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ABSTRACT
Mangroves are unique coastal ecosystems, which have many important ecological
functions, as they are a reservoir of many marine species well adapted to saline
conditions and are fundamental as sites of carbon storage. Although the microbial
contribution to nutrient cycling in these ecosystems has been well recognized, there is a
lack of information regarding the microbial composition and structure of different
ecological types of mangrove forests. In this study, we characterized the microbial
community (Bacteria and Archaea) in sediments associated with five ecological types
of mangrove forests in a coastal lagoon dominated by Avicennia germinans and
Rhizophora mangle, through 16S rRNA-V4 gene sequencing. Overall, Proteobacteria
(51%), Chloroflexi (12%), Gemmatimonadetes (5%) and Planctomycetes (6%) were
the most abundant bacterial phyla, while Thaumarchaeota (30%), Bathyarchaeota
(21%) and Nanoarchaeaeota (18%) were the dominant archaeal phyla. The microbial
composition associated with basin mangroves dominated by Avicennia germinans was
significantly different from the other ecological types, which becomes relevant for
restoration strategies.

Subjects Marine Biology, Microbiology, Molecular Biology
Keywords Mangrove microbiome, Basin mangrove, Dwarf mangrove, Fringe mangrove,
Desulfatiglicans, Avicennia germinans, Rhizophora mangle

INTRODUCTION
Mangrove ecosystems cover more than 200,000 km2 of tropical and subtropical
coastlines (Duke et al., 2007). They are considered among the most valuable coastal
ecosystems, since they provide numerous ecosystem services including protection against
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typhoons/hurricanes, tsunamis and floods, store nutrients and provide shelter for many
marine species (Walters et al., 2008; Polidoro et al., 2010; Alongi, 2011). They contribute
between 10 to 15% of carbon storage in coastal sediments and export 10 to 11% of the
terrestrial carbon in particles to the ocean (Alongi, 2014). It has been estimated that the
carbon biomass in mangrove sediments is approximately three times the biomass that
constitutes the mangrove vegetation (Hossain & Nuruddin, 2016). These ecosystems have
a relative structural simplicity, due to the few tree species present. They are adapted to the
intertidal zone, so they develop in saline, flooded anoxic soils. Mangroves are facultative
halophytes and reach their maximum development in estuarine conditions resulting in a
typological variability of mangrove ecosystems, which are an expression of environmental
conditions. Climate, geomorphology, regulatory stressors (salinity, temperature, pH, redox
potential) and hydroperiod (Twilley & Rivera-Monroy, 2005) are factors that contribute to
the different ecological types of mangroves: fringe, basin, dwarf, riverine and hammock or
peten, which is characteristic of the Yucatan Peninsula (YP).

In particular, the YP presents a variability of coastal communities that reflect the
geological characteristics of the region, this being an oligotrophic karst configuration
(Herrera-Silveira & Morales-Ojeda, 2009), with a highly permeable carbonate substrate
type and a system subsurface hydrology with dominant flows to the eastern and western
extremes of the area known as the ‘‘cenote ring’’ (Perry et al., 1995; Bauer-Gottwein et al.,
2011). The geohydrology of the YP coast determines the development ofmangrove scenarios
that can be wet or dry (Zaldívar-Jiménez et al., 2010). The wet scenario is characterized by
the function of the cenote (sinkhole) ring, which concentrates and directs groundwater to
sites of interception with the coast. The dry scenario is characterized by flooding and water
contributions strongly influenced by the seasonality of precipitation and less presence of
freshwater from sinkholes and fractures favoring sediments with hypersaline conditions
and low nutrient concentration.

Within the mangrove ecosystems, microbes are critical components, occupying a wide
variety of niches which are essential for carbon, nitrogen and phosphorus accumulation,
transformation and fate as part of the ecological role of the mangroves as sink, source
and transformation of these essential elements (Raynaud & Nunan, 2014). However,
the ecological role of the microbial components of mangrove ecosystems is still poorly
understood. Themicrobial community inmangrove sediments is dynamic and diverse, with
bacteria and fungi comprising most of the total biomass, followed by algae and protozoa
(Sahoo & Dhal, 2009). Yet, there is a lack of knowledge regarding the composition of the
microbial communities in different ecological types of mangroves, specifically in karstic
environments. Hence, understanding if there are patterns inmicrobial composition specific
to different mangrove types, and if there is a common core community among mangroves,
becomes essential to unravel the ecology of these environments. Hence, the aim of this study
was to determine the structure and composition of sediment microbial communities in
different ecological types ofmangroves fromCelestún, a coastal lagoon located in the karstic
scenario of the Yucatan Peninsula, including fringe mangroves dominated by R. mangle
(FRm), basin mangroves dominated by R. mangle and A. germinans (BRmAg), basin
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Figure 1 Study sites and ecological mangrove forests in Celestún.
Full-size DOI: 10.7717/peerj.14587/fig-1

mangroves dominated by R. mangle (BRm), basin mangroves dominated by A. germinans
(BAg) and a dwarf mangrove dominated by R. mangle (DRm).

MATERIAL AND METHODS
Study site
This study was carried out in the central region of Celestún Lagoon, located in the
northwest corner of the YP (Fig. 1). The lagoon has an extension of 23 km and a maximum
width of 2 km; the depth varies between 0.5–2.5 m, covering an area of approximately 28
km2 (Herrera-Silveira, Ramírez & Zaldívar, 1998). It has a mouth of approximately 0.46
km located in the south, which is its only communication with the sea. The dominant
vegetation is constituted by mangrove forests, which due to the shallow depth of the
aquifer, as well as a scarce elevation and low topography, favors the development of
different ecological types of mangroves (Table 1). Celestún is a tropical coastal lagoon
with a semi-diurnal tidal regime (Vega-Cendejas, Hernández & Cruz, 1997), warm weather
(average of 28.5 ◦C) (García & Mosiño, 1992), that has three main seasons, including a dry
spring, rainy summer and cool winter (Herrera-Silveira, 1994; Herrera-Silveira, Ramírez &
Zaldívar, 1998; Teutli-Hernández et al., 2019).
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Table 1 Location of ecological mangrove types and structural characteristics.

Mangrove
type

Sample
code

Coordinates Dominant
species

Diameter
(cm)

Height
(m)

Basin BAg 20.851527 N – 90.294222 W A. germinans 14.3± 3 5± 1
Dwarf DRm 20.855805 N – 90.371222 W R. mangle 2.0± 0 2± 0
Basin BRm 20.856361 N – 90.375861 W R. mangle 9.0± 1 5± 0
Basin BRmAg 20.857277 N – 90.375888 W R. mangle and

A. germinans
26.0± 6 10± 3

Fringe FRm 20.857527 N – 90.376472 W R. mangle 28.0± 9 14± 2

Sediment sampling
In each mangrove type, two sediment cores were collected for biogeochemical
characterization using a 1 m metal corer with a diameter of 5.25 cm. Surface sediments
(first 2 cm/1gr), associated to mangrove root development, were collected in three sites per
mangrove type in replicates (n= 4) (N =12/per mangrove type) for molecular analysis.
Sediments were immediately stored in cryogenic tubes, frozen in liquid nitrogen and
transported to the lab for storage at −80 ◦C.

Bulk density, organic matter and nutrient contents (total carbon, total nitrogen and
total phosphorus) were measured for each sample. To determine the apparent density, the
first 15 cm of the sediment were analyzed, dried in an oven at 60 ◦C and the bulk density
was calculated based on the ratio between the dry weight and volume. The organic matter
content of the sediment was determined gravimetrically after each portion was burned to
ash in a muffle furnace at 550 ◦C for 4 h (Chen & Twilley, 1999). To determine total carbon
and nitrogen, the samples were ground and homogenized; 20–30 mg were subsequently
weighed in tin capsules in triplicates and these were analyzed with an automatic elemental
analyzer, model FLASH-EA-1112 (Quest). Total phosphorus was measured by colorimetry
following the methodology described by Aspila, Agemian & Chau (1976) and Parsons,
Maita & Lalli (1984). In each of the plots, three pore-water samples were taken at 40 cm
depth using an acrylic tube and syringe. A refractometer (Atago, Tokyo, Japan) was used
to measure salinity and a ULTRAMETER II-6 was used to measure temperature, pH and
redox potential (Tables 2 and 3).

DNA extraction and 16SrRNA gene amplification
The microbial community composition of each ecological mangrove type was estimated
with high-throughput sequencing of the 16SrRNA-V4 region. Total sediment DNA
extraction was performed with the DNeasy PowerSoil Kit (Qiagen, Hilden, Germany)
with 0.25 g following the manufacturer’s protocol. Extracted DNA was stored at −70 ◦C
in the laboratory until PCR amplification. The V4 hypervariable region of the 16SrRNA
gene was amplified using primers 515F/806R (Caporaso et al., 2011). Each PCR reaction
contained 1 µl of DNA, 2.5 µl Takara ExTaq PCR buffer 10X, 2 µl Takara dNTP mix (2.5
mM), 0.7 µl BSA (20 mg ml−1), 1 µl each primer (10 µM), 0.125 µl Takara Ex Taq DNA
Polymerase (5 U µl−1) (TaKaRa, Shiga, Japan) and nuclease free-water to a final volume
of 25 µl. PCR was performed in triplicates using the following conditions: 95 ◦C for 3

Gómez-Acata et al. (2023), PeerJ, DOI 10.7717/peerj.14587 4/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.14587


Table 2 Interstitial and superficial water physicochemical characteristics measured in situ for different mangrove types (mean± SD).

Interstitial water Superficial water

Mangrove
type

Salinity
(psu)

Temperature
(◦C)

pH Redox potential
(mv)

Salinity
(psu)

Temperature
(◦C)

pH Redox potential
(mv)

BAg 34.7± 11.1 28.4± 0.3 7.0± 0.6 −219.2± 41.7 4.0± 1.7 28.0± 0.3 7.6± 0.0 −223.6± 18.8
DRm 54.2± 0.1 30.8± 0.9 6.7± 0.0 −239.5± 0.1 3.3± 0.6 28.8± 0.1 7.5± 0.3 −187.3± 47.9
BRm 49.7± 3.4 28.6± 0.4 6.7± 0.1 −254.0± 3.4 5.0± 0.0 27.3± 0.9 7.3± 0.4 −224.0± 20.7
BRmAg 49.7± 1.3 28.0± 0.2 6.5± 0.0 −239.0± 12.2 11.3± 4.0 28.4± 0.4 7.8± 0.0 −239.3± 18.2
FRm 30.2± 1.7 26.7± 0.1 6.7± 0.0 −245.3± 5.6 10.3± 2.5 27.7± 1.3 7.2± 0.5 −247.3± 15.2

Table 3 Physicochemical characteristics of sediments in different mangrove types (mean± SD).

Mangrove
type

Total
carbon (%)

Organic
matter (%)

Total
nitrogen (%)

Total
phosphorus (%)

Density
(g/cm3)

BAg 63.20± 13.40 26.52± 0.68 2.11± 0.37 0.03± 0.04 0.27± 0.06
DRm 43.30± 3.30 21.61± 2.80 1.10± 0.20 0.06± 0.01 0.16± 0.07
BRm 61.15± 4.26 30.46± 1.01 2.02± 0.17 0.06± 0.01 0.18± 0.02
BRmAg 62.64± 4.26 27.58± 0.81 1.91± 0.29 0.02± 0.03 0.20± 0.05
FRm 55.07± 5.60 30.57± 7.67 1.59± 0.45 0.04± 0.02 0.28± 0.05

min, followed by 35 cycles at 95 ◦C for 30 s, 52 ◦C for 40 s and 72 ◦C for 90 s, and a final
extension step at 72 ◦C for 12 min. Amplicon triplicates were pooled and cleaned with
Ampliclean carboxyl-coated magnetic beads (NimaGen, NDL), then quantified using a
Qubit instrument with the Qubit High Sensitivity DNA kit (Invitrogen, Carlsbad, CA). The
purified 16SrRNA amplicons were pooled in equal amounts (20 ng µl−1) and sequenced
with an Illumina MiSeq (Illumina, San Diego, CA, USA). Sequence reads can be found in
the NCBI Sequence Read Archive under Bioproject number PRJNA550111, SRA accession
numbers SRR9973295–SRR9973347.

Data analysis
Sequences were analyzed with QIIME 2 2018.6 (Bolyen et al., 2018). Paired-end sequences
were demultiplexed and quality filtered with q2-plugin demux emp-paired. Sequences with
less than 10 of quality score were discarded; trimming was done at position 14 in both
forward and reverse reads. Chimera and singletons were removed, and denoising was
done using the plugin qiime dada2 denoise-paired with DADA2 (Callahan et al., 2016):
Sequences were merged with a 200 bp threshold and clustered into amplicon sequence
variants (ASVs). Taxonomy was assigned to ASVs using qiime plugin feature-classifier
classify-consensus-vsearch with VSEARCH (Rognes et al., 2016) against the SILVA database
(release 132–99%OTUs, 515-806 region, L7 taxonomy). The class Bathyarchaeia (Archaea)
from SILVA database was named as phylum Bathyarchaeota in the figures, since it was
assigned to a novel phylum (Meng et al., 2014). Mitochondrial and chloroplast sequences
were filtered from the feature table and the representative sequences file and ASVs present
in less than two samples were filtered from both the feature table and the sequences file.
Archaeal sequences were filtered in an independent feature table and sequence file, and
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analyzed independently from Bacteria. Bacteria and Archaea feature tables were rarified
to 13,917 and 1,021 ASVs per sample respectively (Fig. S1). Alignment was done with
mafft (Katoh et al., 2002) and used to construct a phylogeny with FastTree2 (Price, Dehal
& Arkin, 2010).

The alpha diversity (diversity within the samples) was calculated using three different
metrics: Shannon, Simpson and observed ASVs with the plugin qiime diversity alpha.
Phylogenetic beta diversity analysis was measured using weighted Unifrac (Lozupone
et al., 2007) and unweighted Unifrac (Lozupone & Knight, 2005) phylogenetic distance
metrics and visualized with a principal coordinate analysis (PCoA) done with the plugin
qiime diversity core-metrics-phylogenetic, the 3D PCoA plot was visualized using emperor
(Vazquez-Baeza et al., 2013). In order to detect significant differences in alpha diversity
between the ecological types of mangroves, a Kruskal-Wallis test was performed in R (v
4.0.3) (R Core Team, 2020). For beta diversity, a PERMANOVA test was done with the
Adonis function from vegan (v2.5-7) (Oksanen et al., 2020) using the weighted Unifrac
distance matrix with 999 permutations.

Indicator taxa analysis
ITA was performed with the rarefied Bacterial and Archaeal feature table. The indicator
species value (IndVal) (Dufrêne & Legendre, 1997) was calculated in the indicspecies package
ver 1.7.1 (Cáceres & Legendre, 2009) from R (R Core Team, 2020). The IndVal value was
used to identify specific ASV’s for each ecological mangrove type and those shared between
mangroves. In this study, we considered as indicator species those with IndVal values > 0.95
and P > 0.001.

RESULTS
In an effort to understand the microbial community in sediments associated with roots of
different ecological types of mangroves, we studied the changes in their diversity across a
transect from near-shore to inland in Celestún Lagoon, YP.

Physicochemical characteristics
Interstitial water in the different ecological types of mangroves ranged between 54.2 psu
(DRm) and 30.2 psu (FRm), with temperatures ranging between 30.8 ◦C (DRm) and
26.7 ◦C (FRm). All mangrove types had similar pH (6.5–7) and Redox potential (−254
and −219.2 mv) (Table 2). Superficial water salinity ranged between 11.3 psu (BRmAg)
and 3.3 psu (DRm), and the BAg mangrove, which is the most inland point in this study,
had a salinity of 4 psu (Table 2). Superficial water temperature and pH were similar for
all study sites (27.3–28.8 ◦C, 7.2−7.8) and Redox potential ranged from −187.3–247.3 mv
(Table 2).

Regarding mangrove sediments, the DRm mangrove type recorded the lowest values
of organic matter (21.61%) and apparent density (0.16 g/cm3), as well as the lowest total
carbon (43.3%) and total nitrogen content (1.10%), while the highest contents of total
carbon and nitrogen content were found in BAg (63.20%, 2.11%). The highest apparent
density (0.28 g/cm3) and organic matter (30.57%) were recorded in the FRm mangrove.
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Total phosphorus values were low, with highest values recorded in the DRm mangrove
(0.06%). There were no significant differences between physicochemical characteristics
analyzed in sediment samples collected for this study (Kruskal-Wallis test).

Bacterial structure and composition
A total of 4,276,500 raw sequence reads for the V4 region of the 16SrRNA gene were
obtained after quality filtering. Removal of mitochondrial and chloroplast sequences left
4,272,606 ASVs for posterior analysis. A total of 11,503 different ASVs for Bacteria in 53
samples along the transect were obtained. Alpha diversity index showed that BAg had the
lowest microbial diversity of all mangrove-types analyzed. The Shannon estimator values
ranged from 8.0 to 9.6; Simpson index ranged from 0.9 to 1.0 and Observed ASVs ranged
from 597.2 to 1597.6. Significant differences in alpha diversity between mangrove types
are shown using the Krustal-Wallis test (Table S1). The rarefaction curves show enough
sequencing depth to represent bacterial diversity (Fig. S1). A total of 58 phyla, 171 classes,
416 orders, 656 families and 965 genera were recovered.

The most abundant bacterial phyla in all samples were Proteobacteria (46% to 57%),
followed by Chloroflexi (8% to 16%), Gemmatimonadetes (3% to 7%) and Planctomycetes
(6% to 7%) (Fig. 2A). However, there was a significant difference in the relative abundance
of these phyla betweenmangroves according to a Kruskal-Wallis test (p< 0.001).Moreover,
post hoc Dunn test showed that BAg and FRm were significantly different (p< 0.001) in
the abundance of Gemmatimonadetes, Acidobacteria, Nitrospirae and Firmicutes (Table
S2). The most abundant classes in all mangroves were Deltaproteobacteria (20% to
27%), Gammaproteobacteria (12% to 22%), Alphaproteobacteria (8% to 15%) and
Anaerolineae (5% to 10%). The most abundant families were Desulfobacteraceae (4% to
8%), Nitrosococcaceae (2% to 7%) and Desulfarculaceae (2% to 6%) (Fig. 2B). Moreover,
Sva0081 sediment group (3% to 5%), AqS1 (1% to 5%) andDesulfatiglans (2% to 6%) were
the most abundant genera (Fig. S2b). The most abundant class in DRm, BRm, BRmAg and
FRm was Deltaproteobacteria and in BAg, Gammaproteobacteria. The order MBMPE27
accounted for 8% in BAg while in the rest of mangroves it was less than 1% (Fig. S2B). The
most abundant family in BAg, DRm, BRmAg and FRm was Desulfobacteriaceae while in
BRm was Desulfarculaceae (Fig. S2A).

Weighted and unweighted Unifrac analyses show that DRm, BRm and BRmAg
mangrove sediments grouped together suggesting a similar bacterial composition, which is
significantly different from that found in BAgmangrove sediment samples (PERMANOVA,
R2
= 0.468, p= 0.001); FRm had the least clustered composition, sharing bacterial ASVs

with the rest of the R. mangle ecological types, yet showing a unique composition (Fig. 3A;
Fig. S3). In addition, no physicochemical variables included in this study were significantly
associated with the changes observed in the microbial community (Table S3), suggesting
differences in microbial composition are associated with mangrove rhizobiome.

Bacterial indicator taxa
Indicator Taxa Analysis (ITA) for bacteria shows that BAg had 20 indicator taxa, while
DRmhad five, BRmAg had 16 and FRmonly two; BRmdid not have any indicator taxa. The
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Figure 2 Relative abundance of the microbial communities of sediments associated with five different
mangrove forests from Celestún Lagoon. (A) Bacterial phyla (Archaeal phyla).

Full-size DOI: 10.7717/peerj.14587/fig-2

indicator taxa in BAg belong to eight different phyla: Proteobacteria (class Gammapro-
teobacteria, Deltaproteobacteria and Alphaproteobacteria), Gemmatimonadetes (class
Gemmatimonadetes), Chloroflexi (class Anaerolineae), Acidobacteria (class Subgroup 21),
Calditrichaeota (class Calditrichia), Bacteroidetes (class Ignavibacteria and Bacteroidia),
Nitrospirae (class Thermodesulfovibrionia) and Planctomycetes (class Phycisphaerae). The
DRmhas five indicator taxa belonging to phyla Proteobacteria (class Gammaproteobacteria
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Figure 3 Weighted Unifrac PCoA showing the spatial ordination of ASVs of different ecological types
of mangrove forests in Celestún. (A) Bacteria and (B) Archaea BAg (yellow), DRm (blue), BRm (purple),
BRmAg (orange), FRm (cyan).

Full-size DOI: 10.7717/peerj.14587/fig-3

and Deltaproteobacteria) and Planctomycetes (class Phycisphaerae); in the BRmAg
indicator taxa belong to three phyla: Proteobacteria (class Gammaproteobacteria,
Deltaproteobacteria and Alphaproteobacteria), Planctomycetes (class Planctomycetacia)
and Bacteroidetes (class Chlorobia and Bacteroidia); in FRm indicator taxa belong only
to Proteobacteria (class Deltaproteobacteria). The most abundant bacterial indicator
taxa was MBMPE27 (Phylum Proteobacteria, class Gammaproteobacteria) (9.01%) in
BAg mangrove (Fig. 4; Fig. S4; Table S4). There were 19 indicator taxa shared between
DRm, BRm, BRmAg and FRm, and absent from BAg, that belong to six different phyla:
Proteobacteria, Calditrichaeota, Chloroflexi, Spirochaetes, Nitrospinae and Zixibacteria
(Fig. 5).

Archaeal composition
A total of nine phyla, 22 classes, 53 orders, 14 families and 71 archaeal genera were
recovered in this study. Rarefaction curves show enough sequencing depth to get a
complete representation of the archaeal diversity in the mangrove sediments from this
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Figure 4 Bacterial Indicator Taxa for each ecological type of mangrove forests from Celestún.
Full-size DOI: 10.7717/peerj.14587/fig-4

study (Fig. S5). BAg showed the lowest diversity among all mangroves (Table S1). The
most abundant phyla in all mangroves were Thaumarchaeota (13% to 47%), followed
by Bathyarchaeota (13% to 29%) and Nanoarchaeaeota (14% to 23%) (Fig. 2B). The
Kruskal-Wallis test showed that the abundance of Crenarchaeota, Thaumarchaeota and
Euryarchaeota were different between BAg and FRm (p< 0.001) (Table S2). The most
abundant classes were Nitrososphaeria (12% to 24%), Woesearchaeia (7% to 18%) and
Thermoplasmata (1% to 26%), and the most abundant families were uncultured archaeon
from Bathyarchaeota (19% to 30%), Nitrosopumilaceae (12% to 45%) and families within
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Figure 5 Relative abundance of Bacterial Indicator Taxa that are shared between different types of
mangrove forests.DRm (blue), BRm (purple), BRmAg (orange), FRm (cyan).

Full-size DOI: 10.7717/peerj.14587/fig-5

Nanoarchaeaeota (11% to 15%) (Fig. S2C). The most abundant genera were uncultured
archaeon from three phyla Bathyarchaeota, Thaumarchaeota and Nanoarchaeaeota (19%
to 30%, 12% to 35% and 11% to 15%, respectively).

The most abundant class in DRm and BRmAg included members from the
Bathyarchaeota phylum. BRm had Nitrososphaeria and FRm had Thermoplasmata, while
in BAg the Marine Benthic Group A and Nitrososphaeria were the dominant classes. The
most abundant family in BAg, DRm and BRm was Nitrosopumilaceae, while in BRmAg
it was an uncultured bacterium from the phylum Bathyarchaeota and in FRm the highest
abundances were of members from the class Thermoplasmata (Fig. S2C).

The weighted Unifrac distance matrix showed no clear separation between the archaeal
composition in sediments from the different ecological types of mangroves (Fig. 3B).
However, according to the PERMANOVA test (R2

= 0.453, p= 0.001) there is a significant
difference in the archaeal composition of ecological types of mangroves. Moreover, the
unweightedUnifrac distancematrix shows that the archaea in BAg sediments separates from
the other mangrove types (Fig. S6). No physicochemical variables analyzed in this study
were related to the differences in archaeal composition between sediments of the different
ecological mangrove types (Table S3). There are no archaea indicator taxa frommangroves
at Celestún, except for a member of the Nitrosopumilaceae family (Thaumarchaeota
phylum) in all ecological types except in FRm, which is relevant regarding their known
role as aerobic ammonia oxidizers.

DISCUSSION
The need to understand all aspects related to the ecology of different mangrove forests
and their associated microbes is fundamental to better comprehend their role in global
biogeochemical cycles. This study reported a physicochemical gradient observed in
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sediments, including interstitial salinity, where the FRm mangrove develops in lower
salinity due to its proximity to the lagoon, which increased towards the basin mangroves,
reaching the highest value in the DRm mangrove, and decreasing again at the furthest
point, where the basin mangrove is dominated exclusively by A. germinans. Water supply
is through runoff from the continental area and groundwater discharges, which favor the
variation in interstitial water as well as the nutrient content from each ecological type
of mangrove (Twilley & Rivera-Monroy, 2005; Feller et al., 2010). Dwarf-type mangroves,
in carbonated areas develop in regions characterized by low concentration of nutrients,
mainly phosphorus, which can limit plant growth (Feller et al., 2010). In this study the
concentration of nutrients in the sediments of the DRm mangrove was lower compared
to the other ecological types of mangroves (Table 3). Although there were certain
physicochemical gradients associated to the development of the different ecological types
of mangrove here analyzed, the microbial composition was only different for the forest
dominated by A. germinans (BAg).

Previous work on mangrove sediment bacterial diversity has shown that the most
abundant taxa belong to Proteobacteria, Chloroflexi and Bacteroidetes (Andreote et al.,
2012; Jiang et al., 2013; Fernandes et al., 2014; Alzubaidy et al., 2016; Zhou et al., 2017;
Barreto et al., 2018; Luis et al., 2019) (Table 4), which is similar to the results here presented.
Moreover, within Proteobacteria, the class Deltaproteobacteria and Gammaproteobacteria
were the most abundant as have been found in other mangroves around the world (Jiang
et al., 2013; Fernandes et al., 2014; Alzubaidy et al., 2016; Wu et al., 2016; Ullah et al., 2017;
Zhou et al., 2017) (Table 4). Mangrove sediments have been described as mainly anoxic
environments with a small oxic zone on the surface, and rich in organic matter (Brodersen
et al., 2019). In anaerobic environments, degradation of organic compounds mainly
occurs through sulfate reduction mechanisms where sulfate reducing bacteria are involved
(Muyzer & Stams, 2008). Phylogenetic lineages recognized to harbor sulfate-reducing
bacteria mostly belong to Deltaproteobacteria (Muyzer & Stams, 2008). Interestingly, this
was the most abundant class in all sediments from different ecological types of mangrove
forests except for the sediments from BAg which showed Gammaproteobacteria as the
most abundant class. Within Deltaproteobacteria, the family Desulfobacteraceae showed
the highest abundances mainly due to the presence of the Sva0081 sediment group of
bacteria which has been reported as an uncultured, possibly microaerophilic bacterium,
found inmarine sediments (Zheng, Wang & Liu, 2014; Liu et al., 2015;Probandt et al., 2017;
Coskun et al., 2019). This microorganism has genes capable of oxidizing H2 (Dyksma et
al., 2018a), reducing sulfate (Fan et al., 2018) and assimilating acetate in coastal sediments
(Dyksma et al., 2018b). Desulfatiglans was the second most abundant genus from the
Desulfarculaceae in sediments fromBAg, DRm and BRmAg and themost abundant in BRm
and FRm. Microorganisms from this genus have been found in marine sediments (Jochum
et al., 2018) and have been isolated from sediments polluted with phenolic compounds
(Jochum et al., 2018). Pollution by aromatic compounds in mangrove sediments has
been reported around the world (Tam et al., 2001; Ebrahimi-Sirizi & Riyahi-Bakhtiyari,
2013; Li et al., 2014). Furthermore, there are reports of exposure to toxic compounds
by anthropogenic activities in the YP (Arcega-Cabrera et al., 2015) which could explain
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the high abundances of Desulfatiglans as it is capable of degrading aromatic compounds
(Xie & Müller, 2018).

The second most abundant class found in sediments from all mangroves, except
BAg, was Gammaproteobacteria mainly represented by Nitrosococcaceae (AqS1).
AqS1 is a sulfur-oxidizing microorganism capable of carbon monoxide oxidation and
inorganic phosphate assimilation. This bacterium has been reported as a symbiont of the
coral reef demosponge Amphimedon queenslandica (Gauthier, Watson & Degnan, 2016).
Sulfur oxidation is an important step in the biogeochemical cycling of sulfur in anoxic
environments with a thin layer of aerobic conditions (SamKamaleson & Gonsalves, 2019),
making AqS1 a good candidate to perform this function within the mangrove sediments.
Archaea have been suggested as relevant players in carbon, nitrogen and sulfur cycles in
mangroves (Zhang et al., 2018). Archaea in Celestún sediments were represented primarily
by Thaumarchaeota (Nitrososphaeria). Cultivated microorganisms within this phylum
have been isolated from soil, marine, estuarine environments and wastewater treatment
plants. They are chemolithoautotrophs and are capable of aerobic ammonium oxidation
(ammonia-oxidizing archaea) (Kerou, Eloy Alves & Schleper, 2016) and ammonia-oxidation
(nitrification) in hypoxic zones (Campbell et al., 2019). Bathyarchaeotawas the secondmost
abundant phylum found. This phylum has been reported to fix CO2 via acetogenesis (He et
al., 2016) and is capable of dissimilatory nitrite reduction to ammonium (Lazar et al., 2017).
Moreover, metagenomic reconstruction of Bathyarchaeota has suggested their capability
for methane production using methylated compounds (Evans et al., 2015) and some
studies have proposed their potential role in anaerobic methane oxidation using alternative
electron acceptors (Saxton et al., 2016; Valenzuela et al., 2017). Since we were not able to
identify methanogenic/methanotrophic microorganisms related to Euryarchaeota at Class
level, we hypothesize that Bathyarchaeota could play a fundamental role in the methane
cycle in these mangrove ecosystems.

Indicator Taxa Analysis (ITA) can be used to understand the presence of an organism
in a specific environment, according to their preferences of niche conditions. These
values are independent of the relative abundances of other microorganisms (Dufrêne
& Legendre, 1997; De Cáceres et al., 2010). Indicator taxa have been used to identify
microorganisms associated with a specific environmental variable or niche, such as
agricultural practices (Jiménez-Bueno et al., 2016), gut microbiome (Youngblut et al.,
2019), anemone microbiome (Morelan et al., 2019) and soil microbiome (Naylor et al.,
2020). Thus, to explore unique associations between sediment bacteria and different
mangrove ecotypes, bacterial indicator taxa were determined. The contrast between
mangrove forests sediment microbial composition dominated by A. germinans and R.
mangle is very interesting. BAg had the highest number and diversity of indicator taxa
while in contrast, sediments from the FRm and BRm mangroves showed few or none
indicator taxa, suggesting a cosmopolitan composition for sediment microbes associated
with R. mangle and a high specificity associated to A .germinans mangrove forests in
Celestún.

Indicator taxa found in BAg are either strictly anaerobic chemoheterotrophs, such
as Anaerolineales (Chloroflexi) (Yamada & Sekiguchi, 2015), or facultative anaerobic
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Table 4 Microbial community composition in sediments frommangroves distributed worldwide.

Mangrove
specie

Methodology Bacterial
composition

Archaeal
composition

Study
site

Reference

Kandelia obovata Acanthus ilici-
folius

V6 16S rRNA
Solexa Genome analyzer
(GAII)

Rhizosphere: Nitrospirae,
Acidobacteria
Bulk sediment: Proteobacteria
(Deltaproteobacteria),
Epsilonproteobacteria

No data China Jiang et al. (2013)

Avicennia marina Metagenomics
Pyrosequencing 454 GS
FLX Titanium

Proteobacteria
(Deltaproteobacteria:
(Desulfobacterales,
Desulfuromonadales,
Desulfovibrionales,
Syntrophobacterales),
Gammaproteobacteria
(Chromatiales, Alteromonadales,
Pseudomonadales,
Oceanospirillales,
Enterobacteriales),
Alphaproteobacteria
(Rhizobiales, Rhodobacterales)),
Bacteroidetes, Firmicutes

Crenarchaeota Euryarchaeota
Methanosarcinales
Thermococcales Methanococcales
Methanobacteriales
Halobacteriales Nitrosopumilales
(Thaumarchaeota)

Red Sea, Saudi Arabia Alzubaidy et al. (2016)

Bruguiera gymnorrhiza
K. candel
Aegiceras corniculatum
Rhizosphere

V4-V5 16S rRNA
Illumina HiSeq

Proteobacteria (Deltaproteobac-
teria, Gammaproteobacteria),
Chloroflexi, Bacteroidetes

Euryarchaeota Crenarchaeota China Wu et al. (2016)

A. marina V3-V4 16S rRNA Illumina
MiSeq

Proteobacteria
(Gammaproteobacteria,
Deltaproteobacteria),
Actinobacteria,
Firmicutes

No data Red Sea, Saudi Arabia Ullah et al. (2017)

(continued on next page)
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Table 4 (continued)
Mangrove
specie

Methodology Bacterial
composition

Archaeal
composition

Study
site

Reference

Sonneratia caseolaris B.
sexángula Rhizophora
apiculata Xylocarpus
granatum Heritiera littoralis
B. gymnorrhiza
R. mucronata
R. apiculata
A. marina
Ceriops tagal
K. candel
Nypa fructicans

V4 16S rRNA Illumina MiSeq Protected site: Proteobacteria,
Acidobacteria, Actinobacteria
Unprotected site: Proteobacte-
ria, Chloroflexi and Bacteroidetes

Thaumarchaeota Crenarchaeota
Euryarchaeota

Hainan Island, China Yun, Deng & Zhang (2017)

Laguncularia racemosa
Distichlis spicata

V3-V5 16S rRNA Illumina
MiSeq

Proteobacteria, Chloroflexi, Fir-
micutes

No data Florida Barreto et al. (2018)

K. obovata V1-V2 16S rRNA Ion Torrent
sequencing

Proteobacteria (Deltaproteobac-
teria (Desulfuromonadaceae,
Desulfobulbaceae), Gammapro-
teobacteria (Piscirickettsiaceae)
Bacteroidetes,

Bathyarchaeota Euryarchaeota Hong Kong Cheung et al. (2018)

A. officinalis
A. alba
S. alba
A. illicifolius
A. corniculatum Exoecaria
agallocha

V4-V3 16S rRNA Illumina Proteobacteria (Gammapro-
teobacteria (Psychrobacter,
Halomonas, Pseudomonas),
Alphaproteobacteria))
Firmicutes, Actinobacteria

Euryarchaeota (Halobacteria) Goa, India Haldar & Nazareth (2018)

S. caseolaris
Sueda fruticosa Urochondra
setulosa

V3-V4 16S rRNA Illumina
MiSeq sequencing

Proteobacteria (Gammapro-
teobacteria (Marinobacterium),
Alphaproteobacteria, Deltapro-
teobacteria (Desulfobacca,
Desulfotalea, Desulfobulbus,
Desulfomonile, Desulfovibrio,
Desulfosarcina), Bacteroidetes
(Flavobacteria, Sphingobacte-
ria), Firmicutes (Bacilli)

No data Maharashtra, India Paingankar & Deobagkar
(2018)

A. corniculatum V3-V4 16S rRNA Illumina Proteobacteria
(Deltaproteobacteria,
Gammaproteobac-
teria), Chloroflexi,
Bacteroidetes

No data China Lin et al. (2019)

A. marina
R. stylosa

V3-V5 16S rRNA Illumina
MiSeq sequencing

Proteobacteria
(Deltaproteobacteria
(Desulfobacterales,
Syntrophomonadales),
Gammaproteobacteria),
Chloroflexi (Anaerolinae)

Bathyarchaeota Euryarchaeota New Caledonian Luis et al. (2019)
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microorganisms such, as Ignavibacteriales (Bacteroidetes) (Lino, 2014). Their presence
in mangrove sediments suggests degradation of organic matter by electron acceptors
other than oxygen. These anoxic conditions could also be formed during flooding
periods that inhibit direct exchange of gases with the atmosphere. However, sediments
from BAg mangroves show Phaeodactylibacter, a strict aerobic and chemoheterotrophic
microorganism as indicator taxa, suggesting that these sediments are still in contact with
oxygenated waters (Chen et al., 2014; Lei et al., 2015).

Moreover, obligate halophilic microorganisms from Deltaproteobacteria, such as
Haliangium Garcia & Müller, 2014 or SAR324, a heterotrophic microorganism found
in the Red Sea (Haroon, Thompson & Stingl, 2016), were found as indicator taxa in
mangrove sediments from Celestún (BRmAg and FRm respectively), probably due to
their high salinity. In addition to this, some indicator taxa from BAg participate in
the nitrogen cycle in marine environments including Nitrosomonadaceae which are
lithoautotrophic ammonia oxidizers (Prosser, Head & Stein, 2014), Calothrix (which is
a nitrogen fixer) and Phaeodactylibacter that reduces nitrate (Kompantseva et al., 2017;
Chen et al., 2014; Lei et al., 2015). The most abundant bacterial indicator taxa in the
BAg sediments belonged to the order MBMPE27. Members of this order are exclusively
uncultured Gammaproteobacteria reported in environments such as moss pillars, hot
springs, hydrogenetic ferromanganese crusts, massive sulfide deposits, deep sea sediments,
coral reefs and other aquatic environments (Kimura et al., 2006; Santelli et al., 2008; Reis
et al., 2009; Schauer et al., 2010; Nitahara et al., 2011; Nakai et al., 2012; Kato et al., 2015).
Little is known about these microorganisms, as no strain has been isolated and there are
no records of an assembled genome. However, their wide distribution in diverse marine
environments suggests they have an important role in nutrient cycling.

Proteobacteria, Calditrichaeota, Chloroflexi, Spirochaetes, Nitrospinae and Zixibacteria
are indicator taxa shared between spatially closer mangroves, all dominated by R. mangle
(DRm, BRm, BRmAg and FRm). Within these indicator taxa there are microorganisms
that reduce sulfate and/or sulfur including Desulfobulbaceae, Syntrophobacteraceae
and Desulfobacteraceae (Kuever, 2014a; Kuever, 2014b; Laban et al., 2015), which, again,
highlights the important role of these microorganisms in degrading organic matter
through sulfate reduction mechanisms. Furthermore, the Desulfobulbaceae includes
microorganisms able to degrade hydrocarbons under anaerobic conditions (Laban et al.,
2015), as well as Dehalococcoidia, a strict anaerobe member of Chloroflexi capable of
organohalide respiration, a process that has applications in bioremediation of chlorinated
compounds (Löffler et al., 2013; Biderre-Petit et al., 2016).

CONCLUSIONS
This study represents the first characterization of sediment bacterial and archaeal diversity
in different ecological types of mangroves in Celestún, a representative site for mangrove
research in the Yucatan Peninsula. All ecological types of mangroves, except for FRm,
had Nitrosopumilaceae as their indicator taxa. Members of this family are capable of
aerobic ammonium oxidation, an important process that regulates the level of nitrogen in
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marine ecosystems, however the mechanisms by which this process is accomplished, are
not completely understood (Taylor & Kurtz Jr, 2020). Nevertheless, their high abundances
in these mangroves highlights the importance of nitrogen cycling. Finally, all mangrove
sediments from Celestún harbor microorganisms that have been reported as capable of
participating in organic matter, nitrogen and sulfur cycling, highlighting the role of the
microbial component in these ecosystems. Microorganisms that have the ability to degrade
toxic compounds, to which mangroves are exposed due to anthropogenic activities, were
present in all ecological mangrove types.

The microbial composition associated to basin mangroves dominated by A. germinans is
significantly different from the other ecological types, suggesting a particular microbiome,
whereas all mangrove types formed by R. mangle, had a generalist microbial component
associated to their root sediments. Perhaps these differences in microbial composition will
help future restoration efforts with A. germinans, which appears to have a specific sediment
microbiome, which despite having the lowest microbial diversity, had the greatest number
of indicator species.
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