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ABSTRACT
Background: Coronary heart disease has become the leading cause of death in
developed countries, and dyslipidemia is closely associated with the risk of
cardiovascular disease. Dyslipidemia is caused by the abnormal regulation of several
genes and signaling pathways, and dyslipidemia is influenced mainly by genetic
variation. AMFR, FBXW7, INSIG1, INSIG2, and MBTPS1 genes are associated with
lipid metabolism. In a recent GWAS study, the GRINA gene has been reported to be
associated with dyslipidemia, but its molecular mechanism has not been thoroughly
investigated. The correlation between the DNA methylation of these genes and lipid
metabolism has not been studied. This study aimed to examine the relationship
between the DNA methylation of these genes and the risk of dyslipidemia by
comparing the methylation levels of dyslipidemia and control samples.
Methods: A case-control research method was used in this study. The patient’s blood
samples were collected at the Heart Center of the First Affiliated Hospital of Xinjiang
Medical University. In the Xinjiang Han population, 100 cases of hyperlipidemia and
80 cases of the control group were selected. The two groups were age and gender-
matched. Quantitative methylation analysis of CpG sites in the gene promoter
regions of six genes was performed by Solexa high-throughput sequencing.
Results: The DNA methylation levels of 23 CpG sites in six genes were shown to be
associated with hyperlipidemia, and a total of 20 DNA methylation haplotypes
showed statistically significant differences between the two groups. When compared
with the control group, the dyslipidemia group had significantly higher levels of
methylation in the GRINA gene (2.68 vs 2.36, P = 0.04). Additionally, we also
discovered a significant methylation haplotype of GRINA (P = 0.017).
Conclusion: The findings of this study reveal that the DNA methylation of GRINA
increases the risk for dyslipidemia in humans.

Subjects Molecular Biology, Diabetes and Endocrinology, Hematology, Medical Genetics, Obesity
Keywords Coronary artery disease, Dyslipidemia, DNA methylation, GRINA, Haplotype, CpG

INTRODUCTION
Coronary artery disease (CAD) is a major contributor to global mortality (GBD 2013
Mortality and Causes of Death Collaborators, 2015; Roth et al., 2015). In 2013,
approximately 173,000 people died from CAD worldwide, accounting for approximately
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31% of all deaths. Based on the above trends, it is estimated that about 236,000 people will
die from CAD by 2030 (WHO, 2011). Related reports indicate that about 50% of the
occurrence and development of CAD are attributed to elevated plasma lipids (Kisfali et al.,
2010; Tada, Kawashiri & Yamagishi, 2017; Waterworth et al., 2010). Numerous studies
have confirmed that changes in plasma lipid levels are closely associated with the
occurrence of cardiovascular risk events (Clarke et al., 2007; Stamler et al., 2000). In a
large-scale epidemiological study conducted in China between 2002 and 2014, the overall
prevalence of dyslipidemia in adults increased significantly. Reducing the prevalence of
dyslipidemia can significantly reduce the prevalence of cardiovascular disease in a
population.

Dyslipidemia is the outcome of the interaction between the environment and genetics.
Previous research has demonstrated that genetic factors influence total cholesterol,
triglycerides, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol
(Tada et al., 2014). However, even when the cause of the rare mutation is taken into
account, known genetic variants only explain 10% to 25% of dyslipidemia. This suggests
that interactions between genes and the environment cannot entirely explain the
pathogenesis of dyslipidemia (Natarajan et al., 2018;Willer et al., 2013). Thus, the function
of epigenetic mechanisms in regulating blood lipid levels is becoming increasingly
recognized.

DNA methylation is an important form of epigenetic modification. DNA methylation
refers to the covalent bonding of a methyl group to the 5th carbon position of cytosine in
genomic CpG dinucleotides by DNA methyltransferase (van der Harst, de Windt &
Chambers, 2017). Abnormal DNA methylation refers to the specific hypermethylation or
hypomethylation of gene promoters, which decreases or increases gene expression,
respectively (Baylin & Ohm, 2006). DNA methylation predominantly occurs in higher
animals and affects gene expression without altering the original gene base sequence.
Currently, DNA methylation is the most studied epigenetic topic in the field of lipid
metabolism. Epigenome-wide association studies (EWAS) have found that methylation of
several genes, including CPT1A, ABCG1, and SREBF1, are associated with lipid
metabolism. Carnitine palmitoyl transferase 1A (CPT1A) is a key enzyme in the B
oxidation of long-chain fatty acids in mitochondria and plays an important role in blood
lipid metabolism. Braun et al. (2017) found that methylation levels at two CpG sites of
CPT1A (cg00574958 and cg17058475) were inversely correlated with triglycerides and
LDL cholesterol. ABCG1 is an important lipid homeostasis-regulating protein.
Furthermore, earlier research has shown that the DNA methylation levels of cg06500161
and cg27243685 are positively correlated with triglycerides and negatively correlated with
high-density lipoprotein cholesterol (Gomez-Alonso et al., 2021; Pfeiffer et al., 2015).
SREBF1 affects cholesterol metabolism by regulating the transcription of LDLR. In a
previous study, increased DNA methylation at cg11024682 and cg20544516 was found to
be positively correlated with dyslipidemia (Lai et al., 2016).

However, previous research has not examined the association between the methylation
of other key genes of lipid metabolism and dyslipidemia. Some genes that have been linked
to dyslipidemia in population-based GWAS research have not been studied. Furthermore,
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earlier research has primarily focused on the relationship between DNAmethylation levels
at individual CpG sites of genes and dyslipidemia. There are multiple CpG sites in gene
promoters, however, the relationship between DNA methylation of CpG regions and
dyslipidemia has not been explored. In this study, we focused on the relationship between
CpG regions in gene promoter regions and lipid metabolism. The genes (AMFR, FBXW7,
INSIG1, INSIG2, and MBTPS1) were found to be associated with lipid metabolism.
Glutamate receptor, ionotropic, N-methyl-D-aspartate associated protein 1 (GRINA) was
found to be associated with LDL (Chu et al., 2015). However, the molecular mechanism of
GRINA has not been studied. The correlation between DNA methylation of these genes
and lipid metabolism has not been thoroughly investigated. This study aimed to examine
the relationship between the DNA methylation of these genes and the risk of dyslipidemia
by comparing methylation levels between dyslipidemia and control samples.

MATERIALS AND METHODS
Study population
Before beginning this study, we developed a research strategy based on STROBE list-case
control and the Declaration of Helsinki and obtained approval from the Ethical Review
Committee of the First Affiliated Hospital of Xinjiang Medical University (Additional Files
1–3). From 2012 to 2015, we enrolled 100 participants as the case group and 80
participants as the control group at the First Affiliated Hospital of Xinjiang Medical
University (Additional File 1). All participants’ information was collected by experienced
and trained clinicians. Before data collection, all participants signed an informed consent
form. The information gathered includes age, gender, history of hypertension, history of
diabetes, smoking history, etc.

Dyslipidemia was defined as fasting TG level ≥1.7 mmol/L, TC level ≥5.2 mmol/L, LDL
level ≥3.1 mmol/L, or HDL level <1.0 mmol/L. People who had not previously received
anti-inflammatory, lipid-lowering, or other anti-heart failure treatments were considered
eligible for participation in the study. The exclusion criteria were as follows: 1. Those
complicated with acute heart failure, malignant arrhythmia, or other heart diseases such as
heart valve disease; 2. Those combined with severe cerebrovascular, liver, kidney, and lung
tissue diseases; 3. Those combined with systemic infectious diseases, malignant tumors, or
thyroid disease; 4. Those combined with blood, immune, endocrine, nervous system, or
severe mental illness.

DNA isolation and epigenotyping
Fasting venous blood was drawn from all participants and placed in an EDTA (ethylene
diamine tetraacetic acid) anticoagulant tube. DNA was extracted from peripheral blood
using commercial kits (TIANGEN Biotech, Beijing, China) and diluted with 75% ethanol
before sequencing and analyzing the DNA methylation.

DNA methylation was evaluated by BiSulfite Amplicon Sequencing (BSAS). The
purpose of using BSAS to modify DNA is to completely convert the unmethylated cytosine
in the DNA sequence into uracil, while the methylcytosine remains unchanged. The CpG
islands distributed in promoters and first exon areas of AMFR, FBXW7, INSIG1, INSIG2,
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MBTPS1, and GRINA genes were sequenced using an Illumina MiSeq Benchtop Sequencer
(San Diego, CA, USA) for methylation genotyping and analysis (Because the effect of DNA
methylation on gene transcription mostly occurs in the promoter region and the first exon
region). Finally, three regions from CpG islands of AMFR, three from FBXW7, three from
INSIG1, one from INSIG2, two from MBTPS1, and two from GRINA were selected and
sequenced (Fig. 1). Bisulfite converse the base of 1 mg genomic DNA using EZ DNA
Methylation- GOLD Kit (Zymo Research, Irvine, CA, USA) before sequencing. The CpG
areas examined were defined as the distance (in bp) between CpG sites and the
transcription start site (TSS). The CpG site methylation level was defined as the methylated
cytosine/ whole cytosine ratio. The gene methylation level was defined as the average
methylation level of all detected CpG sites. The criteria for CpG site selection and the
specific process of DNA methylation analysis are based on our previous research methods,
which are documented in Additional File 1 (Li et al., 2020).

Statistical analysis
All data analyses were performed using SPSS 22.0, and the Kolmogorov-Smirnov method
was used to test the normality of the measurement data. Measurement data conforming to
the normal distribution were expressed as mean ± standard deviation. The t-test was used
to compare the means of two independent samples. The overall methylation level of each
group of DNA samples was expressed as median (interquartile range). The Mann-Whitney
U test was used to compare groups with non-normally distributed measurement data.
Counting data were expressed as the number of cases (percentage). We applied the
Chi-square test or Fisher’s exact test to examine count data. P < 0.05 indicates a statistically
significant difference. Logistic regression analyses (OR and 95% CI) were used to
determine independent risk factors or protective factors of the disease.

RESULT
A total of 180 participants were included for data analysis. Table 1 shows the demographic
characteristics of the study participants. The average age of the 180 participants was 59.89
± 10.97 years old, with 60 (33.3%) of them being female. Because the degree of DNA
methylation was significantly correlated with gender and age, there were no significant
gender and age differences between the two groups, indicating that the research protocol
was feasible. There were 100 (55.5%) participants with HTN and 44 (24.4%) with DM.
The dyslipidemia group had a higher prevalence of hypertension and diabetes than the
control group. The dyslipidemia group had higher levels of TC, TG, HDL, LDL, and
glucose than the control group (Table 1).

A total of 259 CpG sites (62 in AMFR, 51 in FBXW7, 70 in INSIG1, 10 in INSIG2, 24 in
MBTPS1, and 42 in GRINA) were measured in target 11 regions (the specific CPG
distribution information is listed in the Additional File 4). After analyzing the CpG sites of
different regions, a total of 24 CpG sites were discovered to be related to dyslipidemia.
The CpG sites with differences in DNA methylation expression levels in dyslipidemia and
control groups are listed. Dyslipidemia is linked to CpG sites 34 and 69 of the GRINA gene
(Table 2).
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In our comprehensive analysis of CpG sites in distinct gene regions, we defined the
average methylation level of CpG sites as the methylation level of genes. The average DNA
methylation levels of AMFR, FBXW7, INSIG1, INSIG2, and MBTPS1 genes were not

Figure 1 CpG sites sequenced around the promoters of genes. TSS, transcription start site.
Full-size DOI: 10.7717/peerj.14590/fig-1
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significantly associated with dyslipidemia. DNA methylation of GRINA (Table 3), on the
other hand, was associated with dyslipidemia. When compared with the control group, the
dyslipidemia group had higher DNA methylation levels of GRINA (2.71 vs 2.44, P = 0.04).

The analysis of DNA methylation haplotypes of distinct genes revealed specific
methylation haplotypes (Table 4). The DNA methylation haplotype with significant
abundance of GRINA gene was ttttttttttttcttttttttttt (P = 0.017).

The methylation levels of GRINA are a risk factor for dyslipidemia (P = 0.019,
OR = 1.548 95% CI [1.073–2.233]) (Table 5). Participants with higher GRINAmethylation
have a 54% increased risk of dyslipidemia. Hypertension (P = 0.024, OR = 2.184 95% CI
[1.109–4.302]) and hyperglycemia (P = 0.003, OR = 1.408 95% CI [1.122–1.766]) are risk
factors for dyslipidemia, which is consistent with previous research. Participants with
higher blood glucose or hypertension have a 40–118% increased risk of developing
dyslipidemia.

DISCUSSION
In recent years, various genome-wide association studies (GWAS) have discovered
common mutants that affect blood lipid metabolism (Do et al., 2015; Jørgensen et al., 2014;
Crosby et al., 2014). Over the last decade, researchers have discovered the specific
molecular mechanisms of several plasma lipid-related genes such as LDLR, APOB, and
PCSK9. Recent research has also discovered a link between the LIMA-1 gene and lipid
metabolism (Chu et al., 2015; Zhang et al., 2018). In addition to genetic inheritance,
epigenetic changes are also related to lipid metabolism (Fazio & Linton, 2012). Previous
research has discovered that HMG CoA Reductase (HMGCR) catalyzes the conversion of
HMG-CoA to mevalonate, which is the rate-limiting step in cholesterol biosynthesis.

Table 1 Comparison of basic characteristics between dyslipidemia group and control group.

Characteristics All (n = 180) Without dyslipidemia (n = 80) With dyslipidemia (n = 100) P value

Age, years 59.89 ± 10.97 58.56 ± 11.60 60.45 ± 10.38 0.148

Female, n (%) 60 (33.3) 28 (35) 32 (32) 0.671

HTN, n (%) 100 (55.5) 33 (41.25) 67 (67) 0.001

Diabetes, n (%) 44 (24.4) 10 (12.5) 34 (34) 0.001

TC, mmol/l 4.38 ± 1.20 3.61 ± 0.66 4.99 ± 1.19 0.001

TG, mmol/l 1.79 ± 1.05 1.11 ± 0.33 2.34 ± 1.10 0.001

HDL, mmol/l 1.20 ± 0.32 1.35 ± 0.30 1.09 ± 0.28 0.001

LDL, mmol/l 2.91 ± 1.02 2.17 ± 0.64 3.52 ± 0.85 0.001

Glucose, mmol/l 6.00 ± 2.33 5.14 ± 1.31 6.69 ± 2.72 0.001

GSP, mmol/L 2.30 ± 0.44 2.22 ± 0.38 2.36 ± 0.47 0.025

Creatinine, mmol/L 71.96 ± 20.77 71.03 ± 17.70 72.70 ± 22.98 0.593

Smoking, n (%) 56 (31.1) 22 (27.5) 34 (34) 0.349

Notes:
The Kolmogorov-Smirnov method was used to test the normality of the measurement data. The measurement data conforming to the normal distribution are expressed as
the mean ± standard deviation. The comparison of the means between the two groups uses two independent samples. t test. The non-normally distributed measurement
data used the median (interquartile range), and the Mann Whitney U test was used for comparison between groups. For counting data, it is expressed as the number of
cases (percentage). Apply Chi-square test or Fisher’s exact test. if P < 0.001 will described as P = 0.001.
HTN, hypertension; TC, Total cholesterol; TG, Triglyceride; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; GSP, Glycated serum protein.
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Sterols promoteHMGCR degradation via the ubiquitin-proteasome pathway, thus slowing
down cholesterol biosynthesis. Autocrine Motility Factor Receptor (AMFR) is a ubiquitin
ligase anchored to the ER membrane and can ubiquitinate HMGCR. AMFR interacts with
another endoplasmic reticulum membrane protein insulin-induced gene (INSIG)-1 or
INSIG-2 via its transmembrane domain to form a complex. Low cholesterol levels
prevent HMGCR from binding to the INSIG-AMFR complex. HMGCR interacts with the
INSIG-AMFR complex when cholesterol levels increase, resulting in ubiquitination and
degradation of HMGCR (Song, Javitt & DeBose-Boyd, 2005; Song, Sever & DeBose-Boyd,
2005). According to previous research, membrane-bound transcription factor protease site
1 (MBTPS1) gene expression protein is a member of the PCSK9 protease family (PCSK1,
PCSK2, FURIN, PCSK4-PCSK7, MBTPS1, and PCSK9), which cleaves the target protein to
activate it (Taylor, Van De Ven & Creemers, 2003). Previous research demonstrates that

Table 2 CpG site methylation of candidate genes between dyslipidemia group and control group.

Gene Genome position Distance 2TSS Region position Methylation level (median %, minimum—maximum) P value

Without dyslipidemia (n = 80) With dyslipidemia (n = 100)

GRINA_1 145,064,632 407 34 0.50 (0–5.29) 0.92 (0–4.82) 0.012

145,064,667 442 69 0.85 (0–3.27) 0.60 (0–3.56) 0.023

GRINA_2 145,065,320 1,095 37 0.71 (0–25) 3.77 (0–26.92) 0.028

MBTPS1 84,150,882 −334 53 3.59 (1.36–7.18) 3.80 (2.01–6.13) 0.038

84,150,868 −320 67 3.41 (2.11–5.64) 3.62 (155–6.71) 0.016

84,150,784 −236 151 0.43 (0–1.16) 0.49 (0–1.05) 0.047

INSIG1_2 155,089,454 −27 41 0 (0–5) 0 (0–4.55) 0.042

155,089,391 −90 104 1.80 (0–7.45) 1.32 (0–6.67) 0.028

155,089,369 −112 126 1.79 (0–7.79) 2.4 (0–10.34) 0.044

INSIG1_3 155,090,156 675 66 0.57 (0–1.65) 0.67 (0–2.35) 0.024

INSIG2 118,846,072 79 28 0 (0–11.11) 0 (0–13.33) 0.039

FBXW7_1 153,456,802 445 85 5.13 (0–10.53) 4.70 (0–8.81) 0.048

153,456,754 493 133 1.07 (0–5.26) 1.42 (0–4.50) 0.050

FBXW7_2 153,457,430 −183 30 0.43 (0–2.12) 0.52 (0–1.63) 0.025

153,457,454 −207 54 0.75 (0–6.67) 0.97 (0.11–2.30) 0.025

153,457,492 −245 92 0.38 (0–7.69) 0.45 (0.08–1.37) 0.028

153,457,529 −282 129 1.77 (0–5.56) 1.87 (0.80–3.20) 0.021

153,457,534 −287 134 1.42 (0–3.23) 1.56 (0–2.79) 0.017

AMFR_1_ 56,459,028 422 39 0.49 (0–2.17) 0.73 (0–1.76) 0.003

56,459,044 406 55 1.49 (0.27–4.18) 1.26 (0–3.27) 0.027

56,459,196 254 207 1.55 (0.16–4) 1.86 (0.53–4.57) 0.007

AMFR_2 56,459,330 120 140 0 (0–3.85) 0 (0–4.26) 0.019

56,459,414 36 224 0 (0–4.35) 0 (0–6.67) 0.008

AMFR_3 56,458,225 1,225 94 2.99 (0–20) 2.34 (0–7.33) 0.013

Notes:
The non-normally distributed measurement data used the median (interquartile range), and the Mann Whitney U test was used for comparison between groups.
Genome Position: Location of CpG site on the genome Distance. Distance 2TSS: The distance of the CpG site relative to the transcription start site on the reference
genome. Region Position: The position of the CpG site on the CpG region. Methylation Level: The methylated cytosine/whole cytosine ratio was defined as the CpG site
methylation level.
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PCSK9 is an important protein that regulates lipid metabolism. PCSK enzymes play an
important role in the progression of atherosclerosis by modulating the activity of the
pre-atherosclerosis factor (Stawowy & Fleck, 2005). Glutamate receptor, ionotropic,
N-methyl-D-aspartate associated protein 1 (GRINA) was found to be associated with LDL
(Wu et al., 2018). However, the molecular mechanism of GRINA has not been thoroughly

Table 3 DNA methylation level of candidate genes between dyslipidemia group and control group.

Gene Gene methylation level (%) Methyl different (%) P value

Without dyslipidemia (n = 80) With dyslipidemia (n = 100)

AMFR 1.30 (0.36–2.07) 1.27 (0.90–2.05) −0.03 0.77

FBXW7 1.65 (0.46–2.05) 1.63 (0.91–2.13) −0.02 0.61

INSIG1 1.27 (0.77–1.64) 1.28 (0.75–1.76) 0.01 0.80

INSIG2 2.44 (0–11.6) 2.47 (0–6.12) 0.03 0.80

MBTPS1 2.07 (1.67–17.85) 2.1 (1.67–14.20) 0.03 0.66

GRINA 2.44 (0.424–4.43) 2.71 (0.79–5.50) 0.32 0.04

Notes:
The non-normally distributed measurement data used the median (interquartile range), and the Mann Whitney U test was used for comparison between groups.
Gene methylation level: The average methylation level of all detected CpG sites was defined as the gene methylation level.

Table 4 The haplotypes of related genes between dyslipidemia group and control group.

Gene Haplotype P value

AMFR_1_ ttttttttttttttttctttttttt 0.003

tcttttttttttttttttttttttt 0.005

FBXW7 ttttttttttttttttttttctt 0.019

tttttcttttttttttttttttt 0.006

INSIG1 ttctttttttttttttt 0.010

tttttttttttttttttttcttttttttttttttttt 0.021

tttttttttttttttttttttttcttttttttttttt 0.046

ttttcttttttttttt 0.013

tctttttttttttttt 0.043

INSIG2 ttttttttct 0.012

tttttctttt 0.012

ttttcttttt 0.039

MBTPS2_ ttttttctttt 0.019

tttttttttct 0.014

tttcttttttt 0.007

tcttttttttt 0.044

ttctttttttt 0.019

tcccctccctc 0.013

tcccccccttt 0.013

GRINA ttttttttttttcttttttttttt 0.017

Notes:
The non-normally distributed measurement data used the median (interquartile range), and the Mann Whitney U test
was used for comparison between groups.
Haplotype: Assuming that the amplified sub sequence is “AXTXAXT”, X can be C (methylated) or T (unmethylated).
If the sequencing result is “ATTCATT”, the amplified methylation haplotype is “tct”.
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investigated. However previous research has indicated that only about 40–50% of changes
in LDL-C levels are determined by genetic factors (Nadir & Struthers, 2011; Palacios et al.,
2012). It is unknown whether the DNA methylation levels of these key lipid metabolism
genes are associated with dyslipidemia.

In this study, three CpG sites in MBTPS1, two CpG sites in INSIG1, one CpG site in
INSIG2, seven CpG sites in FBXW7, and six CpG sites in AMFR were found to be
associated with dyslipidemia. In contrast to previous research, we not only examined the
relationship between DNAmethylation at CpG sites and dyslipidemia but also determined
the relationship between overall DNA methylation at CpG regions and dyslipidemia. This
study found a significant correlation between DNA methylation in the CpG region of
GRINA and dyslipidemia. The study also demonstrated that DNA methylation of three
CpG sites in the GRINA gene was associated with dyslipidemia. Logistic regression analysis
revealed that DNA methylation of GRINA may increase the risk of dyslipidemia. These
findings support the notion that GRINA DNA methylation may increase the risk of
dyslipidemia. In our previous research, we discovered that DNA methylation of the TBL2
gene is associated with hyper-low-density lipoprotein cholesterolemia. However,
Hyper-LDL is only one type of dyslipidemia. The relationship between DNA methylation
and dyslipidemia has not been exhaustively studied. In this study, the relationship between
the DNA methylation level of the TBL2 gene and abnormal blood lipids was examined.
The DNA methylation level of the TBL2 gene was lower in the dyslipidemia group than in
the control group consistent with previous findings. At the same time, the previously
discovered distinct CpG sites were also detected. Further verification of the reliability of the
results is required.

DNA methylation is a pre-transcriptional modification that involves the precise
addition of methyl groups to a nucleotide. DNAmethylation regulates gene expression and
preserves genomic integrity by interacting with modified nucleosome proteins (Jin & Liu,
2018). CpG islands around transcriptional initiation sites in the genome are allocated
differently at certain stages. Typically, DNA methylation in conjunction with CG

Table 5 Logistic regression analysis for risk factors that could affect lipid metabolism.

Characteristics Univariate Multivariate

P value OR P value OR

GRINA 0.028 1.459 [1.041–2.044] 0.019 1.548 [1.073–2.233]

Sex 0.638 0.861 [0.462–1.604]

Age 0.148 1.020 [0.993–1.048]

Smoking 0.194 0.656 [0.347–1.240]

Hypertension 0.001 2.807 [1.530–5.150] 0.024 2.184 [1.109–4.302]

Diabetes 0.001 3.606 [1.651–7.876] 0.241 1.701 [0.700–4.132]

Creatinine 0.591 1.004 [0.990–1.018]

Glucose 0.001 1.549 [1.255–1.910] 0.003 1.408 [1.122–1.766]

Gsp 0.031 2.157 [1.071–4.344] 0.211 1.679 [0.745–3.782]

Note:
P < 0.05 indicates statistical difference. Logistic regression analyses (OR and 95% CI) is used to analyze independent risk
factors or protective factors of the disease.
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methylation inhibits gene expression (Weber et al., 2005; Song et al., 2005; Grunau,
Hindermann & Rosenthal, 2000). There are two ways in which promoter methylation
might inhibit gene transcription. First, physically detaching the transcription elements
and gene promoter complexes. Second, histone or chromatin modifiers bind to the
methyl-CpG-binding domain, thereby activating repressive machinery and causing
chromatin compaction (Clouaire et al., 2010). Methylated CpG islands are biological
indicators of gene suppression because the function as docking sites for methyl-binding
proteins. They can primarily inhibit transcription components to gene promoters, recruit
transcription inhibitors, and impede activation protein binding (Luo, Hajkova & Ecker,
2018). In our previous research, we found that the DNAmethylation level of the TBL2 gene
is associated with hyper-low-density lipoprotein cholesterolemia (Li et al., 2020).

GRINA is a member of the TMBIM gene family, which codes for six proteins possessing
a transmembrane BAX inhibitor motif (TMBIM). These genes encode calcium channels
present in the Golgi, endoplasmic reticulum (ER), and mitochondria, which regulate
calcium homeostasis (Lisak et al., 2015; Rojas-Rivera et al., 2012; Rice et al., 2019).
According to a recent study, GRINA/TMBIM3 modulates voltage-gated Ca V 2.2 Ca2+

channels in a G-protein-like manner (Mallmann et al., 2019). TMBIMs regulate cell death,
including during ER stress by regulating calcium flow, with the majority of the proteins
being anti-apoptotic (Rice et al., 2019; Liu, 2017). Recent clinical research has
demonstrated that the transmembrane protein GRINA modulates aerobic glycolysis and
promotes tumor progression in gastric cancer (Xu et al., 2018). GRINA was also found to
be associated with elevated levels of antigliadin antibodies (AGA IgG) in subgroups of
schizophrenics (Cihakova et al., 2019). Rice et al. (2019) also discovered that GRINA is a
novel methylation quantitative trait loci associated with osteoarthritis. Previous research
has associated the inhibition of calcium channels with an increase in membrane
cholesterol in neuroblastoma-glioma hybrid cells. We hypothesized that GRINA regulates
membrane cholesterol by regulating calcium channels.

In gene expression studies, the expression levels of the Nuclear Receptor Subfamily 1
Group H Member 2 gene (NR1H2) and GRINA expression levels are comparable across
conditions. The Gene Expression Omnibus (GEO) database demonstrates the
co-expression relationship between the NR1H2 and GRINA genes (Bahr et al., 2013;
Dobbin et al., 2005; Rieger et al., 2004; Wang, Ramrattan & Cheung, 2015). According to
the reactome pathways data, NR1H2 is associated with VLDLR. NR1H2 is a protein-coding
gene. Previous research has demonstrated that NR1H2 is associated with biliary diseases.
NR1H2 is associated with the lipid metabolism pathway. NR1H2 activates ABCA1 (ATP
Binding Cassette Subfamily A Member 1) gene transcription by binding to the ABCA1
gene promoter, which is mediated by PPARγ (Mogilenko et al., 2010). ABCA1 also plays a
significant role in cholesterol efflux on the plasma membrane. Under conditions of high
cellular cholesterol content, NR1H2 dissociates from surface-resident ABCA1 (csABCA1),
rendering csABCA1 susceptible to ubiquitination (Fu et al., 2013; Mizuno, Hayashi &
Kusuhara, 2015). Previous research has shown that ABCA1 is closely associated with lipid
metabolism, and ABCA1 in the liver is involved in the transformation of phospholipid to
apolipoproteins and the formation of high-density lipoprotein cholesterol (Quazi &
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Molday, 2013). Overall, the up-regulation of GRINA gene DNAmethylation influences the
expression of the NRIH2 gene, which in turn affects the expression of ABCA1 on the
plasma membrane and cholesterol efflux.

In contrast, prior research demonstrated that NR1H2 is recruited in the promoter
region of the Sterol Regulatory Element Binding Transcription Factor (SREBF) gene to
influence the regulation of SREBF1 (Flaveny et al., 2015). SREBFs are transcription factors
that regulate the transcription of genes involved in lipid and cholesterol metabolism.
SREBFs regulate cellular cholesterol homeostasis. SREBF cleavage activation protein
(SCAP) and INSIG form a composite with SREBF to aid in its transport to the Golgi
apparatus in sterol-depleted cells. Sterol-depleted cells have two special proteases, which
can convert related enzymes into those that stimulate the amino-terminal transcription
operating region of SREBF. The activated SREBF complex can then enter the nucleus and
bind to the promoter of the target gene (Rawson, 2003; Walker et al., 2011). In addition,
previous research has demonstrated a correlation between GRINA and SREBF. Overall, the
increased DNA methylation of GRINA may affect the SREBF pathway by altering the
expression of the NR1H2 gene, and consequently, blood lipid metabolism.

NR1H2 can induce the expression of the IDOL gene, and IDOL can reduce the level of
LDLR by catalyzing its ubiquitination. The reduction in LDLR causes alterations in serum
cholesterol levels (Zelcer et al., 2009). Therefore, we hypothesized that the increase in
GRINA methylation affects the level of NR1H2, which, in turn, affects the level of LDLR
and, ultimately, the change in serum cholesterol.

Study strengths and limitations
There are several advantages to this study. One of the most significant advantages is that it
is the first to discover that GRINAmethylation is associated with dyslipidemia. This study
also discovered that several GRINA haplotypes are associated with dyslipidemia.
Furthermore, this study was the first to discover that several CpG sites in genes involved in
lipid metabolism (AMFR, FBXW7, INSIG1/2, MBTPS2) are associated with dyslipidemia.
In the future, these findings could be used to predict diseases using gene methylation.
Third, this is a random case-control study, with a human subject and therapeutic
application value. This study also has limitations. First, this study is a correlation study.
Further functional research is required to interpret the mechanisms linking GRINA
methylation to dyslipidemia. Second, this is a single-center study, and all participants were
Han Chinese, which may limit the generalizability of the findings.

CONCLUSIONS
The results of this study suggest that DNA methylation of GRINA increases the risk for
dyslipidemia in humans. The DNA methylation levels of 23 CpG sites in six genes were
shown to be associated with dyslipidemia, and a total of 20 DNA methylation haplotypes
showed statistically significant differences between the two groups.
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