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ABSTRACT
Background. The accurate identification of SARS-CoV-2 (SC2) variants and esti-
mation of their abundance in mixed population samples (e.g., air or wastewater)
is imperative for successful surveillance of community level trends. Assessing the
performance of SC2 variant composition estimators (VCEs) should improve our
confidence in public health decision making. Here, we introduce a linear regression
based VCE and compare its performance to four other VCEs: two re-purposed DNA
sequence read classifiers (Kallisto and Kraken2), a maximum-likelihood based method
(Lineage deComposition for Sars-Cov-2 pooled samples (LCS)), and a regression based
method (Freyja).
Methods. We simulated DNA sequence datasets of known variant composition from
both Illumina and Oxford Nanopore Technologies (ONT) platforms and assessed the
performance of eachVCE.We also evaluatedVCEs performance using publicly available
empirical wastewater samples collected for SC2 surveillance efforts. Bioinformatic anal-
yses were performed with a custom NextFlow workflow (C-WAP, CFSANWastewater
Analysis Pipeline). Relative root mean squared error (RRMSE) was used as a measure
of performance with respect to the known abundance and concordance correlation
coefficient (CCC) was used to measure agreement between pairs of estimators.
Results. Based on our results from simulated data, Kallisto was the most accurate
estimator as it had the lowest RRMSE, followed by Freyja. Kallisto and Freyja had the
most similar predictions, reflected by the highest CCC metrics. We also found that
accuracy was platform and amplicon panel dependent. For example, the accuracy of
Freyja was significantly higher with Illumina data compared to ONT data; performance
of Kallisto was best with ARTICv4. However, when analyzing empirical data there was
poor agreement amongmethods and variations in the number of variants detected (e.g.,
Freyja ARTICv4 had a mean of 2.2 variants while Kallisto ARTICv4 had a mean of 10.1
variants).
Conclusion. This work provides an understanding of the differences in performance
of a number of VCEs and how accurate they are in capturing the relative abundance of
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SC2 variants within a mixed sample (e.g., wastewater). Such information should help
officials gauge the confidence they can have in such data for informing public health
decisions.

Subjects Bioinformatics, Genomics, Molecular Biology, Virology, COVID-19
Keywords SARS-CoV-2, Bioinformatics, Deconvolution, Wastewater surveillance

INTRODUCTION
SARS-CoV-2 (SC2) was declared a global pandemic by the World Health Organization
(WHO) on 11 March 2020, and as of 16 September 2022, 13,134,400 clinical samples
were sequenced globally and deposited into the GISAID SC2 database (GISAID, 2022).
While providing a very accurate means for variant typing at an individual level, the
financial burden of this individual-level clinical sequencing approach is high. There is also
a sampling bias associated with clinical surveillance efforts. For example, due to different
levels of access for different segments of the community and differences among groups in
reporting rates to healthcare institutions. Wastewater-based epidemiological surveillance
(WBS) (Ramuta et al., 2022; Boogaerts et al., 2021; Sims & Kasprzyk-Hordern, 2020) may be
a cost-effective alternative or complimentary approach to wide-scale clinical surveillance
that can measure disease agent prevalence among residents localized to a certain area, such
as sewer shed or even a specific building. WBS has been shown to be a highly sensitive and
specific method capable of detecting variants as well as providing the potential to detect
the emerging ones (Weidhaas et al., 2021; Crits-Christoph et al., 2021; Godinez et al., 2022).

Apart from rare events such as co-infection or mutagenesis within the host, each
clinical specimen has a single source and represents only one SC2 variant. In contrast, a
wastewater sample is an unknown mixture of all infected individuals within the area, and
can contain multiple lineages. This creates challenges for using WBS as an effective and
accurate epidemiological tool to gauge community dynamics. There are issues with sample
collection, concentration, and quantification of fragmented SC2 genomes existing at low
viral loads. The subsequent targeted sequencing and library preparation to ensure efficient
capture of the viral SC2 genomic content of the sample is also challenging (Lu et al., 2020;
Pulicharla, Kaur & Brar, 2021; Alhama et al., 2021). In addition to these laboratory-based
issues, there are those associated with the bioinformatic processing of sequence data to
determine which variants are present and, particularly vexing, obtaining a reliable estimate
of their relative abundance within the mixture (Cao et al., 2021; Karthikeyan et al., 2022).

Borrowing from the field of signal processing, in particular the principles associated with
deconvolution, methods for SC2 variant composition estimation within mixed population
samples have begun to emerge. For example, Freyja (Karthikeyan et al., 2022) calls single
nucleotide polymorphisms of known SC2 variants based on the UShER (Turakhia et al.,
2021) global phylogenetic reference tree. It then deconvolves relative abundances of the
variants by fitting a weighted least absolute deviation based model and calculates weights
from the read counts. Other methods, such as Kallisto (Bray et al., 2016), were originally
designed for RNA-seq and metatranscriptomics, where the problem is analogous to that
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presented by wastewater (i.e., how to determine identity and abundance among a collection
of fractionated transcripts). Kallisto uses de Bruijn graphs to pseudoalign k–mer classes
to the sequences in a user provided reference database and provides final abundance
estimates by optimizing a likelihood function. Another method, Lineage deComposition
for SARS-CoV-2 pooled samples (LCS) (Valieris et al., 2022), uses a mixture model to
provide a maximum-likelihood estimate of the relative abundances of different SC2
variants found in a sample based on a previously defined set of polymorphisms from
a known set of variants. Taxonomic classifiers, such as Kraken2 (Wood, Lu & Langmead,
2019), notably increase the computational efficiency by using pre-indexed k-mer tables, and
can be re-purposed to detect variants within a mixed sample by providing custom-curated
reference databases (e.g., a custom database of SC2 variants).

Here, we compare the performance of five variant composition estimators (VCEs).
Two are recently published tools (Freyja and LCS), two others—Kraken2 and Kallisto—
were not originally developed for processing SC2 sequence data but were optimized
for that purpose here, and we developed a fifth VCE we call LINDEC that is linear
deconvolution by least squares. We also introduce an in silico simulator of next-generation
sequencing (NGS) test datasets of known variant composition and abundance along
with a robust bioinformatics analysis pipeline. The pipeline was used to analyze the
simulated data and empirical data collected through FDA’s Center for Food Safety and
Applied Nutrition’s wastewater surveillance effort that leverages the genomic surveillance
network for foodborne enteric pathogens, GenomeTrakr (Allard et al., 2016). Our primary
objective was to determine which variant composition estimator has the lowest deviation
from the simulated abundances. The empirical data was analyzed to confirm whether the
performance and agreement among VCEs assessed via the simulated data is what is to be
expected in a real-world application of those VCEs.

MATERIALS AND METHODS
Variant composition estimators
The VCE we developed, LINDEC, is available within our custom bioinformatics
analysis pipeline C-WAP (CFSAN Wastewater Analysis Pipeline) and is based on
linear deconvolution, which uses standard linear regression of a logical matrix of all
mutations present or absent in a particular variant. In this representation, we pre-compile
a list of all mutations present in all constellations reported in https://github.com/cov-
lineages/constellations/tree/main/constellations/definitions. Let the total number of all
mutations be n, which considers multiple mutation outcomes of the same genomic
coordinate as distinctmutations. Thus, each lineage can be represented by an n-dimensional
logical vector (vi ∈ {0,1}n) depending onwhether a particularmutation in the pre-compiled
mutation list is present or absent. The database itself then consists of an n×m dimensional
matrix (M∈ {0,1}n×m), wherem is the number of lineages included. A sample is processed
by read alignment to reference sequence NC_045512.2, followed by pile-up generation, and
variant calling against the reference sequence. The output is converted to an n-dimensional
vector of rational numbers (b∈Qn) and we do a least-squares fitting with Python’s sci-kit
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learn linear regression module (Pedregosa et al., 2011) to find the optimal coefficient vector
a approximating the observed mutation, i.e.,

LINDEC = argmina||b−Ma||2

with the constraint that a∈ [0,1]∩Qm and the normalisation constraint aTa= 1.
Another VCE, which we call ALLCB, employs both Kraken2 (Wood, Lu & Langmead,

2019), which is a taxonomic read classifier typically used for shotgun metagenomic
data, and Bracken(Bayesian Reestimation of Abundance with KrakEN) (Lu et al., 2017).
For this Kraken2/Bracken combined method, we initially included in our database
the Wuhan reference sequence (NC_045512.2) and VOI/VOC lineage-representative
assembly sequences published by US CDC (https://github.com/CDCgov/datasets-sars-cov-
2/blob/master/datasets/sars-cov-2-voivoc.tsv). To capture additional variants, we also added
lineages explicitly reported by CDCCOVIDData Tracker (https://covid.cdc.gov/covid-data-
tracker/#variant-proportions) by selecting three example assembly sequences obtained
from GISAID database of each lineage; assemblies were selected based on completeness
of sequence coverage, lowest ambiguous nucleotide counts (N), and chosen from three
geographically well-separated areas when available. A list of included sequences is provided
in Table 1.

To improve specificity (i.e., the ability to differentiate two closely related lineages), we
indexed this database with a longer k-mer length of 75 nucleotides (nts) instead of the
publishers default of 35 nts. Reads that are shorter than the chosen k-mer length cannot be
classified, and as a result, the read length of the short read platforms after primer trimming
imposes an upper bound around this value in practice.

For Kallisto, a third VCE, we indexed the manually curated database described above
using the default parameters. However, for the read classification we use the single read
version with a mean read length of 300 nts and a spread of 50 nts. Kallisto can have multiple
representatives per variant and in such instances we used the average of the estimated
abundance across each representative to estimate the variant level abundance. Freyja and
LCS represent the fourth and fifth VCEs and were used with their default configurations.
For the LCS reference database, we used the pre-generated Pango designation marker table
v1.2.124 provided by the developers.

Simulations
We developed a custom workflow to simulate next-generation sequence data with
known variant abundances (https://github.com/CFSAN-Biostatistics/ww_simulations).
The workflow first generates random abundances for a user provided list of variant IDs.
The second step involves generating amplicons from each genome using in_silico_PCR.pl
(Ozer, 2017) based on a specific amplicon panel (e.g., NEB’s VarSkip Short multiplex PCR
v1a). Using the in silico amplicons for each genome, the next step is to generate short read
Illumina MiSeq data via ART v2.5.8 (Huang et al., 2012) or Oxford Nanopore Technology
(ONT) sequence data via DeepSimulator v1.5 (Li et al., 2018). To model differences in
abundances, a single amplicon file is generated within which each amplicon from each
variant is represented by its expected abundance (e.g., if Delta is expected to be 10% of a
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Table 1 Contents of Kraken2 and Kallisto DBs constructed for this study. ‘‘Variant’’ refers to the
GISAID-reported variant via Pangolin.

Accession # Variant Accession # Variant

NCBI NC_045512 Wuhan-Hu EPI_ISL_6810485 BA.1
EPI_ISL_1052966 Alpha EPI_ISL_6810487 BA.1
EPI_ISL_1519095 Beta EPI_ISL_6825397 BA.1
EPI_ISL_1365182 Gamma EPI_ISL_8679094 BA.1
EPI_ISL_836881 Eta EPI_ISL_9408266 BA.1
EPI_ISL_836839 Eta EPI_ISL_8881737 BA.1
EPI_ISL_802998 Epsilon EPI_ISL_8444273 BA.1.1
EPI_ISL_911639 Epsilon EPI_ISL_8929305 BA.1.1
EPI_ISL_803016 Epsilon EPI_ISL_9504608 BA.1.1
EPI_ISL_1615877 Delta EPI_ISL_8770510 BA.2
EPI_ISL_1631836 Delta EPI_ISL_8923845 BA.2
EPI_ISL_855171 Iota EPI_ISL_9449617 BA.2
EPI_ISL_1625962 Iota EPI_ISL_8975532 BA.3
EPI_ISL_1631305 Kappa EPI_ISL_8975536 BA.3
EPI_ISL_1719127 Kappa EPI_ISL_9431889 BA.3

Notes.
The GenBank reference sequence, used as wt of this study, can be accessed under: https://www.ncbi.nlm.nih.gov/nuccore/NC_
045512/. Other data originating from GISAID entries can be accessed under https://www.epicov.org/epi3/frontend#3eb7b8 with
a valid user account.

sample and Alpha is expected to be 90% each will have 10 and 90 replicates per amplicon,
respectively). Finally, a set of FASTQ files are generated within which reads from each
genome are proportional to the abundances provided.

The validity of the simulations for the purpose of evaluating the VCEs was assessed by
comparing the frequency of each mutation in the simulated (i.e., observed) data to what
was expected (i.e., the known mutations in each lineage and the known abundance of that
lineage in the simulation). We computed Lin’s concordance correlation coefficients (Lin,
1989) to measure the agreement between the observed and expected frequencies across
the 100 simulations. The values of Lin’s CCC range from 0.8397 to 0.9487 with mean
0.8857 ± 0.0249 which are quite high and provides support for the simulations accurately
representing the expected mutations and thus the signal being correctly measured by the
VCEs.

Five different simulated datasets were generated for each of the two sequencing
platforms (Illumina and ONT) and for some of the possible amplicon panels (Table 2). All
simulations included five variants: Alpha (EPI_ISL_1052966), Beta (EPI_ISL_1519095),
Delta (EPI_ISL_1615877), Epsilon (EPI_ISL_803016), and Omicron (EPI_ISL_14439177)
(Fig. 1A), which differed in the number of in silico amplicons that could be generated for
each of the three primer panels (Table 3). Five variants were chosen as that reflects the
diversity that may be found at a given point in time within the human population (Fig.
1B). Some simulations had fewer than five variants because, due to chance, the abundance
was set to 0 for certain variants. We also acknowledge there are situations where fewer or
more variants are circulating within a community and that additional amplicon panels and
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Table 2 Details on the simulations including sequence type, amplicon panels, and parameters.

Sequencing platform Simulator Amplicon panels Parameters1

Illumina Art ARTICv4 L75/F150
Illumina Art ARTICv4 L150/F300
Illumina Art QIAseq DIRECT L75/F150
Illumina Art QIAseq DIRECT L150/F300
Illumina Art NEB VSS v1a L75/F150
Illumina Art NEB VSS v1a L150/F300
Oxford Nanopore DeepSimulator1.5 NEB VSS v1a L600
Oxford Nanopore DeepSimulator1.5 NEB VSS v1a L600

Notes.
1For Illumina, L = read length; F = fragment length with a standard deviation of 10 nts. For ONT, L = read length.

Table 3 Amplicon panel metrics per variant.

Amplicon panel

ARTICv4 NEB VSS v1a QIAseq DIRECT

Amplicon length
Min 384 529 156
Max 420 604 305

No. amplicons per variant
Alpha 92 68 394
Beta 94 70 399
Delta 95 72 389
Epsilon 93 70 388
Omicron 89 66 392

variants could have been considered. However, we believe the results presented here are
worthy and provide critical information to understanding that not all variant estimators
perform equally and the role that amplicon panel, sequencing technology, and differences
in the genomes among variants have in explaining differences in performance.

Empirical data
To further evaluate the performance of the variant estimators, we ran them across a
suite of empirical data (Table S1). While the true variant composition is unknown for
these samples, empirical data analyses may reveal insights in variability of VCE method
predictions. This further provides basis in interpreting the in silico results, suggesting
whether the expectations from the simulated data results are likely to be true when the VCE
methods are employed in practice. All empirical data were sequenced using the Illumina
platform and each of the three amplicon panels analyzed in the simulations are represented
(Table 4). Due to limited availability of samples sequenced on the Oxford Nanopore
platform, no ONT empirical data is included.
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Figure 1 (A) The variant composition of the 100 simulated datasets (arbitrarily sorted by increasing
proportion of Omicron). (B) A snapshot of SC2 variants’ prevalence for the past year, estimated out of
GISAIDmetadata accessed on 08 June 2022 (EPI_SET ID: EPI_SET_220928co, https://doi.org/10.55876/
gis8.220928co).

Full-size DOI: 10.7717/peerj.14596/fig-1

Table 4 Characteristics of the Illumina empirical data.

Amplicon panel #SRRs Library amplicon size (bp) NCBI bioproject accession

ARTICv4 39 400 PRJNA765612
NEB VSS v1a 15 250-490, 560, or UNK1 PRJNA767800, PRJNA757447
QIAseq DIRECT 69 300 PRJNA757447

Notes.
1UNK denotes sequence data with missing information as to the library amplicon size.

Bioinformatics analysis via C-WAP
Here, we introduce the CFSANWastewater Analysis Pipeline (C-WAP, https://github.com/
CFSAN-Biostatistics/C-WAP), which performs bioinformatic analyses of SC2 sequence
data from wastewater samples (or other mixed population samples) generated on Illumina,
Oxford Nanopore, and PacBio sequencing platforms. It is a collection of python and shell
scripts and open-source software dependencies that are managed via Conda and NextFlow
(Di Tommaso et al., 2017). It quantifies SC2 present in NGS data via a mapping-based
approach, characterizes the composition of the sample via a suite of variant estimator
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methods (i.e., those evaluated here), and generates HTML and PDF summary reports.
C-WAP with default settings was used to analyze both the simulated and empirical datasets
described here. This means that for Illumina read alignment we use Bowtie2 with default
settings, whereas for ONT reads we use Minimap2 optimised for nanopore (‘‘-x map-ont’’
option). Reads are not merged and for primer and quality trimming, we use iVar with
default settings, except that for ONT we lowered the minimum quality threshold to 1
rather than the default value of 20. All detected mutations were included in the lineage
abundance estimations without an explicit depth or frequency cutoff, as long as iVar
indicates statistical significance.

Additionally, the estimators vary regarding the precision in the lineage predictions. To
account for this, we parse their output via a custom Python3 script to retain the sub-lineage
level detail only up to the lineages defined byWHO. For example, if the raw output predicts
the composition to be 40% B.1.351.1 and 60% B.1.351.3, the results are reported as 100%
B.1.351, which is defined as the Beta variant by WHO. We also present results from the
analysis of the empirical data to demonstrate without parsing the results to account for
how the VCEs differ in the lineage and sub-lineage level of reporting.

Measure of variant composition estimation accuracy
For the simulated data, we used relative root mean squared error (RRMSE) (Xia et al.,
2011) to evaluate the estimation accuracy of each abundance estimation method. Let n−1
be the number of known variants in a simulated data, (a1,a2,...,an−1) be the actual relative
abundance of the known variants, and (â1,â2,...,ân) be the estimated relative abundance
of the variants where ân represents the relative abundance of a collection of variants that
are absent from the simulated data. Then, RRMSE is given by

RRMSE =

√√√√ 1
n−1

n−1∑
k=1

(
âk−ak
ak

)2

.

Multivariable linear models were used to compare the five estimationmethods and evaluate
the effects of sequencing platforms, amplicon panels, and read/fragment lengths on the
performance of the estimation methods. We also considered the samemodels but adjusting
for the effect of genome sequencing coverage. Given that the distribution of RRMSE is right
skewed, the error measures are log-transformed, and thus, we perform all our inferences
on the expectations of the log-transformed error measures rather than the error measures
themselves. Tukey-Kramer method was used to adjust for multiple testing in comparing
each pairwise combination between the methods. We used an alpha level of 0.05 for all
statistical tests.

We used concordance correlation coefficient (CCC) with Euclidean distance to
evaluate the levels of pairwise agreement among the VCEs for both the simulated and
empirical datasets. It was adapted by Cui et al. (2021) from Lin’s concordance correlation
coefficient for agreement studies with microbiome data. Let ai = (âi1,âi2,...,âin) and
bi=

(
b̂i1,b̂i2,...,b̂in

)
denote a pair of estimated relative abundances of variants from data

Kayikcioglu et al. (2023), PeerJ, DOI 10.7717/peerj.14596 8/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.14596


i (i= 1,2,...,m) based on two methods A and B, respectively. Then, the sample estimate
of CCC between A and B is given by

CCC =
2
m
∑m

i=1〈ai− ā,bi− b̄〉

‖ā− b̄‖2+ 1
m
∑m

i=1
(
‖ai− ā‖2+‖bi− b̄‖2

)
where ā is a vector that represents the component-wise average of ai’s, 〈x,y〉 is the inner
product of vectors x and y, and ‖x‖ is the norm of the vector x. The values of CCC
are between −1 and 1, where −1 indicates a perfect disagreement, while 1 indicates a
perfect agreement. We used a bootstrap method of sample size 5000 to build a 95%
confidence interval for each CCC estimate. For the empirical wastewater samples, we
used Bayes-Laplace Bayesian-multiplicative replacement method to impute zero relative
abundances (Palarea-Albaladejo & Martn-Fernndez, 2015) on the entire dataset before
computing CCC values.

RESULTS AND DISCUSSION
Simulated data and the effect of sequencing platform
We first evaluated the performance of the five abundance estimationmethods on simulated
data from two sequencing platforms: Illumina and Oxford Nanopore. The results show
that Kallisto was the best performing method as it had the least average RRMSE of 0.20 ±
0.127 in Illumina data and 0.18 ± 0.140 in Oxford Nanopore data followed by Freyja 0.31
± 0.194 in Illumina and 0.39 ± 0.159 in Nanopore (Table 5). The CCC between Kallisto
and the actual relative abundances (ACTUAL) is 0.9852 (95% CI [0.9820–0.9878]) and
with that of Freyja is 0.9943 (95% CI [0.9926–0.9956]) in Illumina; for Oxford Nanopore
data the CCCs are 0.9955 (95% CI [0.9946–0.9962]) with actual and 0.9799 (95% CI
[0.9748–0.9840]) with Freyja (Fig. 2). The CCCs between Freyja and the actual are 0.9925
(95% CI [0.9910–0.9938]) and 0.9702 (95% CI [0.9629–0.9762]) in Illumina and Oxford
Nanopore, respectively. These results show that the relative abundance estimates of variants
using Kallisto and Freyja are very close to the actual relative abundances, and there is a very
close agreement between the two methods in their estimations.

We compared the performance of the estimation methods using a two-way ANOVA
with interaction on the log-transformed RRMSE estimates, where the two fixed factors
are sequencing platform as two levels, and estimation methods as five different levels.
The results indicate that there is a statistically significant interaction (F(4,1490)= 10.92,
p< 0.0001) between sequencing platforms and among abundance estimation methods on
the accuracy of abundance estimation. Thus, the accuracy of some estimation methods
depend on the platform used. Further analyses show that, except of Freyja and ALLCB, the
accuracy of all VCE methods do not significantly differ across platforms used. Freyja has a
statistically significant (t (1490)=−4.73, p= 0.0001) better accuracy on Illumina compared
to Oxford Nanopore, while ALLCB has a statistically significant (t (1490)=−3.26,
p= 0.0380) better accuracy on Oxford Nanopore compared to Illumina. Kallisto has
better accuracy on Oxford Nanopore compared to Illumina, though the difference is not
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Table 5 Summary (mean± SD) of RRMSE by platform andmethod. The sample size for Illumina is
200, while that of Oxford Nanopore is 100.

Method Illumina Nanopore

ALLCB 1.65± 1.42 1.25± 1.04
FREYJA 0.31± 0.19 0.39± 0.16
KALLISTO 0.20± 0.13 0.18± 0.14
LCS 1.22± 2.53 0.90± 1.02
LINDEC 1.02± 0.80 1.04± 0.74

ACTUAL & ALLCB

ACTUAL & FREYJA

ACTUAL & KALLISTO

ACTUAL & LCS

ACTUAL & LINDEC

ALLCB & FREYJA

ALLCB & KALLISTO

ALLCB & LCS

ALLCB & LINDEC

FREYJA & KALLISTO

FREYJA & LCS

FREYJA & LINDEC

KALLISTO & LCS

KALLISTO & LINDEC

LCS & LINDEC

0.00 0.25 0.50 0.75 1.00
CCC with 95% CI

Illumina

0.00 0.25 0.50 0.75 1.00
CCC with 95% CI

Nanopore

Figure 2 Concordance correlation coefficient (CCC) with bootstrap 95% lower and upper confidence
interval (CI) limits betweenmethods including actual abundances for both platforms used. ACTUAL=
known relative abundance of variants in simulated data.

Full-size DOI: 10.7717/peerj.14596/fig-2

statistically significant (t (1490)=−2.86, p= 0.1179). Overall, Kallisto and Freyja are
significantly the most accurate estimation methods regardless of the platform used.

Looking at genome sequencing coverage, on average Illumina has higher percent of
genome with missing coverage of 2.40 ± 0.63% than that of Oxford Nanopore which is
1.74 ± 0.31%. Due to a lack of primer binding sites, most of the missing positions are at
the 5′ (∼ 300 nt) and 3′ (∼ 100 nt) ends of the reference genome. The above conclusions
still hold after controlling for the effect of genome sequencing coverage in the models.
An exception is ALLCB which has a better accuracy with Oxford Nanopore compared to
Illumina, but is no longer statistically significant (t (1489)=−1.43, p= 0.9178).
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Table 6 Summary of RRMSE (Mean± SD) by Amplicon Panel and Read/Fragment Length for Illu-
mina simulations. Lower RRMSE means better performance and smaller deviation from the known rela-
tive abundance. L75F150 = read length of 75 and fragment size of 150; L150F300 = read length of 150 and
fragment size of 300.

Method Read length ARTICv4 NEB VSS v1a QIAseq DIRECT

ALLCB L150F300 1.38± 1.034 1.73± 1.452 1.65± 1.334
ALLCB L75F150 1.80± 1.812 1.57± 1.381 1.44± 1.258
FREYJA L150F300 0.28± 0.194 0.30± 0.200 0.37± 0.167
FREYJA L75F150 0.31± 0.180 0.31± 0.189 0.63± 0.979
KALLISTO L150F300 0.20± 0.142 0.22± 0.153 0.27± 0.148
KALLISTO L75F150 0.18± 0.089 0.18± 0.092 0.52± 0.876
LCS L150F300 0.50± 0.181 0.44± 0.163 0.39± 0.130
LCS L75F150 0.59± 0.081 2.00± 3.407 0.65± 0.314
LINDEC L150F300 0.96± 0.700 1.02± 0.797 1.49± 1.445
LINDEC L75F150 0.92± 0.652 1.02± 0.811 1.55± 1.535

Simulated data and the effects of amplicon panel and read length
Next, we evaluated the performance of the five abundance estimation methods on
combinations of three amplicon panels: ARTICv4, QIAseq DIRECT, and NEB VSS v1a,
and two read/fragment lengths: read length of 75 and fragment size of 150 (L75F150) and
read length of 150 and fragment size of 300 (L150F300) for Illumina simulations. ALLCB
consistently underestimates the variants Delta andOmicron, and overestimates the variants
Alpha, Beta and Epsilon (Fig. S1). LCS underestimates the variants Delta and Epsilon, while
LINDEC consistently underestimates the variants Beta and Omicron. Compared to other
VCEs, both LCS and LINDEC have higher misclassification rates of variants present in the
simulation datasets to variants absent from the datasets.

The accuracy measures show that Kallisto has the lowest average RRMSE within each
combination ranging from 0.18± 0.089 to 0.52± 0.876; Freyja was the second lowest with
RRMSE values ranging from 0.28 ± 0.194 to 0.63 ± 0.979 (Table 6). The CCC between
Kallisto and the actual ranges from lowest 0.7714 (95% CI [0.6483–0.8552]) for read length
75 in QIAseq DIRECT to highest 0.9976 (95% CI [0.9971–0.9979]) for read length 150 in
NEB VSS v1a (Table S2). The CCC between Freyja and the actual one ranges from lowest
0.7817 (95% CI [0.6579–0.8643]) for read length 75 in QIAseq DIRECT to highest 0.9971
(95% CI [0.9965–0.9977]) for read length 150 in NEB VSS v1a. For longer reads, LCS has
higher CCCs with the actual one regardless of the amplicon panel used and the highest
value is 0.9408 (95% CI [0.9234–0.9543]) for QIAseq DIRECT. The CCC between Kallisto
and Freyja ranges from lowest 0.9736 (95% CI [0.9659–0.9796]) in QIAseq DIRECT to
highest 0.9981 (95% CI [0.9977–0.9985]) in NEB VSS v1a for read length 150.

To compare the performance of the VCEs and evaluate the effects of amplicon panel and
read/fragment lengths used on the performance of the methods, we fit a three-way ANOVA
with interaction on the log-transformed RRMSE estimates. The results show that there is
a statistically significant three-way interaction (F(10,2970)= 5.52, p< 0.0001) indicating
the accuracy of certain estimation methods may depend on the amplicon panel and the
read/fragment length combination used. For example, Kallisto is a statistically significant
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most accurate estimation method, followed by Freyja in almost all combinations of
amplicon panel and read lengths used. An exception is the read length 150 in QIAseq
DIRECT amplicon panel, where Freyja is more accurate than LCS, though this is not
statistically significant (t (2970)=−1.44, p= 0.9999). Kallisto is a statistically significantly
more accuratemethod compared to Freyja for read length 75 inARTICv4 (t (2970)=−4.85,
p= 0.0005) and NEB VSS v1a (t (2970)=−4.54, p= 0.0022), and for read length 150 in
QIAseq DIRECT (t (2970)=−3.86, p= 0.0348). Most methods work accurately in longer
read length thoughmost are not statistically significant. Kallisto has a statistically significant
better accuracy for longer read in QIAseq DIRECT (t (2970)=−4.60, p= 0.0017). LCS
also performs better in both QIAseq DIRECT (t (2970)=−5.64, p< 0.0001) and NEB
VSS v1a (t (2970)=−10.78, p< 0.0001). Kallisto and Freyja have better accuracy in both
ARTICv4 and NEB VSS v1a than in QIAseq DIRECT, however Kallisto’s accuracies in both
ARTICv4 and NEB VSS v1a are not statistically significant compared to QIAseq DIRECT
for read length 150 (t (2970)=−3.73, p= 0.0543; t (2970)=−3.19, p= 0.2553).

On average, QIAseq DIRECT has lower percent of genome with missing coverage of
1.23± 0.35% than that of ARTICv4 and NEB VSS v1a which are 2.43± 0.88% and 2.40±
0.63%, respectively. The differences in genome sequencing coverage are negligible across
read length for each amplicon panel. The above conclusions still hold after analyzing the
data adjusting the model for the effect of genome sequencing coverage, except Kallisto’s
accuracy across amplicon panels. Kallisto’s accuracy in both ARTICv4 and NEB VSS v1a
turn out to be statistically significant better than in QIAseq DIRECT for read length 150
(t (2970)=−5.87, p< 0.0001; t (2970)=−5.28, p< 0.0001).

Empirical data
We applied the five abundance estimation methods on 123 empirical wastewater samples,
all sequenced on the Illumina platform: 39 were sequenced using ARTICv4 amplicon panel,
15 using NEB VSS v1a, and 69 using QIAseq DIRECT. Those lab/physical samples were
collected between September 2021 and February 2022; see NCBI for sample specific dates.
Table 7 shows the number of SC2 variants identified across empirical samples. Among the
methods, on average LCS identified the highest number of variants with an average of 21.1
± 3.46 variants (ranging from 7 to 24) in ARTICv4, 21.9 ± 2.25 (from 16 to 24) in NEB
VSS1a, and 24.0 ± 0.12 (from 23 to 24) in QIAseq DIRECT across wastewater samples.
Freyja identified the fewest number of variants with an average of 2.2 ± 0.45 variants
(ranging from 2 to 4) in ARTICv4, 2.1 ± 0.25 (from 2 to 3) in NEB VSS v1a, and 3.0 ±
0.79 (from 2 to 5) in QIAseq DIRECT across wastewater samples. See Fig. S2 for additional
information on the abundance estimates of specifics variants for identified in experimental
wastewater sample data.

Pairwise concordance correlation coefficients (CCC) between the methods for each
amplicon panel are shown in the forest plot in Fig. 3. The highest CCC is between Kallisto
and LINDEC 0.9912 (95% CI [0.9745–0.9970]) followed by that of ALLCB and Kallisto
0.7679 (95% CI [0.5285–0.8942]) both in NEB VSS v1a amplicon panel. In general, there
is a higher level of agreement between the VCEs with NEB VSS v1a amplicon panel than
with the other amplicon panels. Compared to the simulated data, the CCC values between
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Table 7 Number of SC2 variants identified by eachmethod in each amplicon panel across empirical
wastewater samples.

ARTICv4 NEB VSS v1a QIAseq DIRECT
Method Mean± SD Range Mean± SD Range Mean± SD Range

ALLCB 4.7± 1.48 (1, 7) 8.9± 0.81 (7, 10) 8.9± 0.92 (6, 10)
FREYJA 2.2± 0.45 (2, 4) 2.1± 0.25 (2, 3) 3.0± 0.79 (2, 5)
KALLISTO 10.1± 2.43 (3, 12) 11.9± 0.25 (11, 12) 12.0± 0.00 (12, 12)
LCS 21.1± 3.46 (7, 24) 21.9± 2.25 (16, 24) 24.0± 0.12 (23, 24)
LINDEC 7.7± 4.01 (1, 15) 3.0± 2.53 (1, 9) 3.3± 3.54 (1, 14)

ALLCB & FREYJA : B

ALLCB & FREYJA : U

ALLCB & KALLISTO : B

ALLCB & KALLISTO : U

ALLCB & LCS : B

ALLCB & LCS : U

ALLCB & LINDEC : B

ALLCB & LINDEC : U

FREYJA & KALLISTO : B

FREYJA & KALLISTO : U

FREYJA & LCS : B

FREYJA & LCS : U

FREYJA & LINDEC : B

FREYJA & LINDEC : U

KALLISTO & LCS : B

KALLISTO & LCS : U

KALLISTO & LINDEC : B

KALLISTO & LINDEC : U

LCS & LINDEC : B

LCS & LINDEC : U

0.00 0.25 0.50 0.75 1.00
CCC with 95% CI

ARTICv4

0.00 0.25 0.50 0.75 1.00
CCC with 95% CI

NEB VSS v1a

0.00 0.25 0.50 0.75 1.00
CCC with 95% CI

QIAseq DIRECT

Figure 3 Concordance correlation coefficient (CCC) with 95% lower and upper bootstrap confidence
interval (CI) limits amongmethods on experimental wastewater sample data from all three amplicon
panels.U = CCCs from observed variants; B = CCCs after sub-lineages are binned together.

Full-size DOI: 10.7717/peerj.14596/fig-3

most of the methods in the empirical wastewater samples are much smaller. These smaller
CCCs between VCEs for the empirical data can be explained in part by the fact that VCEs
differ in their reference databases. Some are updated more frequently than others and, in
this case, that meant that some (e.g., LCS) included more sub-lineages that emerged within
Omicron at the beginning of 2022 than others (e.g., ALLCB, Freyja). This also explains in
part the differences in the maximum number of variants detected by each VCE (Table 7).

To determine if these differences could be addressed by ensuring the VCEs were
reporting similar taxonomic levels (i.e., sub-lineages or not), we performed post-processing
of the results and binned together sub-lineages (e.g., BA1, BA2, and BA3 are binned as
Omicron; AV1 and AV.1 as the same denoted via NA2) and recomputed the CCCs among
the VCEs. Most CCCs between VCEs did not change much except the ones involving
LCS. For example, the CCC between Kallisto and LCS increased from 0.0143 (95% CI
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[−0.0042–0.0327]) to 0.7583 (95% CI [−0.4136–0.9845]) in ARTICv4, and from 0.1721
(95% CI [0.0242–0.3127]) to 0.6333 (95% CI [0.3447–0.8126]) in NEB VSS v1a. The
CCC between Freyja and LCS increased from 0.1746 (95% CI [0.0251–0.3165]) to 0.6362
(95% CI [0.3435–0.8162]) in NEB VSS v1a, and from 0.0414 (95% CI [0.0192–0.0636])
to 0.7354 (95% CI [0.6084–0.8257]) in QIAseq DIRECT. The CCC between LINDEC and
LCS increased from 0.1761 (95% CI [0.0270–0.3176]) to 0.6702 (95% CI [0.3876–0.8376])
in NEB VSS v1a. These results highlight that even when accounting for differences in the
level of lineage and sub-lineage reporting and in the syntax/nomenclature of variants, that
the VCEs still differ in their results. This has important implications given the results are
dependent on the VCE being used.

CONCLUSION
SC2 will inevitably evolve where new variants will arise and some form of monitoring for
emerging variants will be an important component of public health efforts. Along with
the evolution of new variants, sample kits, databases of variants, and detection methods
will change. As the performance of these tools are likely dependent on the variant(s) in
circulation at the time of the analysis, an ultimately conclusive assessment of the accuracy
of the methods is elusive. However, the results presented here show the importance of
the choice of laboratory methods (i.e., sequencing technology and amplicon panel) and
bioinformatic analytics (i.e., variant estimators) in accurately detecting and quantifying
variant composition within a mixed population sample such as wastewater. Although
certain methods perform quite well with the simulated data and have a high CCC when
compared to one another, the results for the experimental data illustrate that the picture
of variants within a sample is quite dependent on the VCE being employed (even when
controlling for differences in the ways and as what lineage/sub-lineage resolution the
methods report results). This information and future evaluations of variant estimation
methods are crucial to fulfill the promise often made that genomic epidemiology and
the analysis of mixed population samples will enhance current and future responses to
pandemics (Knyazev et al., 2022). Given that all methods evaluated here rely on a reference
database of known SC2 variants against which reads are classified, a future challenge will be
the development of variant estimators that reliably detect and characterize a novel variant
not seen before and is absent from the reference databases.

ACKNOWLEDGEMENTS
We gratefully acknowledge the CovidTrakr working groups at the Center for Food Safety
and Applied Nutrition for work and discussion that facilitated this manuscript. We also
acknowledge the support of CFSAN high performance computing engineers G. Engelbach,
K. Konganti, andM.Hammond in the installation andmaintenance of the analytic software
we used and evaluated.We also acknowledge all data contributors for generating the genetic
sequence and metadata and sharing via the GISAID Initiative, on which this research is
partly based.

Kayikcioglu et al. (2023), PeerJ, DOI 10.7717/peerj.14596 14/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.14596


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Jasmine Amirzadegan’s participation was supported by an appointment to the Research
Participation Program at the U.S. Food and Drug Administration administered by the Oak
Ridge Institute for Science and Education through an interagency agreement between the
U.S. Department of Energy and the U.S. Food and Drug Administration. Tunc Kayikcioglu
received financial support from Joint Institute for Food Safety and Applied Nutrition
(JIFSAN), University of Maryland as part of financial assistance award U01FD001418
funded by the Food and Drug Administration (FDA) of the U.S. Department of Health
and Human Services (HHS). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
U.S. Food and Drug Administration administered by the Oak Ridge Institute for Science
and Education through an interagency agreement between the U.S. Department of Energy
and the U.S. Food and Drug Administration.
Joint Institute for Food Safety and Applied Nutrition (JIFSAN).
Food and Drug Administration (FDA) of the U.S. Department of Health and Human
Services (HHS): U01FD001418.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Tunc Kayikcioglu conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final
draft.
• Jasmine Amirzadegan conceived and designed the experiments, performed the
experiments, analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.
• Hugh Rand conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.
• Bereket Tesfaldet conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.
• Ruth E. Timme conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.
• James B. Pettengill conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

Kayikcioglu et al. (2023), PeerJ, DOI 10.7717/peerj.14596 15/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.14596


Data Availability
The following information was supplied regarding data availability:

The CFSAN Wastewater Analysis Pipeline is available at GitHub: https://github.com/
CFSAN-Biostatistics/C-WAP.

The sequences are available at:
NCBI: NC045512, EPI_ISL_1052966, EPI_ISL_1519095, EPI_ISL_1365182,

EPI_ISL_836881, EPI_ISL_836839, EPI_ISL_802998, EPI_ISL_911639, EPI_ISL_803016,
EPI_ISL_1615877, EPI_ISL_1631836, EPI_ISL_855171, EPI_ISL_1625962, EPI_ISL_1631305,
EPI_ISL_1719127, EPI_ISL_6810485, EPI_ISL_6810487, EPI_ISL_6825397, EPI_ISL_8679094,
EPI_ISL_9408266, EPI_ISL_8881737, EPI_ISL_8444273, EPI_ISL_8929305, EPI_ISL_9504608,
EPI_ISL_8770510, EPI_ISL_8923845, EPI_ISL_9449617, EPI_ISL_8975532, EPI_ISL_8975536,
EPI_ISL_9431889

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.14596#supplemental-information.

REFERENCES
Alhama J, Maestre JP, Martsín MA, Michsán C. 2021.Monitoring COVID-19 through

SARS-CoV-2 quantification in wastewater: progress, challenges and prospects.
Microbial Biotechnology 15(6):1719–1728 DOI 10.1111/1751-7915.13989.

AllardMW, Strain E, Melka D, Bunning K, Musser SM, Brown EW, Timme R, Kraft CS.
2016. Practical value of food pathogen traceability through building a whole-genome
sequencing network and database. Journal of Clinical Microbiology 54(8):1975–1983
DOI 10.1128/JCM.00081-16.

Boogaerts T, Ahmed F, Choi P, Tscharke B, O’Brien J, De Loof H, Gao J, Thai
P, Thomas K, Mueller JF, Hall W, Covaci A, van Nuijs AL. 2021. Current
and future perspectives for wastewater-based epidemiology as a monitoring
tool for pharmaceutical use. Science of the Total Environment 789:148047
DOI 10.1016/j.scitotenv.2021.148047.

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq
quantification. Nature Biotechnology 34:525–527 DOI 10.1038/nbt.3519.

Cao B, Gu AZ, Hong P-Y, Ivanek R, Li B, Wang A,Wu J. 2021. Editorial perspective:
viruses in wastewater: wading into the knowns and unknowns. Environmental
Research 196:110255 DOI 10.1016/j.envres.2020.110255.

Crits-Christoph A, Kantor RS, OlmMR,Whitney ON, Al-Shayeb B, Lou YC, Flamholz
A, Kennedy LC, Greenwald H, Hinkle A, Hetzel J, Spitzer S, Koble J, Tan A, Hyde
F, Schroth G, Kuersten S, Banfield JF, Nelson KL, PettigrewMM. 2021. Genome
sequencing of sewage detects regionally prevalent SARS-CoV-2 variants.MBio
12(1):e02703–20 DOI 10.1128/mBio.02703-20.

Cui Y, Peng L, Hu Y, Lai HJ. 2021. Assessing the reproducibility of microbiome measure-
ments based on concordance correlation coefficients. Journal of the Royal Statistical
Society. Series C, Applied Statistics 70(4):1027–1048 DOI 10.1111/rssc.12497.

Kayikcioglu et al. (2023), PeerJ, DOI 10.7717/peerj.14596 16/18

https://peerj.com
https://github.com/CFSAN-Biostatistics/C-WAP
https://github.com/CFSAN-Biostatistics/C-WAP
https://www.ncbi.nlm.nih.gov/nuccore/NC045512/
http://dx.doi.org/10.7717/peerj.14596#supplemental-information
http://dx.doi.org/10.7717/peerj.14596#supplemental-information
http://dx.doi.org/10.1111/1751-7915.13989
http://dx.doi.org/10.1128/JCM.00081-16
http://dx.doi.org/10.1016/j.scitotenv.2021.148047
http://dx.doi.org/10.1038/nbt.3519
http://dx.doi.org/10.1016/j.envres.2020.110255
http://dx.doi.org/10.1128/mBio.02703-20
http://dx.doi.org/10.1111/rssc.12497
http://dx.doi.org/10.7717/peerj.14596


Di Tommaso P, ChatzouM, Floden EW, Barja PP, Palumbo E, Notredame C. 2017.
Nextflow enables reproducible computational workflows. Nature Biotechnology
35:316–319 DOI 10.1038/nbt.3820.

GISAID. 2022. Global initiative on sharing all influenza data. Available at https://www.
gisaid.org/ (accessed on 18 May 2022).

Godinez A, Hill D, Dandaraw B, Green H, Kilaru P, Middleton F, Run S, Kmush BL,
Larsen DA. 2022.High sensitivity and specificity of dormitory-level wastewater
surveillance for COVID-19 during Fall Semester 2020 at Syracuse University, New
York. International Journal of Environmental Research and Public Health 19(8):4851
DOI 10.3390/ijerph19084851.

HuangW, Li L, Myers JR, Marth GT. 2012. ART: a next-generation sequencing read
simulator. Bioinformatics 28(4):593–594 DOI 10.1093/bioinformatics/btr708.

Karthikeyan S, Levy JI, De Hoff P, Humphrey G, Birmingham A, Jepsen K, Farmer S,
Tubb HM, Valles T, Tribelhorn CE, Tsai R, Aigner S, Sathe S, Moshiri N, Henson
B, Hakim A, Baer NA, Barber T, Belda-Ferre P, ChacónM, CheungW, Cresini
ES, Eisner ER, Lastrella AL, Lawrence ES, Marotz CA, Ngo TT, Ostrander T,
Plascencia A, Salido RA, Seaver P, Smoot EW,McDonald D, Neuhard RM, Scioscia
AL, Satterlund AM, Simmons EH, Aceves CM, Anderson C, Gangavarapu K,
Hufbauer E, Kurzban E, Lee J, Matteson NL, Parker E, Perkins SA, Ramesh KS,
Robles-Sikisaka R, SchwabMA, Spencer E, Wohl S, Nicholson L, Mchardy IH,
Dimmock DP, Hobbs CA, Bakhtar O, Harding A, Mendoza A, Bolze A, Becker
D, Cirulli ET, IsakssonM, Schiabor Barrett KM,Washington NL, Malone JD,
Schafer AM, Gurfield N, Stous S, Fielding-Miller R, Garfein R, Gaines T, Anderson
C, Martin NK, Schooley R, Austin B, Kingsmore SF, LeeW, Shah S, McDonald E,
Zeller M, Fisch KM, Laurent L, Yeo GW, Andersen KG, Knight R. 2022.Wastewater
sequencing uncovers early, cryptic SARS-CoV-2 variant transmission. Nature
609:101–108 DOI 10.1038/s41586-022-05049-6.

Knyazev S, Chhugani K, Sarwal V, Ayyala R, Singh H, Karthikeyan S, Deshpande D,
Baykal PI, Comarova Z, Lu A, Porozov Y, Vasylyeva TI, Wertheim JO, Tierney
BT, Chiu CY, Sun R,Wu A, Abedalthagafi MS, Pak VM, Nagaraj SH, Smith AL,
Skums P, Pasaniuc B, Komissarov A, Mason CE, Bortz E, Lemey P, Kondrashov F,
Beerenwinkel N, Lam TT-Y,WuNC, Zelikovsky A, Knight R, Crandall KA, Mangul
S. 2022. Unlocking capacities of genomics for the COVID-19 response and future
pandemics. Nature Methods 19(4):374–380 DOI 10.1038/s41592-022-01444-z.

Li Y, Han R, Bi C, Li M,Wang S, Gao X. 2018. DeepSimulator: a deep simulator for
Nanopore sequencing. Bioinformatics 34(17):2899–2908
DOI 10.1093/bioinformatics/bty223.

Lin L. 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics
45(1):255–268.

Lu D, Huang Z, Luo J, Zhang X, Sha S. 2020. Primary concentration—The criti-
cal step in implementing the wastewater based epidemiology for the COVID-
19 pandemic: a mini-review. Science of the Total Environment 747:141245
DOI 10.1016/j.scitotenv.2020.141245.

Kayikcioglu et al. (2023), PeerJ, DOI 10.7717/peerj.14596 17/18

https://peerj.com
http://dx.doi.org/10.1038/nbt.3820
https://www.gisaid.org/
https://www.gisaid.org/
http://dx.doi.org/10.3390/ijerph19084851
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1038/s41586-022-05049-6
http://dx.doi.org/10.1038/s41592-022-01444-z
http://dx.doi.org/10.1093/bioinformatics/bty223
http://dx.doi.org/10.1016/j.scitotenv.2020.141245
http://dx.doi.org/10.7717/peerj.14596


Lu J, Breitwieser F, Thielen P, Salzberg S. 2017. Bracken: estimating species abundance
in metagenomics data. PeerJ Computer Science 3:e104.

Ozer EA. 2017. in_silico_PCR.pl. Available at https://github.com/egonozer/in_silico_pcr .
Palarea-Albaladejo J, Martn-Fernndez JA. 2015. zCompositions—R package for

multivariate imputation of left-censored data under a compositional approach.
Chemometrics and Intelligent Laboratory Systems 143:85–96
DOI 10.1016/j.chemolab.2015.02.019.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E. 2011. Scikit-learn: machine learning in python.
Journal of Machine Learning Research 12:2825–2830.

Pulicharla R, Kaur G, Brar SK. 2021. A year into the COVID-19 pandemic: rethinking of
wastewater monitoring as a preemptive approach. Journal of Environmental Chemical
Engineering 9(5):106063 DOI 10.1016/j.jece.2021.106063.

RamutaMD, Newman CM, Brakefield SF, Stauss MR,Wiseman RW, Kita-Yarbro
A, O’Connor EJ, Dahal N, Lim A, Poulsen KP, Safdar N, Marx JA, Accola MA,
RehrauerWM, Zimmer JA, Khubbar M, Beversdorf LJ, Boehm EC, Castañeda
D, Rushford C, Gregory DA, Yao JD, Bhattacharyya S, JohnsonMC, Aliota
MT, Friedrich TC, O’Connor DH, O’Connor SL. 2022. SARS-CoV-2 and other
respiratory pathogens are detected in continuous air samples from congregate
settings.MedRxiv. Available at https://www.medrxiv.org/content/early/2022/03/30/
2022.03.29.22272716 DOI 10.1101/2022.03.29.22272716.

Sims N, Kasprzyk-Hordern B. 2020. Future perspectives of wastewater-based epidemi-
ology: monitoring infectious disease spread and resistance to the community level.
Environment International 139:105689 DOI 10.1016/j.envint.2020.105689.

Turakhia Y, Thornlow B, Hinrichs AS, DeMaio N, Gozashti L, Lanfear R, Haussler
D, Corbett-Detig R. 2021. Ultrafast Sample placement on Existing tRees (UShER)
enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nature Genetics
53:809–816 DOI 10.1038/s41588-021-00862-7.

Valieris R, Drummond RD, Defelicibus A, Dias-Neto E, Rosales RA, Tojal da Silva I.
2022. A mixture model for determining SARS-Cov-2 variant composition in pooled
samples. Bioinformatics 38(7):1809–1815 DOI 10.1093/bioinformatics/btac047.

Weidhaas J, Aanderud ZT, Roper DK, VanDerslice J, Gaddis EB, Ostermiller
J, Hoffman K, Jamal R, Heck P, Zhang Y, Torgersen K, Laan JV, LaCross
N. 2021. Correlation of SARS-CoV-2 RNA in wastewater with COVID-19
disease burden in sewersheds. Science of the Total Environment 775:145790
DOI 10.1016/j.scitotenv.2021.145790.

WoodDE, Lu J, Langmead B. 2019. Improved metagenomic analysis with Kraken 2.
Genome Biology 20:257 DOI 10.1186/s13059-019-1891-0.

Xia LC, Cram JA, Chen T, Fuhrman JA, Sun F. 2011. Accurate genome relative abun-
dance estimation based on shotgun metagenomic reads. PLOS ONE 6(12):1–13.

Kayikcioglu et al. (2023), PeerJ, DOI 10.7717/peerj.14596 18/18

https://peerj.com
https://github.com/egonozer/in_silico_pcr
http://dx.doi.org/10.1016/j.chemolab.2015.02.019
http://dx.doi.org/10.1016/j.jece.2021.106063
https://www.medrxiv.org/content/early/2022/03/30/2022.03.29.22272716
https://www.medrxiv.org/content/early/2022/03/30/2022.03.29.22272716
http://dx.doi.org/10.1101/2022.03.29.22272716
http://dx.doi.org/10.1016/j.envint.2020.105689
http://dx.doi.org/10.1038/s41588-021-00862-7
http://dx.doi.org/10.1093/bioinformatics/btac047
http://dx.doi.org/10.1016/j.scitotenv.2021.145790
http://dx.doi.org/10.1186/s13059-019-1891-0
http://dx.doi.org/10.7717/peerj.14596

