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ABSTRACT
Salt stress is one of the most severe abiotic stresses affecting plant growth and
development. The application of silicon (Si) is an alternative that can increase the
tolerance of plants to various types of biotic and abiotic stresses. The objective was to
evaluate salt stress’s effect in vitro and Si’smitigation potential onAechmea blanchetiana
plants. For this purpose, plants already established in vitro were transferred to a culture
medium with 0 or 14 µM of Si (CaSiO3). After growth for 30 days, a stationary liquid
medium containing different concentrations of NaCl (0, 100, 200, or 300 µM) was
added to the flasks. Anatomical and physiological analyses were performed after growth
for 45 days. The plants cultivated with excess NaCl presented reduced root diameter
and effective photochemical quantum yield of photosystem II (PSII) (8PSII) and
increased non-photochemical dissipation of fluorescence (qN). Plants that grew with
the presence of Si also had greater content of photosynthetic pigments and activity of
the enzymes of the antioxidant system, as well as higher values of maximum quantum
yield of PSII (FV/FM), photochemical dissipation coefficient of fluorescence (qP) and
fresh weight bioaccumulation of roots and shoots. The anatomical, physiological and
biochemical responses, and growth induced by Simitigated the effect of salt stress on the
A. blanchetiana plants cultivated in vitro, which can be partly explained by the tolerance
of this species to grow in sandbank (Restinga) areas.

Subjects Agricultural Science, Plant Science
Keywords Bromeliads, Modulated fluorescence, Tolerance, Plant tissue culture, Salinity

INTRODUCTION
Salinity is responsible formultiple effects that reduce the growth, development, and survival
of plants, by means of various mechanisms, including alteration of their hydric relations,
deficiency or toxicity of ions, and oxidative stress (Carillo, 2018; Hniličková et al., 2019;
Morton et al., 2019; Zhu, Gong & Yin, 2019; Chung et al., 2020).
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During prolonged exposure to high salinity, plants suffer ionic stress, mainly due
to sodium chloride (NaCl), which negatively affects the synthesis of proteins, enzyme
activities, and photosynthesis (Munns & Tester, 2008; Zhu, Gong & Yin, 2019). Salt stress is
accompanied by oxidative stress, leading to the production of reactive oxygen species (ROS).
These factors contribute to the deleterious effects of salinity on plants (Acosta-Motos et al.,
2015; Zhu, Gong & Yin, 2019). ROS can alter normal cell metabolism through oxidative
damage to the organelles andmembranes by lipid peroxidation. Plants’ antioxidant systems
can be stimulated to combat the oxidative injuries induced by salt stress. These responses
include the removal of ROS by enzymes such as ascorbate peroxidase (APX), superoxide
dismutase (SOD), and catalase (CAT) (Zhu, Gong & Yin, 2019; Jabeen et al., 2022).

The physiological mechanisms used by plants to minimize the damages caused by
stress and reestablish normal growth include processes such as detection and signaling
of stress; regulation of metabolism; reduction of stomatal opening, transpiration,
and photosynthesis; inhibition of cell division and expansion; and changes in plants’
morphology, phenology, and allocation of resources (Negrão, Schmöckel & Tester, 2017;
Morton et al., 2019). In particular, the regulation of ionic homeostasis involves the
sequestration of toxic ions, along with the production and accumulation of organic
osmolytes in the cytosol, enabling rapid osmotic adjustment and preventing toxicity
(Nikalje et al., 2017; Carillo, 2018; Hniličková et al., 2019; Larbi et al., 2020).

Physiological studies of salt stress in vitro are considered a feasible alternative to represent
adverse conditions of the external environment (Claeys et al., 2014).Moreover, this method
allows for controlling the stress level and reducing the variability of in vivo studies (Lawlor,
2013). Studies of salt stress have also been conducted under in vitro conditions (Harter et al.,
2014; Pandey & Chikara, 2015; Cantabella et al., 2017; Zushi & Matsuzoe, 2017; Rezende et
al., 2018; Javed & Gurel, 2019), which have demonstrated the advantages of these techniques
for the study of plant physiology.

One alternative to reduce the effects of salt stress on plants is the application of silicon
(Si) (Sahebi, Hanafi & Azizi, 2016). Si is a beneficial element due to its possibly favorable
effects on monocots and eudicots (Martins et al., 2019; Zhu, Gong & Yin, 2019; Trejo-Téllez
et al., 2020; Cipriano et al., 2021b). Although Si is the majority element in the sand (SiO2)
(>90%) (Costa et al., 2020), its Si availability for plants is low. Many researchers have
reported that Si has attenuating effects on abiotic stresses, such as salinity, drought, and
toxicity of heavy metals (Wu et al., 2015; Coskun et al., 2016; Manivannan & Ahn, 2017;
Rios et al., 2017; Zhu, Gong & Yin, 2019; Cipriano et al., 2021b).

In vitro cultivation allows for studying the physiological functions of Si in plants
(Sivanesan & Park, 2014; Rezende et al., 2018; Martins et al., 2019; Cipriano et al., 2021a;
Cipriano et al., 2021b). Using Si in the culture medium of plants grown in vitro can increase
the growth rate and content of photosynthetic pigments (Asmar et al., 2015; Dias et al.,
2017;Rezende et al., 2018;Martins et al., 2019;Cipriano et al., 2021b). The addition of Si can
also favor the increased activity of photosynthesis and the antioxidant system (Rodrigues et
al., 2017; Manivannan et al., 2018; Ribera-Fonseca et al., 2018; Cipriano et al., 2021b). The
positive effects of Si in the culture medium of plants can be related to increased absorption
of nutrients and higher photosynthetic activity, besides enhancing the morphogenetic
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potential of plants’ cells, tissues, and organs (Sivanesan & Park, 2014; Zhu, Gong & Yin,
2019; Liu, Soundararajan & Manivannan, 2019; Liu et al., 2020).

Among the techniques for detecting physiological disturbances, pulse-amplitude
modulation (PAM) chlorophyll fluorescence is frequently used since it can detect stress
by alterations in the performance of photosynthetic apparatus (Yao et al., 2018). Besides
these, studies of the leaf and root anatomy can be important to evaluate the morphological
adjustments of plants in response to stressors (Paez-Garcia et al., 2015;Martins et al., 2019).

Inmost studies, only the roots are exposed to salt stress. However, for some plant species,
such as bromeliads, the leaves are the primary organ for nutrient uptake. This way, abiotic
stress agents, such as salt, can cause different responses compared to those species that face
exposure only in the roots. In the present study, we chose the species Aechmea blanchetiana
(Baker) L.B. Smith (Bromeliaceae). The plants of this bromeliad species grow naturally in
sandbank (Restinga) areas characterized by high salinity. This species contains a central
tank (formed of leaves) that accumulates water, detritus, and salt (sea-salt aerosol generated
from ocean–wind). In this context, it is crucial to understand which morphophysiological
mechanisms allow mitigating the damages induced by salt stress. It is not yet clear how the
co-exposure to Si and NaCl can influence the anatomy, performance of the photosynthetic
apparatus, and antioxidant enzymes of plants native to sandbank areas. Therefore, the
objective of this study was to evaluate the effect of salt stress in vitro induced by NaCl and
the mitigation potential of Si in A. blanchetiana plants.

MATERIALS AND METHODS
In vitro culture conditions
Side buds of A. blanchetiana with a shoot length of approximately 2.5 cm (previously
established in vitro) were transferred to glass flasks containing 30 mL MS culture
medium (Murashige & Skoog, 1962), supplemented with 30 g L−1 sucrose and 4 µM
1-naphthaleneacetic acid, and solidified with 7 g L−1 agar. The initial treatments consisted
of two Si levels (0 or 14 µMCaSiO3) added to the culture medium, and the concentrations
were chosen following Martins et al. (2019). After 30 days of in vitro culture with both
Si levels, the next step was performed. This involved adding 30 mL stationary liquid MS
medium (at 25% strength) to the flasks, supplemented with different concentrations of
NaCl (0, 100, 200, or 300µM), forming a solid/liquidmedium (twophases) and constituting
eight treatments (2 Si ×4 NaCl). The NaCl concentrations were chosen through previous
tests, in which plants’ highest concentration did not induce death. The treatments with
two phases were adapted from the methodology of Cipriano et al. (2021b). The experiment
was carried out with five explants per flask, and the treatments involving co-exposure (Si
and NaCl) occurred for 45 days (75 total days). The pH of all the media was adjusted to
5.8 before autoclaving at 120 ◦C during 20 min. The plant material was kept in a growth
room with a 16-hour photoperiod under LED lamps (Luminaria LED Slim 36W Bi-Volt
2800 lm) at a temperature of 26 ± 2 ◦C.
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Analysis of the leaf and root anatomy
After culture for 45 days with Si-NaCl co-exposure, anatomical analyses were performed on
the first and second fully expanded leaf and on roots (at 0.5 cm from the plant’s base) of six
different samples per treatment (n= 6). The samples were collected randomly and fixed in
an FAA solution (formaldehyde, acetic acid, and 50% ethanol in a proportion of 0.5:0.5:9.0)
for 72 h and conserved in 50% ethanol (Johansen, 1940). All themicrotechnique procedures
concerning sectioning, cleaning, and staining of the paradermal and cross-sections were
according toMartins et al. (2018) andMartins et al. (2020). The sectionswere then observed
under an optical microscope (Leica DM5000 B) coupled with a digital camera (Leica EC3)
to capture images. The photomicrographs were analyzed using the UTHSCSA-Imagetool R©

version 3.0 software, calibrated with a microscopic ruler.

Analysis of the mineral nutrient levels
The tissue samples were prepared by drying the entire plants in a forced-air oven for 72 h
at a temperature between 68 and 72 ◦C. The analyses were conducted with 1 g dry plant
material per sample and three repetitions per treatment (n = 3). The samples were ground
with a Wiley mill and placed in glass jars. To determine the concentrations of potassium
(K), calcium (Ca), magnesium (Mg), sulfur (S), boron (B), zinc (Zn), manganese (Mn),
iron (Fe), and sodium (Na), the samples were digested in a nitric-perchloric acid solution
in 4:1 proportion (Sarruge & Haag, 1974). The minerals were quantified using inductively
coupled plasma-optical emission spectrometry (ICP-OES; PerkinElmer model Optima
8300 DV). The nitrogen (N) content was measured by digestion in sulfuric acid according
to the Kjeldahl method (Sarruge & Haag, 1974).

Analysis of enzymatic activity
To determine the antioxidant enzyme activities, plants were collected after 45 days of
growth. The samples were immediately frozen in liquid nitrogen and stored at−80 ◦C until
analysis. The activities of superoxide dismutase (SOD; EC 1.15.1.1), ascorbate peroxidase
(APX; EC 1.11.1.11), and catalase (CAT; EC 1.11.1.6) were determined in fully expanded
leaves and roots from 5 different samples (n = 5). Approximately 0.200 g of fresh-frozen
leaf or root samples was ground in a mortar and pestle with liquid nitrogen, potassium
phosphate buffer (pH 7.8), EDTA 0.1 mM, ascorbic acid 10 mM, and PVPP 2% w/v. The
homogenate was centrifuged at 13,000 g at 4 ◦C for 10 min. Aliquots of the supernatant
were used for the enzymatic assays described below.

SOD activity was determined by forming blue formazan, resulting from nitrotetrazolium
blue chloride (NBT) photoreduction following Giannopolitis & Ries (1977). SOD activity
was detected after incubation under a 15 W fluorescent light for 10 min at 560 nm and
expressed as U min−1 mg−1 protein. CAT activity was determined according to Havir &
McHale (1987) by the decay of absorbance at 240 nm, using a 36 mM−1 cm−1 extinction
coefficient and expressed as µmol H2O2 min−1 mg−1 protein. APX activity was determined
by the initial ascorbate oxidation by H2O2 at 290 nm using a 2.8 mM−1 cm−1 extinction
coefficient and expressed as nmol of ascorbate min−1 mg−1 protein according to Nakano
& Asada (1981). Soluble protein was estimated using Bradford’s reagent (B6916; Sigma
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Aldrich, Burlington, MA, USA), by the Coomassie blue dye-binding protein assay, with
bovine serum albumin as the standard, according to Bradford (1976), to calculate specific
enzyme activity.

Contents of photosynthetic pigments
The contents of photosynthetic pigments were quantified by analyzing eight randomly
chosen fragments (n = 8) according to the method described byMartins et al. (2019). The
absorbance was measured using a GenesysTM 10S UV-Vis spectrophotometer (Thermo
Fisher Scientific, West Palm Beach, FL, USA), conducted at λ = 470, 645, and 663 nm for
carotenoids (Car), chlorophyll b (Chl b), and chlorophyll a (Chl a), respectively.

Measurement of modulated chlorophyll a fluorescence
The analyses of photosynthetic efficiency were carried out between 8:00 and 10:00 a.m.
by measuring the modulated chlorophyll a fluorescence with a PAM-2500 Walz portable
chlorophyll fluorometer. The measurements were carried out on the third leaf from the
plant’s rosette center of 12 plants per treatment (n = 12), according to themethod (Kramer
et al., 2004) and described further in Martins et al. (2020). The following variables were
obtained: FV/ FM, ETR, 8PSII, qN, qP, qL, NPQ, 8NPQ, and 8NO.

Analysis of the growth traits
After 45 days of co-exposure to Si-NaCl, the fresh weight was evaluated of the shoots
and roots (g plant−1) with five repetitions per treatment (n = 5), with each repetition
consisting of five plants.

Statistical analysis
The experimental design was completely randomized in a 4×2 factorial scheme: 4 NaCl
concentrations (0, 100, 200, or 300 µM) and 2 Si concentrations (0 or 14 µM). The data
obtained were submitted to analysis of variance (ANOVA), and the means were compared
by the Tukey test at 5% probability using the SISVAR 5.4 software (Ferreira, 2011).

RESULTS
Anatomical analysis
Significant differences were observed in the anatomical traits of the roots. The root diameter
was influenced only by the saline concentration, being largest at 100 µM and smallest at
0 µM and 300 µMNaCl (Figs. 1A–1I). The thickness of the cell walls of the exodermis was
influenced by both factors evaluated. In the absence of Si, the exodermal cell wall thickness
was smaller with all NaCl concentrations compared to the control. In turn, in the presence
of Si, the values were similar regardless of the concentration of NaCl applied. However,
the cell walls were thinner in relation to those of the roots in the control treatment (Figs.
1A–1H and 1I). The number of metaxylem vessels did not differ among the treatments
(5.94 ± 0.55).

In the paradermal leaf sections, the stomatal density of the basal region was influenced
only by the NaCl concentration. In this region, there was a decrease in the number of
stomata with increasing NaCl concentration (Figs. 2A–2H and 2R). However, the density
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Figure 1 Cross-sections (A–H) and anatomical traits (I–J) of roots of Aechmea blanchetiana plants in
the function of different concentrations of sodium chloride (NaCl) in the absence and presence of sili-
con (Si) during in vitro culture. Root transverse diameter (I) and cell wall thickness of root exodermis (J)
of Aechmea blanchetiana in the function of the NaCl concentration ( µM) and in the absence and presence
of silicon (Si) during in vitro culture. (I) Means (±SE), n= 6, followed by the same letter do not differ ac-
cording to the Tukey test at 5% significance. (J) Means (±SE), n= 6, followed by the same letter (lower-
case for 0 µM Si and uppercase for 14 µM Si), at each NaCl concentration, do not differ according to the
Tukey test at 5% significance. For each Si concentration analyzed (0 and 14 µM Si), the means followed
by an asterisk are significantly different according to the Tukey test at 5% significance. ct –cortex, ed –
endodermis, ep –epidermis, ex –exodermis, rh –root hair, xl –xylem, and phl –phloem. Bars= 100 µm.

Full-size DOI: 10.7717/peerj.14624/fig-1

and size of the stomata of the middle region of the leaves were influenced only by exposure
to Si. When cultivated with 14 µM Si, the plants presented a reduction of 14% in the
stomatal density and 3% in the stomatal size (Figs. 2I–2P and 2S–2T).

In the leaf cross-sections, the thickness of the adaxial and abaxial faces of the leaf
epidermis (µm) was influenced only by the NaCl concentration, being largest at the
concentration of 300 µMNaCl (Figs. 3 and 4A–4B). Plants cultivated in NaCl presence had
thicker chlorenchyma, mainly at the concentration of 200 µM NaCl (Figs. 3 and 4C). The
area of the sclerenchyma (1007.5 µm2

± 59.86), area of the phloem (587.08 µm2
± 26.01),

and diameter of the xylem vessels (9.90 ± 0.36) did not differ significantly among the
treatments (Fig. 3).
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Figure 2 Paradermal sections (A –P) and stomatal traits (Q–S) of leaves of Aechmea blanchetiana
plants in the function of different concentrations of sodium chloride (NaCl) in the absence and pres-
ence of silicon (Si) during in vitro culture. Means (±SE), n= 6, followed by the same letter, do not differ
according to the Tukey test at 5% significance. st –stomata. Bars= 100 µm.

Full-size DOI: 10.7717/peerj.14624/fig-2

Contents of nutrients
The contents ofMg, S, Na, and Bwere influenced by both variation factors, with a significant
interaction between them. Plants grown in a medium with Si and NaCl, irrespective of
the concentration, had lower content of S. On the other hand, higher NaCl concentration
promoted increased Mg, Na, and B contents (Figs. 5A–5D). The contents of Fe, Zn, Mn,
and Ca, and the Na/K ratio, were influenced by both variation factors, but Si andNaCl acted
independently. Lower contents of Fe, Zn, Mn, and Ca were observed in NaCl presence.
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Figure 3 Cross-sections of leaves of Aechmea blanchetiana plants in the function of different concen-
trations of sodium chloride (NaCl) in the absence and presence of silicon (Si) during in vitro culture.
ad—adaxial epidermis, ab–abaxial epidermis, chl—chlorenchyma, hy—hydrenchyma, ph—phloem, sc—
sclerenchyma, xl—xylem. Bars= 100 µm.

Full-size DOI: 10.7717/peerj.14624/fig-3

A higher Na/K ratio was associated with greater salt concentration. The content of K did
not differ significantly between the different concentrations of NaCl (2.027 ± 0.098), nor
did the content of N (1.75 ± 0.073). The presence of Si increased the contents of Zn, Mn,
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Ca, and N and the Na/ K ratio. Finally, the content of Fe (179.97 ± 8.77) did not differ in
function of the Si concentration (Figs. 6A–6B).

Antioxidant enzyme activity
The activity of SOD and CAT, both shoots and roots, was influenced by both variation
factors. The activity of SOD was higher in the plants cultured with Si and increased in
the function of rising NaCl concentration. The greatest activity of SOD occurred in the
presence of 300 µM NaCl, both in the leaves and roots (Figs. 7A–7B). The activity of CAT
was greatest in the plants grown with Si and increased with rising concentrations of NaCl
(200 and 300 µM NaCl) (Figs. 7C–7D). Both factors influenced the activity of APX, but
they acted separately. The activity of APX was highest with greater concentrations of NaCl
in the plants cultivated in a medium supplemented with Si, both in the leaves and roots
(Figs. 7E–7F).

Contents of photosynthetic pigments
Only the treatment with Si influenced the contents of photosynthetic pigments. Plants
cultivated with Si had higher contents of Chl a, Car, and Chl total, but there was no
alteration in Chl b and Chl a/b in the leaves of A. blanchetiana plants cultured in vitro
(Fig. 8).

Analysis of modulated chlorophyll a fluorescence
The variables 8PSII and ETR were influenced only by NaCl, with lower values associated
with rising NaCl concentration (Figs. 9A–9B). In turn, NPQ and FV/FMwere influenced by
Si, presenting lower NPQ and higher FV/FM in the plants grown in amedium supplemented
with Si (Figs. 9C–9D). qP, qL, qN,8NPQ, and8NO were all influenced by both variation
factors. No significant differences were observed among the plants cultivated without Si
for qP and qL. However, at the highest concentration of NaCl, there were increases in qN
and 8NPQ. The highest values of 8NO were obtained in the control plants and those
grown with 100 µM NaCl and the lowest at 200 µM NaCl. Among the plants cultivated
in the presence of Si, the lowest values of qP and qL were observed in those grown with
200 µM NaCl, as was the case for qN. However, the greatest values of qN were obtained
in the plants cultivated in a medium containing 300 µM NaCl. The absence of NaCl was
associated with the highest values of qP and qL. No changes in 8NO and 8NPQ were
observed between treatments (Fig. 10).

Analysis of growth
The fresh weights of the roots and shoots were influenced by both variation factors. Among
the plants grown without Si, the shoot and root weights declined with increasing NaCl
concentration. However, among the plants cultivated in a mediumwith Si, the shoot’s fresh
weight increased in the presence of 200 µM NaCl, while the root’s fresh weight increased
in the plants receiving 100 µM NaCl. Overall, the fresh weights of the shoots and roots
were greater in the plants cultivated in Si and higher concentrations of NaCl than in those
grown without Si (Fig. 11).
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Figure 4 The thickness of the adaxial and abaxial faces of the epidermis (µM) (A –B) and the
chlorenchyma (C) of leaves of Aechmea blanchetiana in the function of the concentrations of NaCl (0,
100, 200, 300µM). Means (±SE), n= 6, followed by the same letter, do not differ according to the Tukey
test at 5% significance.

Full-size DOI: 10.7717/peerj.14624/fig-4
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Figure 5 (A–D) Contents of macronutrients andmicronutrients in Aechmea blanchetiana plants in
the function of NaCl concentrations (0, 100, 200, 300µM) combined with 0 or 14µMSi. For each nu-
trient, the means (±SE), n= 3, followed by the same letter (lowercase for 0 µM Si and uppercase for 14
µM Si), at each NaCl concentration, do not differ according to the Tukey test at 5% significance. For each
Si concentration analyzed (0 and 14 µM Si), the means followed by an asterisk are significantly different
according to the Tukey test at 5% significance. S= sulfur, Mg=magnesium, B= boron, Na= sodium.

Full-size DOI: 10.7717/peerj.14624/fig-5

DISCUSSION
The A. blanchetiana plants cultivated under the in vitro conditions imposed showed
different anatomical and physiological responses due to the presence or absence of Si and
the variation in concentrations of NaCl. The morphophysiological responses induced by Si
had an attenuating effect on salt stress, through anatomical alterations, increased content
of photosynthetic pigments, and greater activity of the enzymes of the antioxidant system,
besides their contribution to enhance the performance of the photosynthetic apparatus.

The root and leaf anatomy of the plants was in accordance with the previous description
by Martins et al. (2018). The reduction of the diameter of the root cross-sections under
salt stress conditions found in this study might have resulted from reductions in the size
and number of cells, especially in the internal cortex. The alterations of the cell size can
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Figure 6 (A–B) Contents of nutrients in Aechmea blanchetiana plants in the function of the concen-
trations of NaCl (0, 100, 200, 300µM) or concentration of Si (0 or 14µMSi). For each content of nutri-
ents, the means (±SE), n= 3, followed by the same letter do not differ according to the Tukey test at 5%
significance. Fe= iron, Zn= zinc, Mn=manganese, Ca= calcium, N= nitrogen, K= potassium, Na=
sodium.

Full-size DOI: 10.7717/peerj.14624/fig-6

be related to resistance to salt stress since smaller cells can indicate an essential response
to increase the water potential, possibly contributing to more effective maintenance of
turgor under water deficit (Munns & Tester, 2008; Terletskaya et al., 2019). Reduced root

Cipriano et al. (2023), PeerJ, DOI 10.7717/peerj.14624 12/26

https://peerj.com
https://doi.org/10.7717/peerj.14624/fig-6
http://dx.doi.org/10.7717/peerj.14624


Figure 7 Antioxidant enzyme activity in the leaves (A-C-E) and roots (B-D-F) of Aechmea
blanchetiana plants cultivated in vitro in the function of NaCl and Si. Means (±SE), n = 5, followed by
the same letter (lowercase for 0 µM Si and uppercase for 14 µM Si), at each NaCl concentration, do not
differ according to the Tukey test at 5% significance. For each Si concentration analyzed (0 and 14 µM Si),
the means followed by an asterisk are significantly different according to the Tukey test at 5% significance
(A–D). Means (±SE), n = 5 followed by the same letter do not differ according to the Tukey test at 5%
significance (E–F).

Full-size DOI: 10.7717/peerj.14624/fig-7

diameters can be a sign of adaptation to the high pressure of the water column on the
conductor system (Rewald et al., 2013; Terletskaya et al., 2019).

The induction of a thinner exodermis observed in this study in response to excess NaCl
in the shoots may have been the key to the NaCl tolerance. It may induce a greater flow of
nutrients from the culture medium to the shoots, improving the nutritional balance. This
thickening occurs naturally by the deposition of lignin and/or suberin, and the degree of
thickening can moderate the uptake and translocation of mineral nutrients to the entire
plant (Martins et al., 2019). Thus, the reduction in the thickness of the exodermis cell walls
caused by Si shows that this element acted positively, facilitating the uptake of nutrients
from the culture medium.

Cipriano et al. (2023), PeerJ, DOI 10.7717/peerj.14624 13/26

https://peerj.com
https://doi.org/10.7717/peerj.14624/fig-7
http://dx.doi.org/10.7717/peerj.14624


Figure 8 Contents of the photosynthetic pigments in Aechmea blanchetiana plants in the function of
the presence or absence of Si (0 or 14µMSi). Means (±SE), n = 8, followed by the same letter in each
photosynthetic pigment, do not differ according to the Tukey test at 5% significance.

Full-size DOI: 10.7717/peerj.14624/fig-8

In the leaves, the direct exposure to NaCl at the leaf base reduced the stomatal density.
Besides this, the epidermis was thicker in the plants exposed to salt. These responses
together suggest a morphological adjustment to control the entry of NaCl through the
symplastic and transcellular veins (Morton et al., 2019). Considering that plants can also
uptake nutrients through the leaves, an increase in the thickness of the epidermis can act
as a mechanism to control the absorption of excessive NaCl (Mahmood et al., 2019). It
has been suggested that the movement of nutrients to the interior of plants can involve
diffusion through the cuticle and absorbed by leaf cells. Absorption through the stomatal
pore can also occur since the stomata act as potential pathways for the movement of
nutrients applied to the leaves (Li et al., 2019).

In the middle region of the leaves, the stomatal density was greater than in the base
region, as previously observed by Santos et al. (2020). However, a comparison of the
treatments revealed that Si could influence the morphology of the stomata of other leaf
regions. The morphophysiological modulations in the middle leaf region in plants grown
with Si, such as smaller stomatal density and size, might have occurred to reduce the
osmotic stress (Mahmoudi et al., 2020; Morton et al., 2019). This reduction resulting from
the action of Si might be a mechanism to maintain the prompt functioning of the stomata
for osmotic control. The size of the stomata is related to their functionality because smaller
guard cells respond (open/close) faster than larger ones, and consequently maintain the
stomatal conductance (Rouphael et al., 2017). Another alteration observed in this study
was an increase in the thickness of the chlorenchyma, apparently related to a tradeoff
mechanism in which the smaller leaf area is offset by the greater thickness of this tissue
(Pereira et al., 2016). This capacity for protecting the photosynthetic tissues permits the
maintenance of the plant’s biomass production (Pereira et al., 2016; Ribeiro et al., 2019).
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Figure 9 8PSII (A) and ETR (B) in the function of the concentrations of NaCl (0, 100, 200, 300µM).
NPQ (C) and FV/FM (D) in Aechmea blanchetiana plants in the function of Si (0 or 14µMSi). Means
(±SE), n = 12, followed by the same letter for each parameter, do not differ according to the Tukey test at
5% significance.

Full-size DOI: 10.7717/peerj.14624/fig-9

The excess of NaCl altered the content of mineral nutrients in A. blanchetiana, reducing
the contents of the macronutrients S and Ca and the micronutrients Fe, Zn, and Mn.
The excessive accumulation of Na+ competitively inhibits the absorption of other cations,
including K+, Ca2+, and Fe2+, leading to an imbalance in cell homeostasis, oxidative
stress, and interference in the functions of Ca2+ and K+ (Kim et al., 2021). We suggest
that reducing the contents of S, Ca, Fe, Zn, and Mn reduced the stress tolerance of the
plants, generating oxidative stress and affecting the performance of the photosynthetic
apparatus. Limited availability of Ca can reduce the tolerance of plants to salt stress since
this is involved in the gene induction of tolerance to salt stress and regulation of the
antioxidant defense (Liu, Soundararajan & Manivannan, 2019). K plays a fundamental role
in synthesizing proteins, photosynthesis, and the activity of glycolytic enzymes in plants
(Liu, Soundararajan & Manivannan, 2019).

The modulations of the contents of mineral nutrients in A. blanchetiana promoted by
Si contributed to improve the nutritional balance and mitigated the damages caused by
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Figure 10 Modulated fluorescence parameters of Aechmea blanchetiana plants in the function of the
concentrations of NaCl (0, 100, 200, 300µM) combined with 0µMSi or 14µMSi. For each parame-
ter, means (n= 12) followed by an asterisk (*) denote significant differences between the concentrations
of NaCl at each level of Si, while two asterisks

Figure 10
Fig. 10. Modulated fluorescence parameters of Aechmea blanchetiana plants in the
function of the concentrations of NaCl (0, 100, 200, 300 µM) combined with 0 µM Si or
14 µM Si.

For each parameter, means (n = 12) followed by an asterisk (*) denote significant differences
between the concentrations of NaCl at each level of Si, while two asterisks (⁑) denote
significant differences between the presence and absence of Si according to the Tukey test
at 5% probability. ns = no significant.
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denote significant differences between the presence and
absence of Si according to the Tukey test at 5% probability. ns= no significant.

Full-size DOI: 10.7717/peerj.14624/fig-10

the toxicity of NaCl in the leaf cells. The increase promoted by Si in the contents of the
nutrients Ca, B, Zn, Mn, N, and Mg was probably due to the thinner exodermis in the
roots, modulated by Si, which allowed greater absorption of these nutrients. Higher B
content may also increase the antioxidant system’s defense and diminishes oxidative stress
(Rahman et al., 2021). These responses resulted in a better nutritional balance contributing
to an increase in the content of photosynthetic pigments and the activity of the enzymes
of the antioxidant system (SOD, APX, and CAT). This promoted the protection of the
plants’ tissues against oxidative damage to the membrane under salt stress, thus alleviating
the toxicity of salt and increasing the growth of A. blanchetiana plants. The increase in
the activity of antioxidant enzymes is also responsible for reducing oxidative stress and
eliminating the ROS produced during salt stress (Tewari, Kumar & Sharma, 2019; Zhang
et al., 2019; Chung et al., 2020; Kim et al., 2021). These nutrients are structural components
of the chlorophyll molecule and play a role in forming the amino acids necessary for the
processes of the antioxidant defense system, acting as enzymatic cofactors, for example
(Rahman et al., 2016; Tewari, Kumar & Sharma, 2019; Santos et al., 2021). Besides this,
the greater activity of the antioxidant system enzymes leads to lower degradation of
chlorophyll (Gong et al., 2018). Alterations in the antioxidant system enzymes evidenced
the physiological stress caused byNaCl exposure. In this study, the activity of the antioxidant
enzymes was greater in the leaves than in the roots of the plants. This result indicates that
the direct exposure to NaCl on the leaves had an impact, generating oxidative stress.
However, the higher activity of enzymes of plants cultivated in a medium supplemented
with Si showed the benefits of this element.

Even though the presence of Na caused stress, as indicated by the biochemical alterations
described, this element also appears to play a fundamental role in the metabolism of A.
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Figure 11 Shoot (A) and root (B) fresh weights of Aechmea blanchetiana plants in the function of the
concentrations of NaCl combined with 0 or 14µMSi. Means (±SE), n = 5, followed by the same letters
(lowercase for 0 µM Si and uppercase for 14 µM Si) at each NaCl concentration, do not differ according
to the Tukey test at 5% significance. For each Si concentration analyzed (0 and 14 µM Si), the means fol-
lowed by an asterisk (*) are significantly different according to the Tukey test at 5% significance.

Full-size DOI: 10.7717/peerj.14624/fig-11

blanchetiana plants, and its absorption in minimum quantities seems to have occurred.
Plants grown in the 0 µM NaCl + 14 µM Si condition had greater content of Na than in
the control plants (Na added only in the form of Na-EDTA in the MS medium). Other
studies have shown that A. blanchetiana has crassulacean acid metabolism (CAM) for
carbon fixation under adverse conditions (Chaves, Leal & Lemos-Filho, 2015; Krause et al.,
2016). We suggest that even in in vitro conditions, A. blanchetiana plants can have some
CAM behavior level, such as reducing leaf area and making the leaves more compact.
Plants that use CAM metabolism can require sodium ions (Na+) (Scholl et al., 2020). In
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this species, Na+ seems to be fundamental for the regeneration of phosphoenolpyruvate,
the substrate for initial carboxylation in plants with C4 and CAM metabolism (Scholl et
al., 2020). CAM metabolism is a mechanism that protects against increased salinity, but
the most critical tolerance mechanism can be the accumulation of ions in leaf vacuoles
for osmotic adjustment (Montero et al., 2018). In halophytes, the accumulation of Na and
its compartmentalization in vacuoles modulate the osmotic potential and help guarantee
water absorption under salt stress conditions (Zeng et al., 2015). The Na ions stimulate
growth by promoting cell expansion and partially substitute K ions as an osmotically active
solute (Hussain et al., 2010). This modulation of the content of Na+ can partly explain the
salt tolerance and, thus, the existence of A. blanchetiana in the sandbank (Restinga) region
studied here. Furthermore, this can also explain the increase in the Na/K ratio with higher
salt concentration and the presence of Si observed in this study, which has been confirmed
to be one of the main determinants of resistance to salts (Liu et al., 2020). Despite this
increase in the Na/ K ratio, Si was responsible for modulating the competitive absorption
between Na and K and maintaining the balance in the intercellular distribution of K in the
A. blanchetiana plants since the content of K was not different among the treatments.

The morphophysiological modulations promoted by Si, such as the greater activity of
the enzymes SOD, APX, and CAT, reduced the stress on the photosynthetic apparatus,
as demonstrated by the analysis of the chlorophyll a fluorescence. The plants grown
in the medium supplemented with Si had the highest values of qP and qL, implying a
more remarkable ability for photochemical conversion and transfer of electrons from
PSII (Wang et al., 2018). This suggests that even though the plants grown with high
NaCl suffered photodamage, the Si was able to ameliorate this damage by maintaining a
proper balance of nutrients, as well as enhancing the activity of the antioxidant system,
impeding oxidative damage to the photosystems (Liu et al., 2020). The Si also contributed to
maintain the electron transport, as evidenced by the higher FV/FM ratio, indicating greater
potential photochemical activity of PSII (Lotfi et al., 2018). Factors for the photosynthetic
apparatus’s functioning were also evidenced by the lower values of the parameters of
non-photochemical quenching, such as qN, 8NPQ, and NPQ, compared with the plants
grown without Si. These responses helped reduce the damage to the plants caused by
the stress, which in turn helped maintain the plants’ growth since they had greater fresh
weight when cultivated with higher concentrations of NaCl. The excess of NaCl in plants
grown without Si caused increases of qN, 8NPQ, and 8NO, leading to over-reduction of
the photosynthetic electron transport chain, excess excitation energy, and consequently,
reduction of the photochemical step and biochemical processes. Furthermore, the increase
of 8NO indicates that this energy loss did not involve the action of trans-thylakoid 1pH
and zeaxanthin, meaning the excess flow of energy was out of control (Yao et al., 2018;
Wang et al., 2018).

The increased stress level caused by NaCl affected the functioning of the photosynthetic
apparatus by reducing the values of 8PSII and ETR. The decrease might have partly
inhibited the transport of electrons and effective photochemical activity of PSII and
increased the formation of ROS since the activity of the antioxidant system was affected.
This reduction indicates a smaller density of the flow of photons absorbed by PSII
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(Wang et al., 2018). These responses induced by excess NaCl in the absence of Si caused
a reduction in the plants’ growth. The decline of the fresh and dry weights of the leaves
and roots, and thus the reduction in growth, are symptoms commonly observed in plants
under salt stress (Dias et al., 2017). This result can be attributed to the osmotic effect of the
salt solution beyond the roots, as well as an imbalance in the absorption and assimilation
of nutrients (Dias et al., 2017; Rezende et al., 2018).

CONCLUSION
In in vitro conditions, NaCl acted to stunt the growth of the A. blanchetiana plants since it
affected the plants’ anatomy, uptake of nutrients, and physiology. These plants presented
tolerance responses by implementing various mechanisms to deal with salt stress, such as
thinner walls of the exodermis, reduced stomatal density, and increased non-photochemical
dissipation of fluorescence. The application of Si reduced the damages generated by stress
through modulation of the root anatomy, enabling greater uptake of nutrients essential
for the antioxidant system’s activity. The greater enzymatic activity reduced oxidative
stress and enabled alterations in the functioning of the photosynthetic apparatus. These
modulations contributed to minimizing the damage to the plants caused by the stress, as
proved by the chlorophyll a fluorescence.

Abbreviations

8PSII = Y(II) =8(II) Effective photochemical quantum yield of PSII
ETR Rate of linear electron flow
FV/FM maximum quantum yield of PSII
NPQ non-photochemical fluorescence dissipation
PSII photosystem II
qP photochemical quenching
qL photochemical fluorescence quenching assuming intercon-

nected PSII antennae
qN non-photochemical quenching
8NPQ quantum yield induced light (NpH and zeaxanthin-

dependent) from non-photochemical fluorescence dissipation
8NO quantum yield of non-regulated energy dissipation
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