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Phosphorus starvation response (PHR) protein is an important transcription factor in
phosphorus regulatory network, which plays an important role in regulating the effective
utilization of phosphorus. So far, the PHR genes have not been systematically investigated
in cotton. In the present study, we have identified 22, 23, 41 and 42 PHR genes in G.
arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. Phylogenetic
analysis showed that cotton PHR genes were classified into five distinct subfamilies. The
gene structure, protein motifs, and gene expression were further investigated. The PHR
genes of G. hirsutum in the same subfamily had similar gene structures, all containing
Myb DNA-binding and Myb_CC _LHEQLE conserved domain. The structures of paralogous
genes were considerably conserved in exons number and introns length. The cis-element
prediction in their promoters showed that genes were not only regulated by light induction,
but also were related to auxin, MeJA, abscisic acid-responsive elements, while some genes
might be regulated by miRNA. The expression analysis showed that the GhPHR genes are
differentially expressed in different tissues under various stresses. Furthermore, GhPHRG6,
GhPHR11, GhPHR18 and GhPHR38 were significantly changed after low phosphorus stress.
The results of this study provide a basis for further cloning and functional verification of
genes related to regulatory network of low phosphorus tolerance in cotton.
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Abstract: Phosphorus starvation response (PHR) protein is an important transcription factor in
phosphorus regulatory network, which plays an important role in regulating the effective
utilization of phosphorus. So far, the PHR genes have not been systematically investigated in
cotton. In the present study, we have identified 22, 23, 41 and 42 PHR genes in G. arboreum, G.
raimondii, G. hirsutum and G. barbadense, respectively. Phylogenetic analysis showed that cotton
PHR genes were classified into five distinct subfamilies. The gene structure, protein motifs, and
gene expression were further investigated. The PHR genes of G. hirsutum in the same subfamily
had similar gene structures, all containing Myb DNA-binding and Myb CC_LHEQLE conserved
domain. The structures of paralogous genes were considerably conserved in exons number and
introns length. The cis-element prediction in their promoters showed that genes were not only
regulated by light induction, but also were related to auxin, MeJA, abscisic acid-responsive
elements, while some genes might be regulated by miRNA. The expression analysis showed that
the GhPHR genes are differentially expressed in different tissues under various stresses.
Furthermore, GhPHR6, GhPHR11, GhPHR18 and GhPHR38 were significantly changed after low

phosphorus stress. The results of this study provide a basis for further cloning and functional
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verification of genes related to regulatory network of low phosphorus tolerance in cotton.

Keywords: cotton; PHR gene; transcription factor; low phosphorus stress; expression

Introduction

Phosphorus (P) is eﬁe—ef—t-he/\necessary mineral nutrients for plant growth and development,
playing an important role in plant cell energy metabolism, enzyme reaction and signal
transduction. Plants mainly absorb inorganic phosphorus from soil solution through roots.
However, about 95% ~ 99% of phosphorus %s—e&s—y—ee—reaet’\with iron, calcium and aluminum in
acidic and alkaline soils to produce insoluble phosphorus, which is not conducive to plant
absorption and assimilation, becoming an important constraint on global crop production(Péret et
al., 2011). I-a—t-he—&g—ﬁea-}&mal—pfedﬁeﬁeﬂ—e-ﬂefepsk it is necessary to apply excessive phosphorus
fertilizer to make-up-for the available phosphorus in the soil, but this process will cause serious
environmental pollution. Therefore, i-t—is—ef—g—rea-t—s-i-g—&i—ﬁea-nee—te—t-heA sustainable agrieultural
production 9£Aphosphorus deficient soil threugh-explering-and-analyzing the molecular meeha-n—x-sm,\
of high-efficiency utilization of pl-a-ﬂ-t}\phosphorus using-meleeularbislogy.

l-n—efder—te/\adapt to t-he/\low phosphorus eeeleg—nea-l—emeﬂ-memk plants have evolved a set of

complex gene regulation networks, among which the most important members related to phosphate
absorption and transport are PHR1 (phosphate startup response 1), IPS1 (induced by phosphate
startup 1), miR399 (microRNA399), PHO2 (phosphate 2) and PT (phosphate transport). In this
complex regulatory network, PHR protein is an important transcription factor in plant phosphorus
regulatory network, which plays an important role in signal transduction and regulation induced
by phosphate starvation. At present, PHR genes of Arabidopsis thaliana, Oryza sativa, Zea mays,
Glycine max and other species have been identified(Bustos et al., 2010;Woo et al., 2012;Lin et al.,
2013;Guo et al., 2015;Xue et al., 2017;Xu et al., 2018). Arabidopsis PHR transcription factor
directly regulates gene expression by binding to the sequence of phosphorus starvation induced
gene P1BS (GNATATNC), and there is functional redundancy among members(Rubio et al.,
2001). Arabidopsis PHR1 and PHL1 (PHRI-LIKE) transcription factors play a role in plant

Peer] reviewing PDF | (2022:06:74302:0:2:CHECK 13 Jun 2022)


user
Replace

user
Replace
a

user
Replace

user
Replace
easily complexes

user
Replace

user
Replace
to

user
Replace

user
Replace
For crop production,

user
Replace

user
Replace
supplement

user
Replace

user
Replace
for

user
Strikeout

user
Replace

user
Replace
in

user
Insert Text
, it is necessary to explore and analyze 

user
Strikeout

user
Replace

user
Replace
basis

user
Replace

user
Replace
available 

user
Strikeout

user
Replace

user
Replace
To

user
Replace

user
Replace
a

user
Replace

user
Replace
medium


PeerJ

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

response to phosphorus starvation. PHR can bind to the promoters of many phosphorus starvation
induced genes. The loss of AtPHRI gene function in Arabidopsis will reshape membrane lipid
metabolism, primary and secondary metabolism and photosynthesis, which will affect the growth
rate of Arabidopsis root and crown and the accumulation of anthocyanins. PHR deletion mutation
will affect the expression of some phosphorus starvation induced genes, resulting in the decrease
of glucose, fructose, sucrose and starch contents in the mutants(Bustos et al., 2010;Nilsson et al.,
2012;Pant et al., 2015). In rice, SPX family proteins are involved in phosphorus sensing and
signaling by inhibiting the transcriptional activity of OsPHR2(Lv et al., 2014). Rice contains genes
OsPHRI1, OsPHR?2 and OsPHR3 with MYB-CC domain. The loss of any gene function will inhibit
the elongation of rice root hair, and then affect the effective absorption of phosphate by plants.
MiRNAs regulate plant response to low phosphorus by down regulating gene transcription(Zeng
et al., 2014). Mir399 and mir827 are involved in the response of plants to low phosphorus
stress(Pant et al., 2008;Lin et al., 2010). miR399-PHO2 and miR827-NLA mediate the
ubiquitination and degradation of phosphate transporters PHTI and PHO1, and participate in the
systematic regulation of phosphorus balance(Chiou et al., 2006;Liu et al., 2014).

Cotton is an important cash crop and raw material for textile industry in China, and plays an
important role in the national economy(Ma et al., 2021). Phosphorus is one of the three necessary
nutrient elements for cotton growth and development. It can promote cotton budding and flowering
in the middle growth stage, promote cottonseed maturation, increase boll weight and open boll
early in the later growth stage, which directly affects the yield and fiber quality of seed cotton.
Under low phosphorus stress, the adaptive change of root morphology is an important biological
basis for crops to make efficient use of soil phosphorus. It has been %d the total root length,
total root surface area, lateral root length and lateral root number increase in varying degrees under
low phosphorus stress in wheat, maize and rice. When low phosphorus stress occurs, different
crops will form a set of adaptive mechanisms to deal with stress. There are few studies on the
response of cotton to low phosphorus stress.

In order to explore the candidate gene ofj low phosphorus tolerance in cotton, we identified the
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members of PHR gene family in the genome by bioinformatics, and analyzed their gene structure,
cis-acting elements and gene expression pattern based on the latest published genome sequence of
allotetraploid cotton. It provides a reference for further revealing the biological function of PHR

transcription factor and cultivating high-quality cotton varieties.

Material and Method

Identification and analysis of cotton PHR gene family members

The amino acid sequence of members of the PHR transcription factor family of Arabidopsis
thaliana was used as the reference sequence. The HMM model of AtPHR gene was established by
hmmbuild software, the homologous genes were searched in four cotton genome data(Paterson et
al., 2012;Li et al., 2014;Ma et al., 2021) to obtain the protein sequence and coding sequence of
PHR family genes. The obtained sequences with conserved domain Myb DNA-binding (PF00249)
and Myb_CC _LHEQLE (PF14379) of PHR transcription factor was identified using SMART
(http://smart.embl-heidelberg.de/) and CDD
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The physical and chemical properties of

the protein were predicted using the online website ExXPASY (https://web.expasy.org/protparam/).

Conserved domain and gene structure analysis of cotton PHR family members

The online website MEME (http://meme-suite.org/tools/meme) was used to predict the conserved
motif of cotton PHR gene, and the number of motifs was set to 10, other parameters are the default
settings. The gene structure of cotton PHR transcription factors were dfaﬁ;\using online website

GSDS (http://gsds.cbi.pku.edu.cn/index.php) based on cotton genome annotations.

Phylogenetic relationship of cotton PHR gene family members
The protein sequences of Arabidopsis thaliana PHR family gene were downloaded from
Phytozome database (https://phytozome.jgi.doe.gov/pz/portal.html). The protein sequences of

PHR family genes in cotton and Arabidopsis were compared by MEGA 11.0 software(Koichiro et
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al., 2021), and the phylogenetic tree was constructed by adjacency method (NJ). The bootstrap
value was 1000, the model is Poisson model. Finally, we showed the results using the online tool

iTOL(Letunic and Bork, 2021).

Analysis of cis-acting elements of promoters of gene family members

l-n—efder—tg\understand the possible regulation and response mechanism of cotton PHR gene, the
genome sequence of 1.5 kp upstream of each gene of GhPHR family was obtained, and submitted
to PlantCARE online website (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to
predict cis-acting elements of promoters, and finally visualized by, TBtools software(Chen et al.,

2020).

Prediction of miRNA-target PHR gene

According to the principle of sequence complementarity, the regulatory miRNA of PHR gene was
predicted. The GhPHR target gene of miRNA was predicted using psRNATarget online software
(https://www.zhaolab.org/psRNATarget/).

Differential expression analysis of GAPHR family members in roots under low phosphorus stress
Tissue expression specificity of GhPHR genes were analyzed by using RNA sequencing data of
G. hirsutum ‘TM-1" during growth and development downloaded from the NCBI Sequence Read
Archive (PRINA490626). I-H—eféer—teA further screen PHR genes in roots in response to low
phosphorus stress, we analyzed the gene expression in roots based on transcriptome data. A P-
resistant accession was selected for analysis under P deficient hydroponic conditions. First, seeds
were grown in germination boxes containing quartz sand until the cotton cotyledons had fully
expanded, and the seedlings were moved into half-strength Hoagland normal nutrient solution.
The half-strength Hoagland normal nutrient solution was replaced with full-strength P deficient
Hoagland nutrient solution after three days. The leaves were sampled at 0 day and 15 days after

treatment under P-deficient and P-replete conditions and immediately frozen in liquid nitrogen and
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stored at —80 °C for RNA-seq. The heat map of gene expression was drawn by Hemi 1.0 software
(Deng et al., 2014) with log2(1 + FPKM) values after averaging three replicates. Six of the GhPHR
genes were selected for gene expression analysis by qRT-PCR. All reactions were performed in
three independent biological replicates, each with three technical replicates, using the Roche
LightCycler96 RealTime PCR System. GhUBQ14 expression was used as the internal control.
Relative gene expression values were calculated using the 272¢T method (Schmittgen and Livak,

2008).

Results

Identification of cotton PHR family gene members

To investigate the copy number variation in the PHR genes during cotton evolution, a
comprehensive search was conducted for PHR genes across cotton lineages, including G.
arboreum, G. raimondii, G. hirsutum and G. barbadense. The results were verified in the NCBI-
CDD database. In total, 22, 23, 41, and 42 PHR genes were identified, respectively. A total of 128
PHR gene sequences were detected in the four cotton species, the detailed information of which is
listed in Table S1. The results showed that the numbers of PHR genes in G. arboretum and G.
raimondii were almost similar as were those in G. hirsutum and G. barbadense.

The PHR family genes in two diploid cotton species are basically half of the number in two
tetraploid cotton species, which conforms to the known evolutionary reltl%jnship of cotton(Wang
et al., 2018), indicating that the PHR family is conserved in the evolution of cotton.

The names of the PHR genes were determined according to the gene information of Arabidopsis
and the locations on the chromosomes. The encoded protein of the PHR family genes in G.
hirsutum contains 236~494 amino acid residues. The relative molecular mass is between 26.53
and 54.30 kDa, and the theoretical isoelectric point is between 5.50 and 9.82. Each of the family
members contains Myb DNA-binding and Myb CC_LHEQLE domain. Fourty-one PHR genes
were distributed on 21 chromosomes except (A0S, A07, D01, D03 and D07) of G. hirsutum (Table

1). Subgenome A and subgenome D contained 22 and 19 sequences, respectively. The number of
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GhPHR genes in subgenome A was consistent with the number of GaPHR genes, and four of the
PHR genes were missing from subgenome D compared to the number of GrPHR genes. This result
indicated that subgroup D might have lost genes due to redundant gene functions during cotton
evolution.

Three sequences were observed on chromosomes A09 and A 13, while chromosomes D09 and D13
contained two sequences. The A0l and AO3 chromosomes contained one sequence, but the
GhPHR gene sequence was not contained in DO1 and D03 chromosomes. This result showed that
the PHR genes might have been lost and duplicated in the process of evolution. However, there
was a strong correlation between subgroup A and subgroup D, WhiChCéj]S also in line with the

evolutionary relationship in cotton(Wang et al., 2012;Wang et al., 2018).

Phylogenetic analysis of the PHR gene family in cotton

To explore the phylogenetic relationship of the cotton PHR genes, we constructed a phylogenetic
tree with the neighbor-joining method using 41 G. hirsutum, 42 G. babardence, 22 G. arboreum,
23 G. raimondii and 13 Arabidopsis PHR amino acid sequences (Fig. 1). All the PHR proteins can
be divided into five subgroups. The number of PHR genes in each subgroup of G. hirsutum and
G. barbadense was basically twice the number in each subgroup of G. arboreum and G. raimondii.
This was consistent with the results of the previous analysis and conforms to the evolutionary

relationship in cotton. The results showed that the PHR genes were relatively conserved in
evolution in cotton. Among these subfamilies, the largest subgroup V consisted of 12 GhPHRs,

12 GbPHRs, 7 GaPHRs, 7 GrPHRs and 6 AtPHRs, showing tht%_h‘as expanded considerably in

allotetraploid cotton. In contrast, subgroup I only included 4 GhPHRs, 4 GbPHRs, 2 GaPHRs, 2

GrPHRs and 1 AtPHRs, indicating a highly-conserved ancient clade.

Analyses of gene structures and protein motifs of PHR genes in G. hirsutum

Threugh gene structure analysis of PHR gene family members,—i-t—i-s—feu-&d,\that the gene structure

of GhPHR members in the same subgroup i-sASimilar, and there isAlittle difference in the number of
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exons of GhAPHR members among different subgroups. Except t-h&?\the GhPHR gene of class V

contain 7 exons, the other mest GhPHR genes contain 6 exons (Fig. 2). Furthermore, these PHR
protein sequences were submitted to MEME to discover conserved motifs. The adjacent clades
carried similar motifs. Analysis of the conserved domains of GAPHR gene family members
showed that Myb DNA-binding and Myb CC_LHEQLE were presented in all GhPHR proteins
and other motifs afeAfunctionally unknown motifs (Fig. 2). Among themK motif 4 e*'tsﬁ\in class 1,
class IT and class IV subgroups, motif 6 irsAunique to class II subgroup, motif 10 afeAunique to class
IV subgroup, and motif 5 ﬁunique to two of class I class II subgroup. It is worth noting that the
GhPHR protein motif types of class II are different. Among them, there are eight motifs in
GhPHR15, GhPHR35 and GhPHR2, only six motifs in GhPHRS and GhPHR26, and seven motifs
in other five GhPHR. These special conserved motifs may be the main factors fer—d-i-f-fefeﬁt}\GhPHR

to participate in different biological functions.

Analysis of cis-acting elements in the promoter of GhPHR gene family

In-erderte further clarify the possible regulatory mechanism of GhPHR family genes under abiotic
stress, the promoter sequence was analyzed by using PlantCARE database. The results showed
that 13 types of cis acting elements were—identified, including light responsive, salicylic acid
responsiveness, gibberellin-responsive, MeJA-responsiveness, anaerobic induction, auxin-
responsive, abscisic acid responsiveness and so on (Fig. 3). In terms of composition and quantity,
GhPHR gene containg an average of 18 cis-acting elements, all of which eentain light responsive
elements. Among them, GhPHR6 and GhPHR19 contain the most types of response elements (10
kinds), while GhPHR3, GhPHR5, GhPHR7 and GhPHR40 contain the least cis-acting elements (3
kinds). In terms of element types, 17 genes containing gibberellin-responsive elements inc
GhPHRI1, GhPHRI12, GhPHR34, etc. 31 genes containing anaerobic induction elements include
GhPHRS5, GhPHR19, GhPHR24, etc, and 11 genes containing auxin-responsive elements include
GhPHR16, GhPHR20, GhPHR36 and so on. The results showed that the expression of GhAPHR

gene was not only regulated by light induction, but also played a role in drought, anaerobic and
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other stress resistance. Among them, the promoter regions of GAPHR3, GhPHRS5, GhPHR7 and
GhPHR40 contain, less cis elements, which a-fernly related to light, MeJA, abscisic acid and

anaerobic induction.

Prediction of the regulatory miRNA of PHR gene family

The online software psRNATarget was used to predict and analyze the regulatory miRNAs of PHR
gene. The regulatory combinations of 33 miRNAs and PHR gene were predicted (Table 2). It was
found that 12 miRNAs could regulate 16 PHR genes. A lower expected value indicates that the
miRNA matches the target gene sequence well. Unpaired energy (UPE) is the energy required to
unlock the secondary structure of the target gene miRNA target site. A lower UPE value indicates
that miRNA is more likely to bind or cleave the target gene. This study shows some of the predicted
results with an expected value less than or equal to 5. GAPHR21 and GhPHR32 can be recognized
by miR396 and miR7510a, miR2949 and miR7491 at the same time, respectively, which may be
regulated by these two miRNAs. GhPHR 19 may be regulated by the sequence cleavage of miR482,
GhPHR4 and GhPHR24 may be regulated by the transcriptional inhibition of miR827, and
GhPHRI17 and GhPHR37 may be regulated by the sequence cleavage of miR2948-5p, and
GhPHR23, GhPHR25 and GhPHR40 may be regulated by the transcriptional inhibition of
miR2948-5p. In this study, the regulation modes of different interaction combinations afeAdifferent.
About 2/3 of the regulation modes belong to sequence cleavage and 1/3 belong to transcriptional

inhibition (Table 2).

Tissue expression analysis of GhPHR family genes

The expression of GhAPHR family genes were investigated across different tissues and
developmental stages of upland cotton f-ﬁem,\transcriptome sequencing data(Zhang et al., 2015).
Most of these genes were expressed at varying levels across different tissues and developmental

stages (Fig. 4). It was found that 5 GhAPHR genes were a-l-mes%\expressed in all tissues. 13 GhPHR

werehighly expressed in all tissues, indicating that these genes play an important role in all
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244 morphogenesis of cotton. Among thém, GhPHR5 and GhPHR6 were highly expressed in leaves,
245 while GhPHRI13, GhPHR14, GhPHR26 and GhPHR27 were highly expressed in both roots and
246 leaves. Combined with the cis element structure of GAPHR promoter, it is speculated that they
247 may play an important role in leaf photosynthesis. 8 GhAPHR were expressed across different
248  tissues except fiber developmental stages, and the expression of the other 6 GhPHR genes were
249  low in different tissues. Altogether, the expression profiles of GAPHR gene shows that plays a role
250 in all tissues of cotton, among which GhPHR2, GhPHRS5, GhPHR6 and GhPHR13 have obvious
251  tissue expression specificity.

252

253  Expression pattern of GAPHR gene in roots under low phosphorus stress

254  The expression analysis of 41 GhPHR genes in roots showed that most GhPHR genes w&s/\affected
255 under low phosphorus treatment, except that GhAPHR4, GhPHR7, GhPHRI2, GhPHRI9,
256  GhPHR24, GhPHR33 and GhPHR39 were not detected (Fig. 5). The expression of GhPHRI and
257 GhPHRII decreased a-ﬁeeix low phosphorus stress.—'Phe—e*pfess%eaA of GhPHR3, GhPHRG,
258 GhPHRI17, GhPHRIS8, GhPHR27, GhPHR30 and GhPHR38 increased aftertew—phespherus
259—stress. Among them, expression level of GhPHR17, GhPHR30 and GhPHR3(0 was significantly
260 higher than that before stress treatment. In addition, GAPHR5, GhPHRI3, GhPHRI5 and
261 GhPHR26 maintained at a high expression level. It should be noted that the expression of
262 GhPHRII was significantly lower a—fteij\low phosphorus stress than t-h-&t—e-fi\normal phosphorus
263 treatment, and t-he—e*pfes&xen,\ of GhPHRI8 was significantly higher than that of normal
264  phosphorus treatment (Fig. 5). Further, we verified six GhPHR genes by qRT-PCR (Fig. 6). This
265 provides further evidence that the six putative genes were closely associated with low-phosphorus
266  tolerance.

267

268 Discussi%]

269 Phosphorus deficiency is a major factor limiting crop yield. Plants have evolved a series of

270  morphological, physiological and molecular strategies to adapt to the-symptems—ef phosphorus

Peer] reviewing PDF | (2022:06:74302:0:2:CHECK 13 Jun 2022)


user
Highlight

user
Highlight

user
Insert Text
it

user
Highlight

user
Replace

user
Replace
were 

user
Replace

user
Replace
under 

user
Replace

user
Replace
but that

user
Strikeout

user
Highlight

user
Strikeout

user
Replace

user
Replace
that 

user
Replace

user
Replace
under 

user
Replace

user
Replace
under

user
Highlight

user
Strikeout

user
Note
Should be improved to show how the present results compare with other [recent] similar studies, rather than reviewing the literature as it stands now.

user
Highlight


PeerJ

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

deficiency(Veneklaas et al., 2012), including symbiosis with mycorrhizal fungi, secretion of
organic acids, remodeling of root structure, and improving the expression of phosphorus
transporters(Chiou and Lin, 2011;Sawers et al., 2017). Most of these strategies improve the
utilization efficiency of phosphorus by enhancing the mobility of phosphorus in soil or the
acquisition of phosphorus by roots. In recent years, genes and proteins related to low phosphorus
stress have been found and identified. Among them, PHR is a MYB transcription factor, which
plays an important role in plant response to low phosphorus stress(Bustos et al., 2010). It has been
reported that PHR 1 and PHR1-like genes play a key role in the phosphorus signal regulation
network of plants such as Arabidopsis(Karthikeyan et al., 2007), rice(Guo et al., 2015),
soybeans(Xue et al., 2017), wheat(Chiou and Lin, 2011), maize(Lin et al., 2013;Sawers et al.,
2017) and rape(Ren et al., 2012). In addition, genome-wide transcriptional analysis of Arabidopsis
and rice showed that most phosphorus starvation response genes were induced and activated by
AtPHRI and OsPHR?2 and their homologous genes AtPHL 1, AtPHL2, OsPHR1 and OsPHR3(Guo
et al., 2015;Sun et al., 2016).

Cis-acting elements regulate gene transcription by responding to different external signals, and
then affect plant growth and development(Schmitz et al., 2022). Kt—has—been—found—that
phosphorylation signal transduction and phosphorus starvation response are affected by light,
sugar, plant hormones (auxin, ethylene, cytokinin and gibberellin), as well as oxygen(Karthikeyan
et al., 2007;Lei et al., 2011;Klecker et al., 2014). For example, the expression of AtPHRI is
regulated by light and ethylene, and the response to phosphorus starvation is regulated by the
promoter of AtPHR gene(Liu et al., 2017). In this study, 13 types of cis-acting elements were
identified in the promoter of PHR gene. A large number of light response elements and hormone
elements showed that the expression and regulation of PHR gene were affected by light and
hormone. MiRNAs regulate plant response to low phosphorus by down regulating gene
transcription(Zeng et al., 2014). MiR399 and miR827 are involved in the response of plants to low
phosphorus stress(Pant et al., 2008;Lin et al., 2010). In this study, 12 cotton miRNAs such as

miR396, miR482 and miR827 have the potential to regulate GhPHR genes, which may play a role
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Ithas-beenreported-that-mest PHR genes in maize, rice and sorghum are continuously expressed

in all tissues, indicating that they may play an important role in regulating phosphorus uptake and
transport(Lin et al., 2013;Xu et al., 2018). This study analyzed the tissue expression of cotton PHR
family genes in roots, stem, leaves and so on, and found that there was tissue-specific expression
of cotton PHR family genes, which was similar to that of other crops(Lin et al., 2013). In tissue
expression analysis, it was found that the expression of GAPHR in roots was high, and there were
gibberellin and auxin response elements related to stress resistance in the cis-acting elements of
promoter. In addition, the expression of GhPHR exceeded the expression level before stress after
low phosphorus stress, so it is speculated that GhPHR may be related to the remodeling of root
morphology under abi[:é:] stress.

In conclusion, 128 PHR genes were identified in cotton, whieh 41 in G. hirsutum. There are great
differences in the number of amino acids and isoelectric point characteristics of these GhPHR
genes. In addition, GhAPHR has many cis-acting elements related to light response, bie-l-eg—iea%\and
abiotic stresses in the promoter region. Further analysis of the differential expression of gene
showed that GhPHRI1 and GhPHRIS were significantly highly expressed in roots after; low
phosphorus stress. This study wi-l-l—l-a{y;\a foundation for the subsequent functional study of PHR

gene and the breeding of new cotton varieties.
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451 Table 1 Information of PHR gene family in G. hirsutum.

A subgenome of G. hirsutum A subgenome of G. hirsutum

Gene name  Gene ID Protein length MV(Da) pl Gene name  Gene ID Protein length MV(Da) pl
GhPHRI1 GhM_A01G2399 380 423042 7.76 GhPHR23  GhM_D02G1490 364 404354 6.85
GhPHR2 GhM_A02G0277 303 330752 6.52 GhPHR24  GhM_D04G2388 346 38667.5 9.37
GhPHR3 GhM_A03G1365 364 40578.5 6.85 GhPHR25 GhM_D05G1302 494 543014  6.23
GhPHR4 GhM_A04G1918 346 38712.5 9.34 GhPHR26  GhM_D06G2662 298 32958.0 5.88
GhPHRS GhM_A06G2674 298 32865.9 6.11 GhPHR27  GhM_D06G2663 333 35805.0 8.65
GhPHR6 GhM_A06G2675 333 35829.1  8.65 GhPHR28  GhM_D08G0228 411 46409.8 7.05
GhPHR7 GhM_A08G0240 417 47059.5 6.86 GhPHR29 GhM_D08G1976 279 316182  9.82
GhPHRS GhM_A08G2024 279 31659.3  9.78 GhPHR30 GhM_D08G2683 372 417659  8.19
GhPHR9 GhM_A08G2740 411 46419.1  8.69 GhPHR31 GhM_D08G2924 357 39650.8  8.62
GhPHR10 GhM_A08G2986 348 38638.6 8.77 GhPHR32  GhM_D09G1508 316 36391.6 8.20
GhPHR11  GhM_A09G1611 315 36353.5 8.05 GhPHR33  GhM_D09G1943 267 30049.4  8.20
GhPHR12  GhM_A09G2040 267 29998.3  8.20 GhPHR34  GhM_D10G0017 399 444844 578
GhPHR13  GhM_A09G2485 253 27983.4 597 GhPHR35 GhM_D10G1602 302 33108.2  6.78
GhPHR14  GhM_A10G0026 433 480904 5.50 GhPHR36  GhM_D11G1558 478 52511.1  5.69
GhPHR15 GhM_A10G1517 302 33070.1 6.25 GhPHR37  GhM_D11G3020 448 49301.5 6.20
GhPHR16 GhM_A11G1564 478 526222  5.69 GhPHR38 GhM_D11G3158 387 43073.3 741
GhPHR17 GhM_A11G3088 418 46179.0 5.97 GhPHR39 GhM_D12G2463 236 26531.7 8.43
GhPHR18  GhM_A11G3236 387 431964 6.88 GhPHR40 GhM_D13G0849 356 39260.4 8.15
GhPHR19 GhM_A12G2578 236 267309 8.43 GhPHR41  GhM_DI13G1605 347 38580.7 8.01
GhPHR20 GhM_A13G0904 309 340214  8.07
GhPHR21  GhM_A13G1449 374 412883 8.17
GhPHR22 GhM_A13G1727 347 38480.6  8.33
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Table 2 Bioinformatic analysis of partial miRNAs target sites.

i Target Expectati Sta En Inhibition
miRNA Sequence
genes on rt d mode
miR827a  GhPHR4 5.0 miRN 1 UUAGAUGACCAUCAACAAAC 21 Translatio
A A n
Targe 95 GGAUUGUUGA- 97
t 2 GGUCAUUUGA 1
miR827b  GhPHR4 5.0 miRN 1 UUAGAUGACCAUCAACAAAC 21 Translatio
A A n
Targe 95 GGAUUGUUGA- 97
t 2 GGUCAUUUGA 1
miR827c GhPHR4 5.0 miRN 1 UUAGAUGACCAUCAACAAAC 21 Translatio
A A n
Targe 95 GGAUUGUUGA- 97
t 2 GGUCAUUUGA 1
miR7491 GhPHRI 4.0 miRN 1 UGGGAUCUUCGAGAGGAUU 24 Translatio
1 A GAGCC n
Targe 32 CCAGAAAUCCUUUGAAAGAU 34
t 4 CCUA 7
miR2949b GhPHR1 4.0 miRN 1 UCUUUUGAACUGGAUUUGCC 22 Translatio
2 A GA n
Targe 49 AGUCUGAGUCCAAUUCAAAA 51
t 7 GA 8
miR2949¢  GhPHR1 4.0 miRN 1 UCUUUUGAACUGGAUUUGCC 22 Translatio
2 A GA n
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Figure 1 Phylogenic tree of the PHR family members in G. arboreum, G. raimondii, G.

hirsutum, G. barbadense and Arabidopsis thaliana. The unrooted phylogentic tree was
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constructed using MEGA 11.0 by Neighbor-Joining method. Numbers on branches were bootstrap
portions from 1000 replicates. Percentage bootstrap scores of <50% were hidden. The specific
color indicated different families.

Figure 2 Distributions of gene structure and conserved protein motifs in GhPHR genes. The
red boxes and gray lines represented the exon and intron, respectively. The lengths of the boxes
and lines were scaled based on the length of the genes. Conserved motifs in the GhPHR proteins
are indicated by colored boxes.

Figure 3 Cis-acting element analysis of PHR family members in G. hirsutum.

Figure 4 Expression profiles of GhPHR transcription factor genes in different tissues. The
color scale of heat map indicates the relative expression levels where blue indicates low and red
indicates high.

Figure S Expression pattern of GhPHR gene in roots under low phosphorus stress. The color
scale of heat map indicates the relative expression levels where blue indicates low and red indicates

high.
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Figure 1

Figure 1

Phylogenic tree of the PHR family members in G. arboreum, G. raimondii, G.

hirsutum, G. barbadense and Arabidopsis thaliana.
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Figure 2

Figure 2

Distributions of gene structure and conserved protein motifs in GhPHR genes.
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Figure 3

Figure 3

Cis-acting element analysis of PHR family members in G. hirsutum.
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Figure 4

Figure 4

Expression profiles of GhPHR transcription factor genes in different tissues.
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Figure 5

Figure 5

Expression pattern of GhPHR gene in roots under low phosphorus stress.
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Figure 6

Figure 6

Relative expression levels of six representative GhPHR gene by gPCR.
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