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ABSTRACT
Background. Pathological choroidal neovascularization (CNV) is one of the major
causes of visual impairment in neovascular age-related macular degeneration (AMD).
CNV has been suppressed by using anti-vascular endothelial growth factor (VEGF)
antibodies. However, some clinical cases have demonstrated the failure of anti-VEGF
therapies. Furthermore, anti-VEGF agents might induce the development of ocular at-
rophy. Recently, peroxisome proliferator-activated receptor alpha (PPARα) activation
using pemafibrate treatment was suggested as one of the promising therapeutic targets
in the prevention of ocular ischemia. However, the preventive role of pemafibrate
remains unclear in CNV. We aimed to examine the preventive role of pemafibrate
on laser-induced pathological CNV.
Methods. Adult male C57BL/6 mice were orally supplied pemafibrate (0.5 mg/kg) for
four days, followed by laser irradiation. Then, pemafibrate was consecutively given to
mice with the same condition. CNV was visualized with isolectin-IB4. The eye (retina
and/or retinal pigment epithelium [RPE]-choroid), liver, and serum were used for
biomolecular analyses.
Results. We found that pemafibrate administration suppressed CNV volumes. Pe-
mafibrate administration activated PPARα downstream genes in the liver and eye
(especially, RPE-choroid). Furthermore, pemafibrate administration elevated serum
fibroblast growth factor 21 levels and reduced serum levels of triglycerides.
Conclusions. Our data suggest a promising pemafibrate therapy for suppressing CNV
in AMD.

Subjects Biochemistry, Molecular Biology, Histology
Keywords Neovascularization, Pemafibrate, Choroid, Eye

INTRODUCTION
Neovascular age-related macular degeneration (AMD) involves choroidal neovascular-
ization (CNV), which is one of the leading causes of blindness globally. For the current
treatment, anti-vascular endothelial growth factor (VEGF) antibodies were used to suppress
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pathological CNV, in that VEGF plays a central role in developing pathological CNV
(Solomon et al., 2019). Although anti-VEGF therapies are effective for the majority of
neovascular subjects, some clinical cases have demonstrated the failure of anti-VEGF
therapies, suggesting VEGF may not be the only target for CNV formation (Mettu,
Allingham & Cousins, 2021).Moreover, anti-VEGF antibodiesmay induce the development
of atrophy in the eye (Eng et al., 2020; Foss et al., 2022). As the delivery method of anti-
VEGF antibodies is invasive to the patients (Nikkhah et al., 2018) and patients always need
to go to clinics for the treatment, more advanced patient friendly approaches might be also
desirable. In this regard, various alternative therapies have been searched and tested in a
pre-clinical stage. Nonetheless, no effective drug has been developed and found yet.

Peroxisome proliferator-activated receptor alpha (PPAR α) is one of the nuclear
receptor proteins that promote ligand-dependent transcription of various genes involved
in energy production, lipid metabolism, and inflammatory process (Bougarne et al., 2018).
In addition to PPAR α, two other isotypes, such as PPAR β/δ and PPAR γ , also exist
with displaying isoform-specific functions in cells (Christofides et al., 2021). PPAR α
activation by pemafibrate (a selective PPAR α modulator; SPPARM α) has been reported
to be beneficial in enhancing metabolic dysregulation in patients with dyslipidemia (Ida,
Kaneko & Murata, 2019). Based on a previous literature, pemafibrate could decrease serum
triglyceride levels and increased serum high-density lipoprotein cholesterol levels more
than other PPAR α agonists, which implies that pemafibrate may have a better potency and
selectivity for the activation of PPAR α than other PPAR α agonists (Tomita et al., 2020b).
Furthermore, side effects of pemafibrate have been reported less than those of other PPAR
α agonists (especially, fenofibrate). It was explained with their structural differences in that
pemafibrate contains not only the carboxylic acid group but also the phenoxy alkyl group
and 2-aminobenzoxazolic group making the ligand/receptor binding fit well (Tomita et al.,
2020b).

In addition to the positive outcome for dyslipidemia, recently, PPAR α activation
by pemafibrate treatment was also suggested as one of the promising therapeutic
targets in the prevention of ocular ischemic diseases (Lee et al., 2021b). Our previous
reports demonstrated that oral administration of pemafibrate could prevent pathological
retinal neovascularization via decreasing Vegf mRNA expression and hypoxia-inducible
factor-1 α (HIF-1 α; one of the master regulatory transcription factors for VEGF in
the body including the eye (Ahluwalia & Tarnawski, 2012; Lee et al., 2022a)) protein
immunoreactivity in a murine model of oxygen-induced retinopathy (Tomita et al., 2019).
Furthermore, pemafibrate administration could suppress retinal dysfunction and/or
pathological gliosis via modulating multiple therapeutic gene expressions in a murine
model of unilateral common carotid artery occlusion-induced ocular ischemia (Lee et al.,
2021c). Its administration could also increase retinal synaptophysin expression (one of the
crucial integral membrane proteins regulating endocytosis for synaptic vesicles (Kwon &
Chapman, 2011) and suppress retinal dysfunction in a murine model of streptozotocin-
induced diabetic retinopathy (Tomita et al., 2020a). Recently, oral administration of
pemafibrate could reduce retinal ganglion cell death and suppress retinal dysfunction
through modulating various therapeutic gene expressions (anti-oxidant (Loboda et al.,
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2016) and anti-inflammatory pathways (Netea et al., 2008; Rashid, Akhtar-Schaefer &
Langmann, 2019)) in a murine model of transient high intraocular pressure-associated
retinal ischemia-reperfusion injury (Lee et al., 2022b). Other groups’ reports demonstrated
that pemafibrate administration could protect against N-methyl-D-aspartate (NMDA)-
induced rat retinal ganglion cell death via inhibition of phosphorylated c-Jun expression in
the eye (Fujita et al., 2021), or reduce retinal inflammation (vascular leakage or leukostasis)
viaupregulating thrombomodulin expression (one of the important transmembrane factors
placed on the surface of endothelial cells (Sadler, 1997) in a rat model of streptozotocin-
induced diabetic retinopathy (Shiono et al., 2020). Taken together, although the therapeutic
role of pemafibrate on retinal function, protection, and neovascularization has been
suggested, the preventive role of pemafibrate remains unclear in pathological CNV.

Thus, in this current study, we aimed to first investigate the preventive effects of
pemafibrate in a mouse model of laser-induced CNV, one of the mouse models of
neovascular AMD.

MATERIALS & METHODS
Animals and laser-induced choroidal neovascularization (CNV)
Male adult mice (6–8 weeks old C57BL/6, n= 48) were received from CLEA Japan (Tokyo,
Japan). Mice were maintained in a temperature (24 ± 1 ◦C)-controlled environment
(6 mice per cage) under a 12 h light-dark cycle. The mice were subjected to general
randomization and 1 week acclimatization. Food and water were freely supplied to mice
without any restriction. Any pathologic sign of diseases were generally checked during the
whole experimental period. All mouse procedures adhered to the Ethics Committee on
Animal Research of the KeioUniversity School ofMedicine (#16017). The ARVOStatement
for the Use of Animals in Ophthalmic and Vision Research, and the international standards
of animal care and use, Animal Research: Reporting in vivo Experiments guidelines were
further followed.

Laser-induced CNV was developed, as described in our previous research (Ibuki et
al., 2020). Tropicamide and phenylephrine (Santen Pharmaceutical, Osaka, Japan) was
generally applied formouse pupil dilation. Amixture of midazolam (40µg/100µL, Sandoz,
Tokyo, Japan), medetomidine (7.5 µg/100 µL, Orion, Espoo, Finland), and butorphanol
tartrate (50 µg/100 µL, Meiji Seika Pharma, Tokyo, Japan), simply known as ‘MMB’,
was applied for general mouse anesthesia. After pupil dilation and anesthesia (within
5 min of MMB injection), the mice’ eyes were gently placed with a contact lens, and four
CNV spots (532 nm argon laser, 100 mw, 100 ms, 75 µm) were made between the ocular
vessels at 2-disc diameters from the mouse’s optic nerve head. Air bubbles were generally
indicated as a positive sign of disruption of the Bruch’s membrane by laser irradiation. CNV
spots lacking air bubbles or having extensive hemorrhage were not included for further
data analyses. After euthanasia (using a combination of 3x of MMB injection to mice),
flat-mounted choroidal complexes were made from the mouse eyes by micro-scissors and
incubated in isolectin IB4 solution (IB4 from Griffonia simplicifolia, Invitrogen, Carlsbad,
CA, USA). CNV was detected and visualized by LSM710 microscope (Carl Zeiss, Jena,
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Table 1 Primer list.

Name Direction Sequence (5′→ 3′) Accession
number

Forward TCAGTCAACGGGGGACATAAAHprt
Reverse GGGGCTGTACTGCTTAACCAG

NM_013556.2

Forward CCGCAGACGACAGGAFabp4
Reverse CTCATGCCCTTTCATAAACT

NM_024406.3

Forward AACAGCCATTCACTTTGCCTGAGCFgf21
Reverse GGCAGCTGGAATTGTGTTCTGACT

NM_020013.4

Forward GAGCCCCTGAAGGAATGCC
Vldlr

Reverse CCTATAACTAGGTCTTTGCAGATATGG
NM_001161420.1

Forward TCTTCTTGAGACAGGGCCCAG
Acox1

Reverse GTTCCGACTAGCCAGGCATG
AF006688.1

Forward CAGACTGCCAGCCTAAGACA
Iba1

Reverse AGGAATTGCTTGTTGATCCC
NM_001361501.1

Germany) and the CNV volumes were determined using the Imaris software (Bitplane,
Zurich, Switzerland).

During the experimental period in which disease signs (including hunched posture,
lethargy, lack of food intake, or unexpected infection) were detected in experimental
models, a combination of 3x of MMB was given to mice for deep anesthesia, and then mice
were euthanized (Lee et al., 2021a; Xie et al., 2021).

Quantitative PCR
A series of steps for quantitative PCR (qPCR) were conducted using RNA extraction,
cDNA synthesis, and qPCR kits (RNeasy Plus Mini Kits, Qiagen, Venlo, The Netherlands;
ReverTra Ace qPCR RT Master Mix, TOYOBO, Osaka, Japan; THUNDERBIRD SYBR
qPCR Mix, TOYOBO, Osaka, Japan, respectively), as previously described (Lee et al.,
2022b; Lee et al., 2021c; Tomita et al., 2019). Briefly, mouse tissues were dissolved in TRI
reagent solution. After 3 min of incubation at room temperature, chloroform (a third of
the TRI solution) was added to each sample. After gentle mixing followed by spin-down,
each sample’s solution was transferred to Econospin columns for RNA collection. The
columns were washed with buffer RWT and RPE (Qiagen, Hilden, Germany) two times.
ND-2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was used for
checking each sample’s quality and quantity. Then, for cDNA synthesis, its sample (500 ng
RNA) was transferred to PCR tubes with cDNA synthesis solutions above and synthesized
by following the manufacturer’s instructions. The Step One Plus Real-Time PCR machine
(Applied Biosystems, Waltham, MA, USA) was used for qPCR analyses with SYBR qPCR
mixture. The primers used in the current study are the same as those in our previous
reports (Table 1) (Lee et al., 2022b; Lee et al., 2021c; Tomita et al., 2019). The fold alteration
between different transcripts’ levels was calculated by the general 1 1CT method.
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Serum assays
When it comes to mouse serum assays, mouse blood was freshly collected from the heart
of each mouse. After 15 min of incubation at room temperature, serum samples were
collected from each blood sample by centrifugation at 4 degree. Serum samples were placed
on ice and immediately subjected to the further serum assays. Concentrations of serum
fibroblast growth factor 21 (FGF21) and triglycerides (TG) were determined using FGF21
ELISA kits (Cat #RD291108200R; BioVendor Laboratory Medicine, Brno, Czech Republic)
and TG kits (Cat #STA-396; Cell Biolabs, Inc., San Diego, CA, USA), as described in our
previous studies (Lee et al., 2022b; Lee et al., 2021c). Serum samples were diluted to 1/2 for
the FGF21 assay, while the samples were diluted to 1/10 for the TG assay. For the whole
procedures, we directly followed the manufacturer’s instructions.

Immunohistochemistry
Immunohistochemistry (IHC) was conducted as described in our previous reports (Lee
et al., 2022b; Lee et al., 2021c). A total of 4% Paraformaldehyde (PFA) was used to fix the
mouse eyeballs. After 3 h of incubation at 4 degree, the PFA-fixed eyeballs were transferred
to Petri dish with cold PBS, and flat-mounted using micro-scissors. Flat mounted-samples
were stained by a primary antibody (IBA1, 1:400, Cat #019-19741; Wako Chemicals,
Richmond, VA, USA) for 24 h. After washing with cold PBS containing 0.3% Triton X
three times, the samples were further incubated by a fluorescence-conjugated secondary
antibody (1:400; Thermo Fisher Scientific, Waltham, MA, USA) for 2 h. After washing with
the same solution above three times, samples were gently mounted with a cover glass. After
drying for a few minutes, fluorescence signals in the samples were detected by LSM710
microscope.

Statistical analysis
Statistical significance was set using a Student’s t -test or ANOVA followed by a Bonferroni
post hoc test. Mean or mean ± standard deviation was selected for general figuration. p
< 0.05: statistically significant.

RESULTS
Oral administration of pemafibrate suppresses laser-induced choroidal
neovascularization (CNV) in a mouse model of neovascular age-related
macular degeneration (AMD)
To examine the preventive effect of pemafibrate on CNV formation, mice were orally
administered pemafibrate four days before laser irradiation (Fig. 1A). Oral administration
was conducted using a general mouse gavage. After the irradiation, mice were continuously
administered pemafibrate every day until the end of the experiment. The concentration
of pemafibrate (0.5 mg/kg/day) was determined based on our previous papers (Lee et
al., 2022b; Lee et al., 2021c). Reductions in CNV volumes were significantly detected in
pemafibrate-administered mice 7 days after the irradiation (Figs. 1B and 1C).

Previously, activated microglia has been reported to co-label with CNV (Wang et al.,
2021). Thus, we also checked this aspect in our current system and found that IBA1 staining
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Figure 1 Suppression of choroidal neovascularization (CNV) by oral pemafibrate administration in
a mouse model of neovascular age-related macular degeneration (AMD). (A) Schematic illustration for
the whole experiment. D, day; LW, liver weight; BW, body weight; qPCR, quantitative PCR; IHC, im-
munohistochemistry. (B and C) Representative images of CNV stained by isolectin IB4 and quantitative
analyses ( n = 18–21 per group) demonstrated that the volume of CNV was dramatically reduced by pe-
mafibrate administration. ∗p < 0.05. Graphs were presented as mean. The data were analyzed using Stu-
dent’s t -test (two-way). Pema: pemafibrate.

Full-size DOI: 10.7717/peerj.14611/fig-1

(a microglial marker) was co-labeled with IB4 staining in CNV (Fig. 2A). Reductions in
IBA1 and Iba1 mRNA expression were clearly detected in the pemafibrate-administered
CNV and retina-RPE-choroid complex, respectively (Figs. 2B and 2C). We further found
reduced Iba1 mRNA expression in the pemafibrate-administered RPE-choroid complex
(Fig. 2C). There was no significant change in Iba1mRNA expression in the retina between
the groups.

Oral administration of pemafibrate systemically activates peroxisome
proliferator-activated receptor alpha (PPAR α) target genes in a mouse
model of neovascular age-related macular degeneration (AMD)
We attempted to examine pemafibrate-induced PPAR α activation in the mouse body
(especially, the liver, retina, and RPE-choroid) (Fig. 3). The eye was our target of interest,
while the liver has been widely known as the main PPAR α activation site by pemafibrate
treatment (Lee et al., 2022b; Lee et al., 2021c). PPAR α target genes (Fgf21, Vldlr, Acox1, and
Fabp4) were selected, as those genes have been generally known activated by treatment of
PPAR α agonists (Lee et al., 2022b; Lee et al., 2021c). We examined those gene expressions
in tissues under our current experimental condition (Figs. 3A–3D). We found that PPAR
α downstream gene expressions were increased by oral administration of pemafibrate
in the liver and RPE-choroid, not in the retina, although there were fluctuations in the
RPE-choroid depending the genes.

Next, we moved to investigate systemic factors in mice after oral pemafibrate
administration. There was no significant alteration in the body weight by oral pemafibrate
administration during the experimental observation period from day 0 (D0) to day 7
(D7) (Figs. 4A and 4B), while the relative liver weight was increased by oral pemafibrate
administration, which was similar to that reported in our previous pemafibrate papers (Lee
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Figure 2 Reduction of activated microglia by oral pemafibrate administration in a mouse model of
neovascular age-related macular degeneration (AMD). (A and B) Representative images of CNV co-
stained by isolectin IB4 and IBA1 (one of the microglial markers) 7 days after laser irradiation. Repre-
sentative images of IBA1 staining in sham-operated, laser-irradiated, and laser-irradiated pemafibrate-
administered CNV 7 days after laser irradiation. Scale bar: 100 µm. (C) Quantitative analyses (n = 6 per
group) indicated that Iba1mRNA expression decreased in the retina-retinal pigment epithelium (RPE)-
choroid complex and RPE-choroid complex by oral pemafibrate administration 7 days after laser irradi-
ation. Graphs were depicted as mean± standard deviation. ∗∗p < 0.01, ∗∗∗p < 0.001. The data were ana-
lyzed using Student’s t -test (two-way). Pema: pemafibrate.

Full-size DOI: 10.7717/peerj.14611/fig-2

et al., 2022b; Lee et al., 2021c). We further found that TG levels significantly decreased by
oral pemafibrate administration (Fig. 4C), while FGF21 levels dramatically increased by its
administration (Fig. 4D). Elevated serum levels of FGF21 were maintained for 7 days after
laser irradiation (D7, the termination day of our current experimental observation).

DISCUSSION
In our current study, oral pemafibrate administration suppressed pathological CNV along
with reductions in ocular microglial activation in a murine model of neovascular AMD.
A significant induction in PPAR α target gene expressions in the liver and eye (especially,
RPE-choroid), a reduction in serum levels of TG, and an elevation in serum levels of
FGF21 were detected after consecutive oral administration of pemafibrate. Previously,
pemafibrate has been suggested as a promising drug to intervene in various pathological
mechanisms in several experimental models of retinopathies (Lee et al., 2021b). However,
we first reported the preventive role of pemafibrate in laser-induced pathological CNV
formation in a murine model of neovascular AMD, which is the significance of our study.

The preventive roles of PPAR α activation on CNV formation have been reported. Zhao
et al. (2018) demonstrated that fenofibrate treatment into the vitreous cavity could inhibit
laser-induced CNV formation in Brown Norway rats. Gong et al. (2016) suggested that
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Figure 3 Screening of PPAR α downstream gene expressions in the liver and eye by oral pemafibrate
administration in a mouse model of neovascular age-related macular degeneration (AMD). (A–D)
Quantitative analyses (n= 6–8 per group) demonstrated that pemafibrate administration did not change
PPAR α downstream gene expressions in the retina, while its administration increased PPAR α down-
stream gene expressions in the liver or retinal pigment epithelium (RPE)-choroid on the day of laser irra-
diation (D0) and 3 and 7 days after the irradiation (D3 and D7). Graphs were depicted as mean± stan-
dard deviation. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. The data were analyzed using Student’s t -test (two-
way). Pema: pemafibrate.

Full-size DOI: 10.7717/peerj.14611/fig-3

fenofibrate administration could reduce laser-induced CNV formation in mice. Huang
et al. (2021) reported that topical treatment of the fenofibrate eye drop could suppress
laser-induced CNV formation in mice. Pemafibrate might also show similar preventive
effects to fenofibrate on CNV formation, in that pemafibrate is another PPAR α agonist
similar to fenofibrate.

Retinal microglia has a significant role in ocular homeostasis. Microglial activation is
known to be induced by various stresses, including hypoxic/ischemic injuries (Abcouwer
et al., 2021; Weinstein, Koerner & Möller, 2010). Previous studies showed that microglia
might be involved in inflammatory and neovascularization signaling pathways in laser-
induced CNV (Hikage et al., 2021; Huang et al., 2013a; Kim et al., 2021). We also found
that microglia resided around CNV in our current system. As pemafibrate administration
could reduce Iba1 expression in CNV, the preventive effects of pemafibrate on CNV
formation could be explained by inhibiting activated microglia. Previously, pre-treatment
of pemafibrate showed reductions in microglial activation in vitro (Ogawa et al., 2020).
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Figure 4 Screening of systemic factors by oral pemafibrate administration in a mouse model of neo-
vascular age-related macular degeneration (AMD). (A and B) Quantitative analyses (n = 10 per group)
indicated that the body weight was not changed by pemafibrate administration, while the liver weight sig-
nificantly increased. (C) Serum triglyceride (TG) levels significantly decreased by pemafibrate administra-
tion from day 0 (D0) to day 7 (D7) after laser irradiation (n= 6–10 per group). (D) Increased serum levels
of FGF21 were maintained by oral pemafibrate administration (n= 6–7 per group). Graphs were depicted
as mean± standard deviation. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001. The data were analyzed using two-way
ANOVA followed by a Bonferroni post hoc test. Pema: pemafibrate.

Full-size DOI: 10.7717/peerj.14611/fig-4
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They further demonstrated that the other PPAR α agonist such as fenofibrate also
suppressed microglial activation in vitro. Another previous study demonstrated that
PPAR α activation using fenofibrate and GW7647 (both PPAR α agonists) treatment could
suppress radiation-induced inflammatory responses (upregulation of Tnf - α and Il-1 β
mRNA expressions) in activated microglial cells in vitro (Ramanan et al., 2008). In addition
to the eye, previous studies on the central nervous system (especially, the brain) showed
suppression ofmicroglial activation by PPAR α agonists/ligands to improve various types of
brain damages (Boujon et al., 2019; Grabacka et al., 2021; Ramanan et al., 2009; Wójtowicz
et al., 2020; Zhou et al., 2022). Taken together, this can also support our current outcome
in vivo.

FGF21 is regarded as a crucial regulator of energy metabolism. While FGF21 is mainly
produced by the liver, it might also be expressed and secreted in other tissues including
skeletal muscles and adipose (Staiger et al., 2017; Szczepańska & Gietka-Czernel, 2022;
Tezze, Romanello & Sandri, 2019). In addition to the systemic energy metabolic role,
FGF21 has been also suggested to have various therapeutic roles in the central nervous
system including the eye (Sa-Nguanmoo, Chattipakorn & Chattipakorn, 2016; Yuan et al.,
2021). Administration of a long-acting FGF21 analog, PF-05231023, exerted a suppressive
effect on ocular neovascularization inmice (Fu et al., 2017). However, the administration of
native FGF21 had lesser effects as it has a short half-life (0.4 h) (Fu et al., 2017;Huang et al.,
2013b). In this regard, stable induction of circulating FGF21 by pemafibrate administration
may effectively suppress CNV volumes during the CNV formation stages induced by laser
irradiation. Furthermore, pemafibrate-induced FGF21 boosting (as one of the PPAR α
target genes) in the eye (especially, RPE-choroid) may locally support suppressing CNV
volumes in our present system. However, further studies are needed in this aspect.

Based on our current data, PPAR α target genes were upregulated by pemafibrate
treatment. Those PPAR α target genes (Fgf21, Vldlr, Acox1, and Fabp4) were selected for
the current experiment as they have been known as representative PPAR α downstream
genes activated by PPAR α agonists. However, its knowledge has been mainly confirmed in
the liver (Lee et al., 2022b; Lee et al., 2021c; Tomita et al., 2019). With this reason, we could
reproduce its findings with pemafibrate treatment in the liver. When it comes to the eye,
PPAR α target genes have not yet been actively studied, although those genes (Fgf21, Vldlr,
Acox1, and Fabp4) have been generally used to screen for PPAR α activation. Furthermore,
upregulation dynamics of those genes have not yet been reported. Taken together, more
researches on PPAR α activation and its downstream gene upregulation in the eye are
needed to be conducted.

In our current study, serumTG levels were decreased by oral pemafibrate administration.
This reducing effect has been consistently detected in various experimental models from
ours and others (Fruchart, Hermans & Fruchart-Najib, 2020; Tomita et al., 2020b). Its effect
was already well confirmed in human studies on pemafibrate (Ida, Kaneko & Murata,
2019). High TG levels are considered as one of the risk parameters in the development
or progression of human cardiovascular diseases with metabolic disorders (Budoff, 2016;
Farnier et al., 2021; Peng et al., 2017). Although our murine CNV model may not have
systemic metabolic injuries, high TG levels could worsen the progression of AMD in
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humans with metabolic disorders and diseases. Thus, pemafibrate treatment could be more
powerful under disease conditions in humans. In this regard, a novel experimental murine
model of laser-induced CNV with systemic metabolic dysregulation (using streptozotocin
injection to induce diabetic conditions Furman, 2015) could be made, and the therapeutic
effects of pemafibrate could be examined in that model, which could be further studied.

Pemafibrate has been well-treated for reducing triglycerides in clinic. Their safety and
efficacy have been gradually stacked. Pemafibrate showed superior benefits-risk balance
compared to conventional fibrates in human studies (Yamashita, Masuda & Matsuzawa,
2020). Experimental reports also supported the notion that pemafibrate treatment could
be more beneficial than other conventional fibrates. In ophthalmic areas, positive effects of
pemafibrate have also been gradually found (Lee et al., 2022c; Tomita et al., 2020b). In this
regard, the use of pemafibrate could be promising in ophthalmic areas in terms of clinical
trial time and safety concerns.

CONCLUSIONS
In conclusion, although we need more evidence regarding CNV suppression by activating
PPAR α in the liver and/or the eye, we suggest a promising pemafibrate therapy in
laser-induced CNV, with enhancing liver function, controlling serum levels of FGF21 and
TG, and suppressing retinal microglial activation.
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