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Abstract: Range maps are a useful tool to describe the spatial distribution of species. However,
they often need to be used with caution, as they essentially represent a rough approximation of
a species’ suitable habitats. When stacked together, the resulting communities in each grid
cell may not always be realistic, especially when species interactions are taken into account.
Here we show the extent of the mismatch between range maps, provided by the International
Union for Conservation of Nature, and species interactions data. More precisely, we show that
local networks built from those stacked range maps often yield unrealistic communities, where
species of higher trophic levels are completely disconnected from primary producers. We use
the well-described Serengeti food web of mammals and plants as our case study, and provide
updated range maps that take into account food-web structure. In our analysis, most predator
ranges were restricted by the absence of herbivores. This restriction was sometimes contradicted
by GBIF occurrences, suggesting the mismatch can be due either to the lack of information
about ecological interactions or about the geographical occurrence of preys. We finally discuss
general guidelines to help identify defective data among distributions and interactions data, and
we recommend this method as a valuable way to assess weather the occurrence data that are
being used, even if incomplete, is ecologically accurate.
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Introduction1

Finding a species in a certain location is like finding an encrypted message that travelled through2

time. It carries the species’ evolutionary history, migration patterns, as well as any direct and in-3

direct effects generated by other species (some of which we may not even know exist). Ecologists4

have been trying to decode this message with progressively more powerful tools, from their own5

field notes to highly complex computational algorithms. However, to succeed in this challenge6

it is important to have the right clues in hand. There are many ways we can be misled by data -7

or the lack of it: taxonomic errors, geographic inaccuracy, or sampling biases (Ladle and Hortal8

2013; Hortal et al. 2015; Poisot et al. 2021). One way to identify - and potentially fix - these9

errors is to combine many different pieces of information about the occurrence of a species, so10

agreements and mismatches can emerge. Here we suggest jointly analysing species occurrence11

(range maps and point occurrences) and ecological interactions to identify mismatches between12

datasets.13

Interactions form complex networks that shape ecological structures and maintain the essential14

functions of ecosystems, such as seed dispersal, pollination, and biological control (Albrecht15

2018; Fricke et al. 2022) that ultimately affect the composition, richness, and successional16

patterns of communities across biomes. Yet, the connection between occurrence and interac-17

tion data is a frequent debate in ecology (Blanchet, Cazelles, and Gravel 2020). For instance,18

macroecological models are often used with point or range occurrence data in order to inves-19

tigate the dynamics of a species with its environment. However, these models do not account20

for ecological interactions, which might largely affect species distribution (Abrego et al., n.d.;21

Afkhami, McIntyre, and Strauss 2014; Araújo, Marcondes-Machado, and Costa 2014; Godsoe22

et al. 2017; Godsoe and Harmon 2012). Some researchers argue that occurrence data can also23

capture real-time interactions (Roy et al. 2016; Ryan et al. 2018), and, because of that, it would24

not be necessary to include ecological interaction dynamics in macroecological models. On25

the other hand, many mechanistic simulation models in ecology have considered the effect of26

competition and facilitation in range shifts, whilst the use of trophic interactions in this context27

remains insufficient (Cabral, Valente, and Hartig 2017).28
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A significant challenge in this debate is the quality and quantity of species distribution and eco-29

logical data (Boakes et al. 2010; Ronquillo et al. 2020; Meyer, Weigelt, and Kreft 2016) -30

a gap that can lead to erroneous conclusions in macroecological research (Hortal et al. 2008).31

Amongst the geographical data available are the range maps provided by the International Union32

for the Conservation of Nature (IUCN). Such maps consist of simplified polygons, often created33

as alpha or convex hulls around known species locations, refined by expert knowledge about the34

species (2021). These maps can be used in macroecological inferences in the lack of more pre-35

cise information (Fourcade 2016; Alhajeri and Fourcade 2019), but it has been recommended36

that they are used with caution since they tend to underestimate the distribution of species that are37

not well-known (Herkt, Skidmore, and Fahr 2017), do not represent spatial variation in species38

occurrence and abundance (Dallas, Pironon, and Santini 2020), and can include inadequate ar-39

eas within the estimated range. Another source of species distribution information is the Global40

Biodiversity Information Facility (GBIF), which is an online repository of georeferenced obser-41

vational records that come from various sources, including community science programs, mu-42

seum collections, and long-term monitoring schemes. A great source of bias in these datasets is43

the irregular sampling effort, with more occurrences originated from attractive and accessible44

areas and observation of charismatic species (Alhajeri and Fourcade 2019). As for ecological45

data, a complete assessment is difficult and is aggravated by biased sampling methods and data46

aggregation (Poisot et al. 2020; Hortal et al. 2015). Nevertheless, we have witnessed an increase47

in the availability of biodiversity data in the last decades, including those collected through com-48

munity science projects (Callaghan et al. 2019; Pocock et al. 2015) and dedicated databases,49

such as Mangal (Poisot et al. 2016). This provides an opportunity to merge species distribu-50

tion and ecological interaction data to improve our predictions of where a species may be found51

across large spatial scales (e.g., continental and global).52

In this context, we elaborate a method that allows us to refine distribution data (more precisely53

range maps) based on interaction data, considering the basic assumption that predators can only54

be present in regions where they are connected to at least one herbivore - and thus indirectly55

connected to primary producers. We used a Serengeti food web dataset (Baskerville et al. 2011)56

(which comprises carnivores, herbivores, and plants from Tanzania) to demonstrate how a mis-57
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match between occurrence and interaction data can highlight significant uncertainty areas in58

IUCN range maps. Finally, we add the GBIF occurrence points for the Serengeti species to the59

investigation, discuss the mechanisms that can lead to the lack of agreement between data, and60

build from that a vision for the next steps, reinforcing the importance of geographically explicit61

interaction data.62

Methods63

Organisms cannot persist unless they are directly or indirectly connected to a primary producer64

within their associated food web (Power 1992). Therefore, the range of a predator (omnivore or65

carnivore) depends on the overlapping ranges of its preys. If sections of a predator’s range does66

not overlap with at least one of its prey it will become disconnected from primary producers, and67

therefore we would not expect the predator to occur in this area. This mismatch can be the result68

of different mechanisms, like the overestimation of the predator’s range, taxonomic errors, or69

the lack of information about trophic links. Thus, given that herbivores are the main connection70

between plant resources (directly limited by environmental conditions) and predators (Dobson71

2009; Scott et al. 2018), here we adjusted the ranges of predators based on a simple rule: we72

removed any part of a predator’s range that did not intersect with the range of at least one prey73

herbivore species. So, unless the range of the predator overlapped with at least one prey item,74

which in turn is directly connected to a primary producer (plants), we removed that section of75

the predator’s range. Finally, we calculated the difference in range size between the original76

IUCN ranges and those adjusted based on species interaction data.77

Data78

We investigated the mismatch between savannah species ranges and interactions in Africa (fig. 1).79

These ecosystems host a range of different species, including the well characterized predator-80

prey dynamics between iconic predators (e.g., lions, hyenas and leopards) and large herbivores81

(e.g., antelopes, wildebeests and zebras), as well as a range of herbivorous and carnivorous82

small mammals. The Serengeti ecosystem has been extensively studied and its food web is one83
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of the most complete we have to date, including primary producers identified to the species level.84

Here we focus on six groups of herbivores and carnivores from the Serengeti Food Web Data Set85

(Baskerville et al. 2011). These species exhibit direct antagonistic (predator-prey) interactions86

with one another and are commonly found across savannah ecosystems on the African continent87

(McNaughton 1992). Plants in the network were included indirectly in our analyses as we do88

not expect the primary producers to significantly influence the range of herbivores for several89

reasons. Firstly, many savannah plants are functionally similar (i.e., grasses, trees and shrubs)90

and cooccur across the same habitats (Baskerville et al. 2011). Secondly, herbivores in the net-91

work are broadly generalists feeding on a wide range of different plants across habitats. Indeed,92

out of 129 plants in our dataset, herbivores (n = 23) had a mean out degree (mean number of93

preys) of around 22 (std = 17.5). There is also an absence of global range maps for many plant94

species (Daru 2020), which prevents their direct inclusion in our analysis. Therefore, we as-95

sume that plants consumed by herbivores are present across their ranges, and as such the ranges96

of herbivores are not expected to be significantly constrained by the availability of food plants.97

From the wider ecological network presented in Baskerville (2011), we sampled interaction data98

for herbivores and carnivores. This subnetwork contained 32 taxa (23 herbivores and 9 carni-99

vores) and 84 interactions, and had a connectance of 0.08. Although self-loops are informative,100

we removed these interactions to allow for the original IUCN ranges of predators with canni-101

balistic interactions to be adjusted. We treated this overall network as a metaweb since it should102

contain all potential species interactions between mammalian taxa occurring across savannah103

ecosystems such as the Serengeti.104

We compiled IUCN range maps for the 32 species included in the metaweb from the Spatial Data105

Download portal (www.iucnredlist.org/resources/spatial-data-download), which we rasterized106

at 10 arc-minute resolution (~19 km² at the equator). We then combined interaction data from107

the metaweb and cooccurrence data generated from species ranges to create networks for each108

raster pixel. This generated a total of 84,244 pixel-level networks. These networks describe109

potential predation, not actual interactions: the former is derived information from the metaweb,110

and the later is contingent to the presence of herbivores.111
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Range overlap measurement112

We calculated the geographical overlap, i.e. the extent to which interacting predator and prey113

species cooccurred across their ranges, as 𝑎∕(𝑎 + 𝑐), where 𝑎 is the number of pixels where114

predator and prey cooccur and 𝑐 is the number of pixels where only the focal species occur.115

This index of geographical overlap can be calculated with prey or predators as the focal species.116

Values vary between 0 and 1, with values closer to 1 indicating that there is a large overlap in the117

ranges of the two species and values closer to 0 indicating low cooccurrence across their ranges.118

For each predator species we calculated its generality to understand whether the level of trophic119

specialization (i.e., number of prey items per predator) affects the extent to which the ranges of120

the species were altered. One would assume that predators with a greater number of prey taxa121

(i.e., a higher generality) are less likely to have significant changes in their range as it is more122

likely that at least one prey species is present across most of their range.123

Validation124

For each species in the dataset we collated point observation data from GBIF (www.gbif.org),125

and condensed these data into pixels representing presence or absence of the focal taxon. These126

data were used to validate the range adjustments made based on species interactions (see previ-127

ous section). To do so, we calculated the proportion of GBIF presence pixels occurring within128

both the original and adjusted species ranges. We then compared these proportions for the preda-129

tors to verify if the range adjustments removed locations with GBIF observations, hence likely130

true habitats.131

Results132

Mammal species found in the Serengeti food web are widespread in Africa, especially in grass-133

lands and savannahs (first panel of fig. 1). However, most local networks (83.2%) built using the134

original IUCN range maps had at least one mammal species without a path to a primary pro-135

ducer (second panel of fig. 1). On average, local food webs had almost the third of their mammal136
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species (mean = 30.5%, median = 14.3%) disconnected from basal species. In addition, many137

networks (16.6%) only had disconnected mammals; these networks however all had a very low138

number of mammal species, specifically between 1 and 4 (from a total of 32). As expected, the139

proportion of carnivores with a path to a primary producer was conditional on the total number140

of mammal species in each local network (third panel of fig. 1).141

[Figure 1 about here.]142

Specialized predators lose more range143

[Figure 2 about here.]144

Predators with less preys lose more range with our method (fig. 2). For instance, both Leptailurus145

serval and Canis mesomelas have only one prey in the Serengeti food web (tbl. 1), each of them146

with a very small range compared to those of their predator. This discrepancy between range147

sizes promotes significant range loss. On the other hand, predators of the genus Panthera are148

some of the most connected species, and they also lose the least proportion of their ranges. This149

mismatch between predators and preys can also be a result of taxonomic disagreement between150

the geographical and ecological data. Although Canis aureus has the same number of prey as151

Caracal caracal, none of the prey taxa of the former occurs inside its original range (tbl. 1),152

which results in complete range loss.153

[Figure 3 about here.]154

There was high variation in the overlap of predator and prey ranges (fig. 3). The high density of155

points on left-hand side of fig. 3 indicates that most preys have small ranges in comparison to156

those of the set of carnivores in the networks, resulting in either low overlap between both ranges157

(bottom) or high overlap of ranges because much of that of the prey is within predators’ range158

(top). The top-right side of the plot encompasses situations where the ranges of both predator159

and prey are similar and overlapping, while the bottom-right part of the plot represents a situation160

where the range of the predator is smaller than that of its prey and much of it occurs within the161
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preys’ range. For example, Panthera pardus had many preys occurring inside its range, with162

highly variable levels of overlap (tbl. 1). In general, species exhibited more consistent values of163

prey-predator overlap, than predator-prey overlap – indicated by the spread of points along the164

x-axis, yet more restricted variation on the y-axis (fig. 3). There was also no overall relationship165

between the two metrics, or for any predator species.166

Table 1: List of species analyzed, their out and in degrees, total original range size (in pixels)
and proportion of their ranges occupied by their preys and predators (values between 0 and 1).
Species are sorted according to the groups identified by Baskerville et al. (2011). Notice how
some species are isolated in the network (Loxodonta africana) and how Canis aureus’s range do
not overlap with any of its preys.

Species
Number
of preys

Number
of

predators

Total
range

size

Proportion
of range

occupied by
preys

Proportion
of range

occupied by
predators

Large carnivores

Acinonyx jubatus 8 1 15540 0.560 0.670
Crocuta crocuta 12 1 43307 0.848 0.252
Lycaon pictus 14 0 3873 0.916 -
Panthera leo 18 0 11384 0.934 -
Panthera pardus 22 0 68137 0.766 -

Small carnivores

Canis aureus 4 1 7358 0.000 0.780
Canis mesomelas 1 1 19872 0.190 0.995
Caracal caracal 4 0 47243 0.832 -
Leptailurus serval 1 1 38856 0.011 0.979

Small herbivores

Damaliscus lunatus 0 4 5567 - 1
Hippopotamus amphibius 0 0 3695 - -
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Species
Number
of preys

Number
of

predators

Total
range

size

Proportion
of range

occupied by
preys

Proportion
of range

occupied by
predators

Kobus ellipsiprymnus 0 4 26705 - 1
Ourebia ourebi 0 5 22380 - 1
Pedetes capensis 0 2 11901 - 1
Phacochoerus africanus 0 5 29963 - 0.999
Redunca redunca 0 5 17465 - 1
Rhabdomys pumilio 0 5 465 - 0.998
Tragelaphus oryx 0 2 20852 - 0.991
Tragelaphus scriptus 0 3 36011 - 0.984

Large grazers

Aepyceros melampus 0 5 10579 - 1
Alcelaphus buselaphus 0 4 20761 - 1
Connochaetes taurinus 0 6 9650 - 1
Equus quagga 0 5 7070 - 1
Eudorcas thomsonii 0 6 463 - 1
Nanger granti 0 6 2303 - 1

Hyraxes

Heterohyrax brucei 0 1 17728 - 0.972
Procavia capensis 0 1 47697 - 0.647

Others

Giraffa camelopardalis 0 1 5418 - 0.470
Loxodonta africana 0 0 9654 - -
Madoqua kirkii 0 7 4002 - 1
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Species
Number
of preys

Number
of

predators

Total
range

size

Proportion
of range

occupied by
preys

Proportion
of range

occupied by
predators

Papio anubis 0 1 23171 - 0.938
Syncerus caffer 0 1 25223 - 0.250

Validation with GBIF occurrences167

The proportion of GBIF pixels (pixels with at least one GBIF occurrence) falling in the IUCN168

ranges varied from low to high depending on the species (fig. 4, left). The lowest proportions169

occurred for species with small ranges (such as Lycaon pictus), although some species with170

small ranges showed high overlap. Species with median and large ranges had high proportions171

of occurrences falling into their IUCN range. Predators and preys displayed similar overlap172

variations. While no species had all of its GBIF occurrences within its IUCN range, one species173

had this proportion equal to zero, Canis aureus, which is also the only species whose range is174

not covered by any of its preys. This result reinforces the concern raised in the literature on the175

use of IUCN range maps for species that are not well known (Herkt, Skidmore, and Fahr 2017),176

demonstrating how small range species are likely to have their distribution underestimated in the177

IUCN database. Additionally, the fact that Canis aureus had none of its GBIF pixels overlapping178

with IUCN maps suggests a taxonomic mismatch between both databases, which we explore in179

the Discussion section.180

The proportion of GBIF pixels in updated ranges can only be equal to or lower than that of181

the original ranges, as our analysis removes pixels from the original range and does not add182

new ones. Rather, the absence of a difference between the two types of ranges indicates that183

no pixels with GBIF observations, hence likely true habitats, were removed by our analysis.184

Here this proportion was mostly similar to that of the original IUCN ranges for most predator185

species (fig. 4). Four species showed no difference of proportion while three species showed186

only small differences (proportions of 0.01 to 0.05). On the other hand, two species, Canis187
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mesomelas and Leptailurus serval, showed very high differences, with overlaps lower by 0.548188

and 0.871 respectively. For Leptailurus serval, none of the GBIF observations occurred in the189

updated range. These two species are also the only predators with a single prey in our metaweb.190

Our results delineate how a mismatch between GBIF and IUCN databases differ greatly with191

small changes in herbivore species ranges, and it is somewhat positively related to range size192

for predator species. Moreover, we show that accounting for interactions does not necessarily193

aggravates this dissimilarity, but it is relevant for species with little ecological information or194

specialists.195

[Figure 4 about here.]196

Discussion197

The jackal is a widespread taxon in northern Africa, Europe and Australasia, generally well198

adapted to local conditions due to its largely varied diet (Tsunoda and Saito 2020; Krofel et al.199

2021). Because of that, we expected that the Canis species in our dataset would be the ones200

losing the least amount of range, with a higher value of the proportion of GBIF pixels within201

their IUCN range maps. However, the taxonomy of this group is a matter of intense discussion,202

as molecular and morphological data seem to disagree in the clustering of species and subspecies203

(Krofel et al. 2021; Stoyanov 2020). This debate is indeed reflected in our analysis: the GBIF204

identification of the golden jackal is incompatible with the one used by IUCN, each of them205

mapping its distribution in completely different places. This led to a complete exclusion of206

Canis aureus from its original range in our analysis, despite the fact that this species has four207

documented preys in our metaweb. This example illustrates how the taxonomic, geographical208

and ecological data can be used to validate one another.209

Here we show that when ecological interaction data (predator-prey interactions within food210

webs) are used to refine species range maps, there are significant reductions in the IUCN range211

size of predatory organisms. Despite showing the potential importance in accounting for species212

interactions when estimating the range of a species, it remains unclear the extent to which the213

patterns observed represent ecological processes or a lack of data. In the following sections we214
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discuss the implications of our findings, in terms of species range maps, interaction data and215

the next steps required to enhance understanding of species distributions using information on216

ecological networks.217

Connectivity, diversity and range preservation218

In the Serengeti food web there is a positive relationship between the out degrees of preda-219

tors and the size of their ranges (tbl. 1). In addition, our results show that there is a negative220

relationship between the relative loss of predators’ ranges and their number of preys (fig. 2),221

reinforcing the idea that generalist species can preserve their distributions longer while losing222

interactions. The factors limiting the geographical range of a species in a community can vary223

with connectivity and richness (Svenning et al. 2014). Younger communities may be more224

affected by environmental limitations because they are dominated by generalist species, while225

older metacommunities are probably affected in different ways in the centre of the distribution,226

at the edge of ranges and in sink and source communities (Svenning et al. 2014; Godsoe et227

al. 2017; Cazelles et al. 2016; Bullock et al. 2000). Additionally, it is likely that species with228

larger ranges of distribution and those that are more generalists would co-occur with a greater229

number of other species (Dáttilo et al. 2020), while dispersal capacity of competitive species230

modulate their aggregation in space and the effect of interactions on their range limits (Godsoe231

et al. 2017).232

Geographical mismatch and data availability233

The geographical mismatch between predators and preys have ecological consequences such as234

loss of ecosystem functioning and extinction of populations (Anderson et al. 2016; Dáttilo and235

Rico-Gray 2018; Pringle et al. 2016; Young et al. 2013). Climate change is one of the causes236

of this, leading, for instance, to the decrease of plants populations due to the lack of pollination237

(Bullock et al. 2000; Afkhami, McIntyre, and Strauss 2014; Godsoe et al. 2017). However,238

this mismatch can also be purely informational. When the distribution of predators and preys239

do not superpose, it can mean we lack information about the distribution of either species or240

about their interactions (e.g., predators may be feeding on different species than the ones in our241
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dataset outside the Serengeti ecosystem). Here we addressed part of this problem by comparing242

the IUCN range maps with GBIF occurrences, which helped us clarify what is the shortfall for243

each species.244

The lack of superposition between IUCN range maps and GBIF occurrences suggests that we245

certainly do miss geographical information about the distribution of a certain species, but it246

is not an indicative about the completeness of the information about ecological interactions.247

However, if both GBIF and IUCN occurrences tend to superpose and still the species is locally248

removed, this indicates we don’t have information about all its interactions. The combination of249

this rationale with our method of updating range maps based on ecological interactions allows us250

to have a clearer idea of which information we are missing. For example, the lion (Panthera leo)251

was one of the species with the smallest difference between the original and the updated ranges252

(fig. 2), but 59.5% of the GBIF occurrences for this species fell outside the IUCN range (fig. 4).253

In this particular case, the IUCN maps seem to agree with species interactions data. However,254

the disagreement between the IUCN and the GBIF databases is concerning and suggests that the255

IUCN maps might underestimate the lion’s distribution. On the other hand, Leptailurus serval256

and Canis mesomelas are two of the three species that lose the higher proportion of range due to257

the lack of paths to a herbivore (fig. 2), but are also some of the species with the higher proportion258

of GBIF occurrences inside IUCN range maps (fig. 4). This indicates that the information we259

are missing for these two species is related to either the occurrence of an interaction or the260

presence of interacting species. To illustrate that, we mapped the GBIF data for the prey of261

Leptailurus serval, with a mobility buffer around each point (fig. 5). When considering GBIF262

data, approximately 53% of the prey’s occurrences are within the portion of the serval’s range263

that was lost. With the buffer area, this corresponds to 13% of the lost range. This means that by264

adding GBIF information, we would reduce the loss of range (or information) for the predator265

by 13% since its distribution is conditional on the occurrence of its preys.266

[Figure 5 about here.]267

Finally, the extreme case of Canis aureus illustrates a lack of both geographical and ecological268

information: none of its GBIF occurrences and none of its preys occur inside its IUCN range.269
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We believe, therefore, that the validation of species distribution based on ecological interaction270

is a relevant method that can further fill in information gaps. Nevertheless, it is imperative that271

more geographically explicit data about ecological networks and interactions become available.272

This would help clarify when cooccurrences can be translated into interactions and help the273

development of more advanced validation methods for occurrence data.274

Next steps275

Here we demonstrated how we can detect uncertainty in species distribution data using ecolog-276

ical interactions. Knowing where questionable occurrence data are can be crucial in ecological277

modelling (Hortal 2008; Ladle and Hortal 2013), and accounting for these errors can improve278

model outputs by diminishing the error propagation (Draper 1995). For instance, we believe279

this is a way to account for ecological interactions in habitat suitability models without mak-280

ing the models more complex, but making sure (not assuming) that the input data - the species281

occurrence - actually accounts for ecological interactions. It is important to notice, however,282

that the quality and usefulness of this method is highly correlated with the amount and qual-283

ity of data available about species’ occurrences and interactions. With this paper we hope to284

add to the collective effort to decode the encrypted message that is the occurrence of a species285

in space and time. A promising avenue that adds to our method is the prediction of networks286

and interactions in large scales (Strydom et al. 2021), for they can add valuable information287

about ecological interactions where they are missing. Additionally, in order to achieve a robust288

modelling framework towards actual species distribution models we should invest in efforts to289

collect and combine open data on species occurrence and interactions, especially because we290

may be losing ecological interactions at least as fast as we are losing species (Valiente-Banuet291

et al. 2015).292
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Figure 1: (a) Spatial distribution of species richness according to the original IUCN range maps
of all 32 mammal species of the Serengeti food web. (b) Proportion of mammal species remain-
ing in each local network (i.e., each pixel) after removing all species without a path to a primary
producer. (c) Proportion of mammal species remaining in each local network as a function of
the number of species given by the original IUCN range maps.
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Figure 2: Negative relationship between the out degree of predator species and their relative
range loss. More specialized predators lose a higher proportion of their ranges due to mismatches
with the ranges of their preys.
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Figure 3: Geographical similarity between the original IUCN range maps of predators and preys.
Dots represent predator-prey pairs, with different symbols corresponding to different predators.
For a given pair of species, the number 𝑐 of pixels where the focal species is present but not
the other and the number 𝑎 of pixels where the predator and prey cooccur, were calculated.
Geographic similarities were given by 𝑎∕(𝑎 + 𝑐), with the predator being the focal species in
the predator to prey similarity (x-axis), while the prey is the focal one in the prey to predator
similarity (y-axis). One of the predators, Canis aureus, is not represented in the image because
it is an extreme case (where all its range is suppressed by the absence of preys) and it would
make the interpretation of the data more difficult.
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Figure 4: Left panel: Distribution of the proportion of GBIF pixels (pixels with at least one
occurrence in GBIF) falling into the IUCN range for different range sizes. Right panel: Differ-
ences between the proportion of GBIF pixels falling into the IUCN and the updated ranges for
every predator species. Arrows go from the proportion inside the original range to the proportion
inside the updated range, which can only be equal or lower. Overlapping markers indicate no
difference between the types of layers. Species markers are the same on both figures, with preda-
tors presented in distinct colored markers and all herbivores grouped in a single grey marker.
Pixels represent a resolution of 10 arc-minutes.
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Figure 5: Mismatch between serval’s range loss and GBIF occurrence of its prey. The left panel
shows the reduction of serval’s range when we consider the IUCN data on its prey. On the right
panel, we added GBIF data on both serval and its prey, with a buffer for the prey to account on
species mobility.
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