure 8
MaxEnt environmental suitability maps using all the points of presence.

A. MaxEnt cloglog model (threshold: 0.0644) B. Cumulative model) outputs (threshold:
0.1266). Black areas correspond to non-idoneity zones for AMF. Other colors represent a
blue-red gradient from low to high environmental suitability for the occurrence of AMF.
Presence points corresponding to the georeferenced sampling points where Glomeromycota
sequences were found are plotted on the map as colored dots as follows: brown=farmed
soils, green=puna, white=salar.
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Figure 9
Environmental suitability maps generated using a subset of points of presence that
exclude Chaupi Rodeo points.

A. MaxEnt cloglog model (threshold: 0.0474) B. Cumulative model (threshold: 01143). Black
areas correspond to non-idoneity zones for AMF. Other colors represent a blue-red gradient
from low to high suitability of occurrence of AMF. Other colors represent a blue-red gradient
from low to high environmental suitability for the occurrence of AMF. Presence points
corresponding to the georeferenced sampling points where Glomeromycota sequences were
found are plotted on the map as colored dots as follows: brown=farmed soils, green=puna,
white=salar. The points of Chaupi Rodeo are represented here for reference even if not
included in MaxEnt models.
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Figure 10
MaxEnt generated response curves for variables bio7, soil type and elevation extracted
from the chosen cloglog full points model.

The curves show the effect of varying the chosen variable on the MaxEnt prediction, by
keeping all other environmental variables at their average sample value.
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Table 1(on next page)

Sum of weights of importance of all predictors as calculated from model weighting
through Akaike Information Criterion and model-averaged coefficients.

A. Each value corresponds to the probability that a variable is included in the best predicted
model. B. Conditional averaging resulting from model averaging using the function dredge in
the R package MuMIn. Each estimate is tested for statistical significance as different from
zero. (*: statistically significant).
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1

A Salinity Organic matter Elevation pH Assimilable P

Sum of weights 0.91 0.77 0.55 0.42 0.27

2

3

4

B Estimate Std.error Adjusted SE Z value Pr(>|z|) Signific.

(intercept) -8.33502 4.64333 4.64382 1.795 0.0727 ･

Organic 

matter

1.81588 0.70544 0.70587 2.573 0.0101 *

Salinity -27.34102 12.52910 12.53072 2.182 0.0291 *

Elevation 1.19262 0.73985 0.74026 1.611 0.1072

pH -1.16042 1.07924 1.07971 1.075 0.2825

Assimilable P 0.01587 0.66192 0.66237 0.024 0.9809

Signif. codes: 0 *** , 0.001 ** , 0.01 * , 0.05 ･
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