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ABSTRACT
The main purpose of this study was to study the changes in growth, root system,
and tissue anatomical structure of Pinus sylvestris var. mongolica under soil drought
conditions. In this study, the growth indexes and photosynthesis of P. sylvestris
var. mongolica seedlings under soil drought stress were studied by pot cultivation.
Continuous pot water control experiment of the indoor culture of P. sylvestris var.
mongolica was carried out, ensuring that the soil water content of each treatment
reached 80%, 40%, and 20%of the fieldmoisture capacity as control, moderate drought
and severe drought, respectively. The submicroscopic structures of the needles and
roots were observed using a scanning electron microscope and a transmission electron
microscope. The response of soil roots to drought stress was studied by root scanning.
Moderate drought stress increased needle stomatal density, while under severe drought
stress, stomatal density decreased. At the same time, the total number of root tips,
total root length, root surface area, and root volume of seedlings decreased with the
deepening of the drought. Furthermore, moderate drought and severe drought stress
significantly reduced the chlorophyll a and chlorophyll b content in P. sylvestris var.
mongolica seedlings compared to the control group. Theneedle cells were deformed and
damaged, and chloroplasts and mitochondria were damaged, gradually disintegrated,
and the number of osmiophiles increased. There was also an increase in nuclear
vacuolation.

Subjects Agricultural Science, Plant Science, Soil Science
Keywords Physiological response, Drought tolerance, Morphological structure, Growing status

INTRODUCTION
Drought is a major environmental factor that restricts plant growth and development
and even affects the distribution pattern of the world’s forests (Sherwood et al., 2013).
There will be more severe and frequent droughts in many parts of the world as a result
of climate change (IPCC, 2013; Trenberth et al., 2014; Okunlola et al., 2017). Drought is a
climate disaster that occurs under most climatic conditions and can have considerable
economic, social, and environmental impacts. In recent decades, drought caused by rapid
warming has deeply affected the global forest ecosystem (Allen, Macalady & Chenchouni,
2010; Vurukonda et al., 2016; Nolan et al., 2018; Anderegg William et al., 2019).
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Pinus sylvestris var. mongolica is an important geographical variety of P. sylvestris in
eastern Asia. It has the biological characteristics of strong resistance to stress, rapid growth,
and rapid lumber. Therefore, due to these properties, it has become one of the main
afforestation tree species for vegetation restoration in mountainous, grassland and sandy
land in arid and semi-arid areas of northern China. This plant species plays an important
role in ecological construction and environmental restoration, such as soil and water
conservation, wind prevention, and sand fixation (Zhu et al., 2003; Song et al., 2018; Guo
et al., 2019; Kong et al., 2019). However, since the 1990s, the artificial sand fixing pure
forest of P. sylvestris var. mongolica has shown a recession phenomenon. The decline was
manifested mainly in withered and yellow branches, reduced growth, the occurrence
of diseases and pests, leading to the death of the whole plant and could not be natural
regeneration (Meng et al., 2010; Song, Zhu & Zheng, 2017). Thus, considering the recession
mechanism of P. sylvestris var.mongolica, the current study focuses mainly on water factors
(Song, Zhu & Kang, 2013), and it was found that soil water and drought stress are the main
factors limiting its development and growth in sandy soil (Song, Zhu & Yan, 2015).

Drought stress hasmany effects on plant growth andmetabolism. Initially, drought stress
directly affects the germination of plant seeds and reduces the survival rate of seedlings
(Shi, Ding & Yuan, 2004; Wei, 2005). Secondly, drought stress directly leads to a water
deficit in plant cells, making them unable to divide and normally increase, thus inhibiting
plant growth and development (Long & Deng, 2019). The study found that severe drought
caused obvious drought damage symptoms to forest trees in northern Finland (Muukkonen
et al., 2015). Drought also restricted the growth and development of Scots pine trees (Zang,
Pretzsch & Rothe, 2012) and seriously reduced the radial growth of Picea crassifolia, Pinus
tabuliformis, Larix decidua Mill. and Picea meyeri (Vitasse et al., 2019; Gao, Yang & Qin,
2021; Xue et al., 2022a; Xue et al., 2022b). At the same time, previous studies have shown
that similar larch species (such as Larix principis-rupprechtiiMayr) are at high risk of growth
stagnation in large central and northern China areas during extreme drought (Zhang et al.,
2021).

The root structure determines the efficiency of water absorption and transport of
plants, which can help alleviate the damage caused by drought stress. Under drought
stress, the root tip first perceives the signal and transmits it to the aboveground part (Jia
& Zhang, 2008; Yin, Wang & Qi, 2021). After drought, phenotypic characteristics such as
total surface area, total volume, average diameter, total length, and biomass of plant roots
change (Zhang & Sun, 2016; Zhang et al., 2019). In addition, the morphology and number
of mitochondria and other organelles in root cells will also change (Liu, Yue & Chen,
2010). Under mild drought, plants can improve their tolerance to drought by increasing
the length of the main roots and the number of lateral roots and root hairs (Salazar-Henao,
Vélez-Bermúdez & Schmidt, 2016). However, with the deepening of drought, plant root
respiration is reduced, resulting in an insufficient supply of ATP (adenosine triphosphate)
and a significant decrease in root activity that leads to slowing or even stops the growth
(Kim, Chae & Choi, 2020; Nikolova et al., 2020). The water balance in plants also alters,
causing irreversible damage to the plants (Ma et al., 2012; Isaji et al., 2018). Some studies
found that under short-term drought stress, Robinia pseudoacacia absorbs more water by
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promoting the relative growth of fine roots. However, under long-term drought stress, the
root growth of Robinia pseudoacacia is inhibited (Gao, Wang & Zhang, 2010). At the same
time, moderate drought treatment will increase the root biomass of Platycladus orientalis
and Pinus tabulaeformiswhile decreasing under severe drought stress (Chen & Zhao, 2011).
And different degrees of water loss also affect the root water content and root activity
of Larix principis-rupprechtii and Pinus tabuliformis (Chen, Gao & Shi, 2017). Similarly,
changes in root microstructure can also reflect the adaptability of plants to drought stress.
The structure and properties of the root cortical tissue, the diameter, and the number of
xylem vessels changed according to the degree of drought stress (Konijnendijk & Randrup,
2002). Furthermore, some studies have also found that drought stress reduced the average
root diameter and the diameter of the root vessel (Wang, Zhang & Liu, 2005; Lee et al.,
2016; Wang et al., 2018). Previous studies showed that long-term drought stress reduced
the root length and root volume of Pinus sylvestris var. mongolica, and summer drought
would limit the establishment of the Scot pine (Pinus sylvestris L.) forest by reducing growth
and increasing seedling mortality (Castro et al., 2005; Qian et al., 2021).

The leaf structure is the most intuitive embodiment of the adaptability of plants to
arid habitats. It determines the functions of plant carbon assimilation, water loss, and
retention and can also be used to evaluate biomass accumulation capacity (Marron,
Dillen & Ceulemans, 2007). To adapt to drought, plant needles tend to increase mesophyll
palisade tissue and the number of cell layers and reduce spongy tissue, cell volume, and
cell space (Chartzoulakis et al., 2002; Burling et al., 2013; Scoffoni et al., 2014; Bhusal et al.,
2020). In addition, the self-regulation ability of the stomata in the needles can also reflect
the drought resistance of plants to some extent (Guo &Wu, 2015). Plants resistant to
drought can regulate the stomata to a greater degree to reduce water loss (Fiorin, 2016).
Under drought stress, the relative water content of plants decreases, and the stomatal
aperture decreases or even closes to reduce the water loss from needles, which facilitates
the recovery of leaf water potential (Casson & Hetherington, 2009; Wang et al., 2010).
Similarly, the reduction of stomatal conductance or stomatal closure of plant needles in
an arid environment affects the absorption of CO2 and reduces the photosynthetic rate
(Reddy, Chaitanya & Vivekanandan, 2004; Pagter, Bragato & Brix, 2005). In the context
of chlorophyll, the main pigment responsible for photosynthesis, drought stress can
cause chlorophyll decomposition and decrease chlorophyll content. It has been shown that
drought stress causes chlorophyll decomposition and chlorophyll content decreases, leading
to changes in photosynthetic function (Zhao et al., 2006; Jafari, Hashemi Garmdareh &
Azadegan, 2019).

To reveal the decline mechanism of P. sylvestris var. mongolica, explaining the internal
mechanism and the water influence mechanism on the plantation are key factors and
provide a theoretical basis for the management of P. sylvestris var. mongolica plantation
(Song, Zhu & Zheng, 2017). In this study, the potted water control experiments of
P. sylvestris var. mongolica seedlings were conducted, and the growth characteristics
of P. sylvestris var. mongolica seedlings were clarified by measuring changes in growth
indexes, photosynthetic pigment indexes, root indexes, and submicroscopic structure
under different levels of drought stress. The physiological mechanism of drought resistance
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in P. sylvestris var. mongolica seedlings was briefly explained, which provided a theoretical
basis and practical reference for further study of the physiological mechanism under the
drought-induced decline of P. sylvestris var. mongolica plantation.

MATERIAL AND METHODS
Plant materials and experimental design
The seeds of P. sylvestris var.mongolicawere collected fromZhanggutai Experimental Forest
Farm, Fuxin City, Liaoning Province. The seeds used in the experiment were disinfected
and sterilized with potassium permanganate (0.5%, v/v) for 30 min, followed by washing
with distilled water three times. In addition, seeds were wrapped with sterile gauze for
moisturizing and kept under 25 ◦C for germination, sprayed with sterile water every day
until growth. Seeds were transferred to plastic pots filled with sterilized vermiculite: soil:
sand mixture (1:2:1) and kept under the corresponding controlled greenhouse conditions
(Yin, Wang & Qi, 2021). After the seedlings were unearthed, fix the seedlings at 8 in each
pot. Furthermore, three months after emergence, 30 pots of seedlings with stable and
similar growth were selected and divided into three groups containing 10 pots in each
group. In this experiment, three different treatments of drought were adopted; control
(80% of field water capacity; CK), moderate drought (40% of field water capacity; MD),
and heavy drought (20% of field water capacity; HD) (Yan et al., 2003; Zhu, Kang & Li,
2006; Shan et al., 2007). After emergence, each group of P. sylvestris var.mongolica seedlings
was subjected to the corresponding drought stress treatment. The soil water content was
maintained by weighing and replenishing water, i.e., each pot was weighed every day to
supplement the lost water to maintain the stability of the corresponding soil water content.

Growth of seedlings
In the process of seedling drought treatment, the height and ground diameter of five
random P. sylvestris var. mongolica seedlings per treatment were measured with a ruler
and a Vernier caliper and recorded every week. After two months of drought treatment,
the seedlings were dug out and cleaned with water. The fresh weight of the primary roots,
lateral roots, stems, and needles of the seedlings was weighed, followed by drying in the
oven to a constant weight. The dry weight of each part was measured using balance.

Stomatal density of needles
The needles of P. sylvestris var. mongolica treated with different treatments were sliced,
and their slides were observed and photographed under the electron scanning microscope
(Hitachi s-3400n). The number of pores was observed in five visual fields, and the number
of pores in each visual field was counted using Image J software, and the density of the
pores was calculated.

Chlorophyll content in seedlings
The chlorophyll content of the seedlings was measured as described by William & Paul
(1985). Fresh leaf samples were cleaned with deionized water. After the surface pollution
was removed, 0.5 g of needles were added to 10 ml of acetone for grinding. In addition,
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the samples were centrifuged at 10,000 rpm for 5 min and the supernatant was collected,
followed by spectrophotometer analysis at 663 nm and 645 nm. The experiment was
repeated three times.

Root morphological indexes of seedlings
The entire root system was carefully separated from the soil, cleaned with tap water and
deionized water, and then scanned with a root scanner (Epson Expression 1640XL scanner,
Epson, Quebec, Canada). The length, surface area, volume, and the number of roots at the
tip were analyzed by WinRhizo Reg software.

Microscopic observation of seedlings
Fresh samples of roots, stems, and needles from P. sylvestris var. mongolica seedlings were
rinsed and cut into small samples of one cm, then immediately fixed in 4% glutaraldehyde
solution. The samples were put under vacuum suction until completely immersed in the
fixative and kept at 4 ◦C overnight. Furthermore, the samples were rinsed with phosphate
buffer (0.1M, pH 6.8) 3–5 times, 10-15 min each time. The samples were then fixed in
1% osmic acid for 2 h and then transferred to phosphate buffer (0.1 M, pH 6.8) for 1 h.
A gradient of acetone solution (30%, 50%, 70%, 80%, 90%, and 100% v/v) was used to
dehydrate twice for 15–30min each time. The samples were then treated twice with isoamyl
acetate for 30 min and 20 min, respectively, and shaken to replace acetone in the sample.
Furthermore, the samples were collected in a sample cage and placed in a critical point
dryer (HCP-2, Hitachi, Tokyo, Japan) for drying. Finally, the stick and spray gold were
performed with the JSM-6360LV scanning electron microscope (SEM) observation.

In each treatment, three groups of fresh needle samples of P. sylvestris var. mongolica
seedlings were taken and rinsed. Then they were prefixed with 2.5% glutaraldehyde
overnight at 4 ◦C. After being washed three times with phosphate buffer saline for 15 min
each time, 1% osmic acid fixative was used for fixation and was kept for 2 h. Furthermore,
after being fully washed with PBS and ethanol (30%, 50%, 70%, 90%, and 100%), samples
were successively used for dehydration. Then the ethanol was replaced with 25%, 50%,
75%, and 100% propylene oxide (dissolved in ethanol). A gradient of resin embedding
agent (10%, 30%, 70%, and 100%, dissolved in propylene oxide) was used for penetration
and, finally, 100% resin embedding agent was used to polymerize at 70 ◦C for 12 h
(Wei, Wang & Zhang, 2010). A Leica EM UC slicer was used to slice ultrathin sections, and
uranyl acetate-lead citrate double staining was performed. Finally, the H-7650 transmission
electron microscope (TEM) was used to observe and photograph the samples. A total of
nine slices were observed from three samples in each group.

Statistical analysis
SPSS software was used for the one-way analysis of variance (ANOVA). To illustrate the
graph, Excel 2010 and GraphPad Prism 7.0 software was used for chart making.
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Figure 1 Growth of P. sylvestris var.mongolica under different drought conditions. CK, non-drought
stress; MD, moderate drought; HD, heavy drought.

Full-size DOI: 10.7717/peerj.14578/fig-1

RESULTS
Analysis of plant growth parameters
The growth of P. sylvestris var. mongolica seedlings under drought treatment was inhibited
both during and after the experiment (Fig. 1). It is clear from Fig. 2 that under different
degrees of drought stress, the difference in seedling height and ground diameter between
CK and MD as well as HD gradually increased with time. During the fifth week of drought
treatment, the seedling height and ground diameter in the CK increased by 42.96% and
26.7%, respectively, compared to those in the initial state. Similarly, the seedling height
and ground diameter ratio of MD treatment increased by 27.18% and 15.35%, respectively;
however, in the HD treatment, these parameters increased only by 21.48% and 9.19%,
respectively. At the end of the drought treatment, which was the eighth week, the seedling
height and ground diameter in the CK increased by 65.93% and 37.36%, respectively,
compared to the initial value. These parameters increased by 43.9% and 22.68% in MD
treatment, respectively. However, in HD treatment, they increased only by 30.28% and
12.56%, respectively (Figs. 2A and 2B). These findings indicate that drought inhibited the
growth of plant height and ground diameter and the degree of inhibition of seedling height
and ground diameter increased with the increase in water deficit and time.

Biomass analysis of different tissue
The effects of various degrees of drought stress on the biomass of P. sylvestris var.mongolica
seedlings are shown in Figs. 3 and 4. For MD and HD-treated seedlings, the fresh weight
of each part was significantly different from CK, which showed that the fresh weight of the
primary root, the lateral root, the stem, and the leaf decreased significantly after drought
treatment (P < 0.05). Compared to CK, the primary root and lateral root of P. sylvestris var.
mongolica seedlings decreased by 39.29% and 33.75% under MD treatment, 60.71%, and
57.50% under HD treatment, respectively (Fig. 3A). The decrease in the stem was 25% and
40.91% under MD treatment, and HD treatment, respectively (Fig. 3B), and leaf decreased
by 13.57% and 51.43% under MD treatment and HD treatment, respectively (Fig. 3C). In
case of the dry weight of each tissue after drought treatment, the lateral roots of the plant
both under MD treatment and HD treatment were significantly lower than CK, while, for
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Figure 2 Changes in the seedling height and ground diameter of P. sylvestris var.mongolica under dif-
ferent drought stress; ((A) Seedlings height; (B) Ground diameter; CK, non-drought stress; MD, mod-
erate drought; HD, heavy drought). The lowercase letters indicate significant (p < 0.05) differences be-
tween different treatments at the same time.

Full-size DOI: 10.7717/peerj.14578/fig-2

Figure 3 Fresh weight of each tissue of P. sylvestris var.mongolica seedlings after drought stress
treatment. (A) Root; (B) Stem; (C) Leaves; CK, non-drought stress; MD, moderate drought; HD, heavy
drought. The lowercase letters indicate significant (p < 0.05) differences among different treatment times
subjected to the same species. Error bars are±SD (n= 6).

Full-size DOI: 10.7717/peerj.14578/fig-3

primary roots, stems, and needles, only under HD treatment had significant differences
compared to CK (P < 0.05). The dry weights of the roots (primary roots and lateral roots),
stems, and needles of the seedlings were significantly decreased under HD treatment. There
was a decrease of 18.18% and 13.64% under MD treatment and 36.36% and 27.27% under
HD treatment, respectively, in the dry weight of the primary root and the lateral root (Fig.
4A). Furthermore, the dry weight of the stem decreased by 14.29% and 21.43% compared
to CK under MD treatment and HD treatment (Fig. 4B), and the leaf decreased by 8.33%
and 31.25% compared to CK under MD treatment and HD treatment, respectively (Fig.
4C). This indicated that MD and HD treatment reduced the dry and fresh weight of plants
and severely inhibited the growth and accumulation of dry matter in seedlings.

Analysis of photosynthetic pigment content
Under various degrees of drought stress, the contents of chlorophyll a and chlorophyll b in
the needles of P. sylvestris var. The mongolica seedlings showed a downward trend (Fig. 5).
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Figure 4 Dry weight of each tissue of P. sylvestris var.mongolica seedlings after drought stress treatment. (A) Root; (B) Stem; (C) Leaves; CK,
non-drought stress; MD, moderate drought; HD, heavy drought. The lowercase letters indicate significant (p < 0.05) differences among different
treatment times subjected to the same species. Error bars are± SD (n= 6).

Full-size DOI: 10.7717/peerj.14578/fig-4

Figure 5 Chlorophyll content of P. sylvestris var.mongolica seedlings after different drought stress treatments. (A) Chla; (B) Chlb; (C) Chla/b;
CK, non-drought stress; MD, moderate drought; HD, heavy drought. The lowercase letters indicate significant (p < 0.05) differences among differ-
ent treatment times subjected to the same species. Error bars are±SD (n= 6).

Full-size DOI: 10.7717/peerj.14578/fig-5

The chlorophyll a and chlorophyll b content in MD or HD treatment was significantly
different from CK (P < 0.05). Under MD and HD treatment, chlorophyll a decreased
by 18.31% and 61.11%, respectively, compared to CK (Fig. 5A), while chlorophyll b
in seedlings decreased by 17.70% and 55.37%, respectively, in MD and HD (Fig. 5B).
Furthermore, the chlorophyll a/b value under MD treatment decreased compared to
CK, but there was no significant difference (P > 0.05). There was a significant difference
between HD and CK (P < 0.05) (Fig. 5C).

Analysis of stomatal density
The stomatal density of P. sylvestris var. mongolica needles under different drought stresses
is shown in Fig. 6. Compared to CK, MD treatment showed an increasing trend. The
stomatal density increased by 4.09% under MD treatment and decreased by 3.02% under
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Figure 6 Change of stomatal density in leaves of P. sylvestris var.mongolica under different drought
stress. CK, non-drought stress; MD, moderate drought; HD, heavy drought. The lowercase letters indi-
cate the significant (p < 0.05) differences among different treatment times subjected to the same species.
Error bars are±SD (n= 5).

Full-size DOI: 10.7717/peerj.14578/fig-6

HD treatment compared to CK. However, these alterations were not prominent, and there
were no significant differences in MD and HD treatment compared to CK by analysis of
variance (P > 0.05).

Analysis of root structure of seedlings
The root scanning diagram of P. sylvestris var.mongolica seedlings under various degrees of
drought are shown in Fig. 7. The measurements of root growth parameters under different
drought treatments are shown in Table 1. It is clear from Fig. 7 and Table 1 that HD
treatment significantly reduced total root length, surface area, root volume, average root
diameter, total root length per unit of soil volume (LenPerVol), root tips number, root
fork number, and crossing number of P. sylvestris var. mongolica (P < 0.05). Similarly,
MD treatment significantly reduced root surface area, root volume, total root length per
unit of soil volume, root fork number, and crossing number of P. sylvestris var. mongolica
(P < 0.05). Compared to CK, the total root length of MD and HD treatment decreased
by 9.79% and 27.88%, respectively; the root surface area decreased by 6.62% and 8.89%,
respectively; the root volume decreased by 13.07% and 38.34%, respectively; the total root
length per unit of soil volume decreased by 14.10% and 18.42%, respectively; the number
of root tips decreased by 8.40% and 18.42%, respectively; the root forks number decreased
by 15.07% and 22.87%, respectively, and the number of crossings decreased by 18.28%
and 29.66%, respectively.
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Figure 7 Effects of drought stress on the root structure of P. sylvestris var.mongolica seedlings.
Full-size DOI: 10.7717/peerj.14578/fig-7

Analysis of the microstructure under the scanning electron microscope
The microscopic study of plant needles can reveal the effect of drought stress more
intuitively on the morphology of P. sylvestris var. mongolica needles. Adaptive changes
in leaf structural characteristics are an important manifestation of the plant response
to drought. With increasing drought stress, starch grains in the needles of P. sylvestris
var. mongolica gradually decreased (Figs. 8A–8C); the elevated drought stress forced the
stomatal opening to decrease (Figs. 8G–8I). Furthermore, with increasing drought stress,
the epidermis of the needles appeared to fold and with distortion (Figs. 8D–8F). In the
CK, the cross-sectional shape of the needle showed a relatively full state as a whole, and the
structure of each part was clear. MD treatment caused a slight shrinkage of transmission
tissue cells, and the needles were deformed. On the other hand, under HD treatment,
the needles were severely shrunk and deformed, the shrinkage of the transmission tissue
cells intensified, and the area decreased significantly (Figs. 8P–8R). Simultaneously, with
increasing drought stress, the tracheid diameter of the root of P. sylvestris var. mongolica
shrinks and gets injured (Figs. 8J–8L). Similarly, the tracheid diameter of the stem becomes
smaller and damaged (Figs. 8M–8O).

Microscopic tissue analysis under transmission electron microscopy
To further observe the ultrastructure of P. sylvestris var. mongolica needle cells, the
submicroscopic structure of the needle cells was analyzed using a transmission electron
microscope (Fig. 9). It is clear from Fig. 9 that under CK, the mesophyll cells of P. sylvestris
var. mongolica were filled and closely arranged; the morphology of mesophyll cells was
normal (Fig. 9G); the chloroplast structure in the cells was spindle-shaped; the chloroplasts
of the cells were attached to the inner wall of the mesophyll cells in a spindle shape and
were arranged neatly; and starch granules, as well as a small amount of osmiophilic globule
on the chloroplasts, can be observed (Fig. 9A). The distribution of the chloroplast stroma
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Table 1 Root system index of P. sylvestris var.mongolica seedlings after different drought stress treatments. (LenPerVol: total root length per unit soil volume).

Drought
intensity
Treatments
(T)

Length (cm) Surface area
(cm2)

Root
volume
(cm3)

Average
diameter
(mm)

LenPerVol
(cm/m3)

Tips Forks Crossings

CK 898.19± 11.72a 575.41± 9.18a 34.06± 0.88a 2.88± 0.3a 888.85± 17.17a 4,332± 105a 9,324± 250a 1,116± 64a
MD 810.17± 30.26a 537.33± 7.81b 29.61± 0.85b 2.53± 0.12a 763.50± 27.32b 3,968± 126a 7,919± 186b 912± 36b
HD 647.75± 35.62b 524.27± 2.03b 21± 0.32c 1.90± 0.18b 677.42± 16.08b 3,534± 160b 7,192± 121b 785± 14b

Notes.
The lowercase letters indicate the significant (p< 0.05) differences among different treatment times subjected to the same species. Error bars are±SD (n= 3).
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Figure 8 SEM observation of P. sylvestris var.mongolica under different drought stress (CK, MD, and
HD in each column from left to right). (A–C) starch granule morphology in needles; (D–F) needle epi-
dermis morphology; (G–I) stomatal morphology of needles; (J–L) transverse anatomical structure of root;
(M–O) transverse anatomical structure of stem; (P–R) anatomical structure of needle transverse section).

Full-size DOI: 10.7717/peerj.14578/fig-8
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was compact, the chloroplast bilayer membrane was visible, and the thylakoid lamellar
structure was developed, clearly visible, and arranged in parallel (Fig. 9D). The structure of
mitochondria in cells was complete and abundant, and the matrix was evenly distributed
in the mitochondria. The inner and outer membranes of the mitochondria were intact, and
the cristae of the mitochondria could also obviously be observed (Fig. 9M). The nuclear
structure was complete, and the nucleoplasm compact (Fig. 9J). Under MD treatment, the
structure of the chloroplast bilayer membrane was destroyed, and the thylakoid lamella
was reduced and blurred. Starch granules were still observed in the chloroplasts, and the
number of osmiophilic globules increased (Figs. 9B, 9E and 9H). The outer membrane of
the mitochondria showed that the cristae of the mitochondria began to expand and that
the whole mitochondria swelled and decreased in number (Fig. 9N). The nucleoplasm
of the nucleus was loose (Fig. 9K). Furthermore, under HD treatment, the chloroplast
bilayer membrane in the needle cells of P. sylvestris var.mongolica was destroyed, the starch
granules wrinkled, and the outer wall blurred. The osmiophilic globule can no longer be
identified, the chloroplast stroma flows out, the thylakoid disintegrates, and the lamellar
structure of the thylakoid cannot be observed at all (Figs. 9C, 9F and 9I). Themitochondrial
bilayer membrane was severely damaged, vacuolized, the mitochondrial matrix flowed out,
and the cristae in the mitochondria had disappeared (Fig. 9O). The nuclear cytoplasm of
the nucleus was severely vacuolated (Fig. 9L).

DISCUSSION
Water is a key limiting factor for seed germination and seedling growth and plant survival
(Han, Cheng & Li, 2016). Drought stress is one of the common stresses in plant growth,
and its impact on plants has been widely concerned (Yang, Miao & Xu, 2007).

Drought stress has many adverse effects on plants. Severe drought will even lead to the
death of plants (Zhang et al., 2018). The effect of drought on the plant growth index is the
most intuitive expression affected by drought stress. In this study, among the seedlings of
CK, P. sylvestris var.mongolica seedlings have a higher degree of increase in plant height and
ground diameter, indicating that under relatively good water conditions, plants maintained
a high photosynthetic rate and thus ensured a relatively high carbon acquisition capacity
(Fig. 10). However, under moderate or severe drought conditions, the photosynthetic rate,
transpiration rate, and water use efficiency of plants decreased, which reduced the carbon
acquisition ability of plants and inhibited the growth of plant height and ground diameter
(Zhu et al., 2005). Overall, the growth of plant height and ground diameter in P. sylvestris
var. mongolica seedlings gradually slow down with increasing drought stress, indicating
that drought stress limits seedling growth, and these findings are consistent with previous
research studies in Larix principis-rupprechtii, Pinus tabuliformis, Picea meyeri, and some
other plant species (He, 2001; Xu, Guo & Xu, 2010; Xue et al., 2022a;Wang et al., 2022; Xue
et al., 2022b). This also demonstrates that when plants are faced with drought stress, they
normally limit their growth rate to reduce water consumption and maintain plant survival
(Wu & Li, 2014; Poorter, Niklas & Reich, 2012). The dry weight and the fresh weight of the
plant tissues declined as the drought deepened, especially under the condition of severe
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Figure 9 Ultrastructure of P. sylvestris var.mongolica needles under different drought stress (CK, MD,
and HD in each column from left to right). Chl, chloroplast; CM, chloroplast membrane; Th, thylakoid;
CW, cell wall; N, nucleus; SG, starch.

Full-size DOI: 10.7717/peerj.14578/fig-9

drought, and this effect was more pronounced. These results were consistent with the
response of Larix gmelinii and many other plant seedlings to drought stress (Wang et al.,
2020; Nadia et al., 2021; Park et al., 2021). In terms of biomass measured after drought
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Figure 10 Effects of drought stress on growth of P. sylvestris var. mongolica.
Full-size DOI: 10.7717/peerj.14578/fig-10

stress, the root system was the first to be subjected to drought stress due to the different
environments where the aboveground part and underground parts of the plant are located,
and their ecological indicators, as well as their physiological and biochemical functions,
directly affect the drought resistance of the plant. In an arid environment, the growth
and development of plants, as well as their adaptability to the external environment, can
be reflected by the structural characteristics of the roots (Pan, Zhang & Shao, 2017). The
characteristic indexes of root growth of this study suggest that drought stress inhibited
the indexes such as total root length, root surface area, root volume, total root length per
unit of soil volume, bifurcation number, and crossing number (Fig. 10). Especially under
severe drought, these indexes were significantly different from those of the control group.
A reduction in total root length was observed, which was consistent with the results of
tall fescue (Wang, Bughrara & Nelson, 2008). However, in moderate drought, there was no
significant difference between total root length and root tip number with the control group,
indicating that P. sylvestris var.mongolica can resist certain drought stress, but beyond that,
changes appear in its morphological structure due to drought stress, thus affecting some
physiological and biochemical functions (Fig. 10).

Photosynthesis is essential for the growth and development of green plants, and
chlorophyll is a primary substance involved in photosynthesis and the main pigment
that drives photosynthesis. Therefore, to some extent, the rate of plant photosynthesis
can be reflected by the chlorophyll content (Huang et al., 2012; Li et al., 2016; Zheng et al.,
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2018; Zhang et al., 2018). Chlorophylls a and b are the most common pigments involved
in photosynthesis. In this process, chlorophyll a is mainly responsible for the conversion
of light energy to chemical energy. In addition to absorption and conversion, chlorophyll
b also has the responsibility of adjusting the size of the antenna for the photosynthetic
mechanism (LaRoche et al., 1996; Green & Dumford, 1996; Barber, Morris & Büchel, 2000).
When plants are subjected to drought or low-temperature stress, chlorophyll a decomposes
faster than chlorophyll b, and the content ratio of both pigments changes, which can also
reflect the rate of photosynthesis (Yamasato et al., 2005). Therefore, as the main participant
in photosynthesis, the determination of its content is an importantmeans to understand the
rate of photosynthesis under drought stress (Fig. 10). The results of this study showed that
the chlorophyll a and chlorophyll b content of P. sylvestris var.mongolica needles decreased
significantly under drought stress. However, under severe drought stress, compared to
moderate stress, the contents of chlorophyll a and chlorophyll b in the needles of P.
sylvestris var. mongolica decreased greatly, which may be the compensation effect under
moderate drought, or it may be because the plants were in the growing season and contain
part of the undivided chlorophyll, so the reduction in chlorophyll content was relatively
small. This conclusion is consistent with previous experimental studies on Mongolian
pine, Scots pine, and some other plants (Zlobin et al., 2019; Xia et al., 2019; Zhang et al.,
2020; Qian et al., 2021). Additionally, chlorophyll a and chlorophyll b of P. sylvestris var.
mongolica seedlings gradually decreased with the aggravation of drought stress. In severe
drought, the chlorophyll content was significantly different from that of the control group.
Previous studies have shown that there is a negative correlation between chlorophyll a/b
change and drought resistance (Zhao et al., 2019). This indicates the drought resistance
of P. sylvestris var. mongolica plants gradually weakened under drought stress. The plant
needles remain with the most contact with the outside world. In addition to serving as
a crucial location for photosynthetic physiological processes, needles are not only an
important part to ensure the normal growth and development of plants but are also a
sensitive part of drought stress. Their morphological and structural changes are closely
related to plant drought resistance (Li et al., 2013; Ren et al., 2015; Nina & Meruert, 2017).
The size, opening, and density of the stomata on the needles can affect the rate of plant
transpiration. Among them, stomatal density significantly affects plant drought tolerance,
water use efficiency, and stomatal conductance. Increased stomatal density is also a typical
feature of the plant response to drought stress (Fig. 10). A small and dense stoma will
reduce transpiration and improve plant resistance to drought stress (Ferris et al., 1996;
Drake, Froend & Franks, 2013; Guo &Wu, 2018). Furthermore, under mild drought, plant
leaf cells elongate slowly, and leaf growth slows, decreasing leaf area and increasing stomatal
density. In case of severe drought, the stomatal development of plant needles becomes slow,
manifested in the decrease in stomatal density (Sam et al., 2000; Xu, Zou & Zhao, 2003; Xu
& Zhou, 2008; Fraser et al., 2009). The findings of this study were also consistent with
previous studies, as described. Furthermore, in moderate drought, the stomatal density
increases, which may be due to the decrease in individual and leaf area and the increase
in the number of stomata per unit area, resulting in the increase in the stomatal density
(Xie, Song & Cao, 2015). This is consistent with previous research results by Larix kaempferi
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(Bhusal et al., 2020). The larger stomatal density is conducive to making full use of available
water for photosynthesis and better control of respiration in a short time, contributes to
heat dissipation, and reduces the degeneration of chloroplasts and protoplasts caused by
drought. Under severe drought stress, the stomatal density decreases, which may be due to
the needles being seriously affected, which inhibits the occurrence of stomata, significantly
reduces the number of stomata, and finally shows the decrease of stomatal density (Wang,
Ren & Lou, 1992).

The study of leaf microstructure is helpful in understanding the response of plants to
drought stress and provides the basis for further research. The results of the scanning
electron microscope showed that the size of stomata and opening of the needles were
significantly reduced, which was consistent with the results of some previous studies
on Cryptomeria japonica, Larix kaempferi and some other species of forest trees (Bhusal
et al., 2020; Kenzo et al., 2021; Nadia et al., 2021). Furthermore, this study found that
the tracheid diameter and tracheid wall thickness of roots, stems, and needles gradually
decreased with the deepening of the drought. Previous studies have demonstrated that
the tracheid diameter is positively correlated with water conveyance efficiency (Sperry,
Hacke & Pittermann, 2006; Schuldt et al., 2016). Furthermore, the thickness of the root
tracheids was closely related to embolism resistance. The thickening of the wall of the
root tracheids can strengthen the fragile pipes of the roots and improve the mechanical
strength of the roots, to improve the embolism resistance of roots (Fichot et al., 2010). This
phenomenon shows that when subjected to drought stress, the water-carrying capacity and
anti-embolism capacity of plants are inhibited. Meanwhile, in this study, with increasing
degree of stress, phloem cells become denser and narrower, which is not conducive to the
transportation and distribution of water and organic matter in plants, leading to plant
growth restriction or even death due to the decline or unreasonable distribution of water,
sugar and other organic matter. Transport tissue is primarily responsible for material
transport between mesophyll cells and vascular bundles (Qi, 2006). Therefore, dehydration
and deformation of cells in seedlings will also lead to the obstruction of material exchange
between the two parts of tissues, which is not conducive to stable growth and metabolic
activities of plants and could be one of the reasons why drought restricts the growth of P.
sylvestris var. mongolica. Through the study of Picea mariana and Abies balsamea, it was
found that the tracheid lumen size of trees was smaller and the cell wall was thicker under
drought conditions, which was consistent with the results of this study (Belien et al., 2012;
D’Orangeville et al., 2013).

Chloroplasts and mitochondria, important organelles performing more physiological
functions, are sensitive to environmental changes. Their morphological structure and
physiological functions often change under stress conditions (Vain, Pardha & Saradhi,
2001). The change in plant ultrastructure under drought stress is also an important index
to measure its resistance to drought (Zhang, Li & Chen, 2014). According to the TEM
analysis of this study, the number of chloroplasts and mitochondria in P. sylvestris var.
mongolica needle leaf cells not only decreased with the aggravation of drought stress, but
their morphological structure also changed to varying degrees. The bilayer membrane
of chloroplasts and mitochondria was destroyed, the content flowed out, the lumen
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was hollowed out, the number of osmiophilic globules in chloroplasts increased under
moderate drought, and the cristae in mitochondria also changed. Several studies have
shown that drought stress can lead to the disordered arrangement and structural damage
to chloroplasts, expansion, and rounding of mitochondria, membrane damage, dissolution
of internal cristae, etc. (Yu et al., 2011;Wang, Zhou & Mao, 2020;Das, 2021; Li et al., 2022).
Similarly, as an important site for photosynthesis, chloroplasts are destroyed under drought,
which shows that the photosynthesis of the plant itself has been inhibited, resulting in a
decrease in photosynthetic capacity. The osmiophiles are droplets formed by aggregation
of some lipid substances, which are used as storage of lipid substances in plant chloroplasts
(Huan et al., 2014). These osmiophiles are supposed to act as an electron carrier protecting
the vesicle from free radical damage caused by adversity stress (Grigorova et al., 2012). In
addition, it is also considered to be the product of polymerization after thylakoid degrades
the membrane lipid. In this study, the number of osmiophiles increased under moderate
drought, which also showed that the coniferous chloroplasts of P. sylvestris var. mongolica
seedlings had been damaged under moderate drought. The results of mitochondrial
research were consistent with the previous studies on Fraxinus mandshurica, Ormosia
hosiei, and Cyclocarya paliurus seedlings (Wei, Wang & Zhang, 2010; Liu & Wei, 2019; Li et
al., 2022). As the main site of the tricarboxylic acid cycle and oxidative phosphorylation,
mitochondria were destroyed under drought stress, showing that needle cells struggle to
maintain normal physiological functions, resulting in changes in needle structure.

CONCLUSIONS
The plant height, ground diameter, biomass, and photosynthetic pigment indexes of P.
sylvestris var. mongolica seedlings decreased with increasing degrees of drought stress.
Drought stress inhibited total root length, root surface area, root volume, total root length
per unit of soil volume, bifurcation number, and crossing number of P. sylvestris var.
mongolica seedlings. Furthermore, the deepening of the drought caused the stomatal
density to increase first, followed by a decrease. The drought stress also led to changes
in the structure of roots, stems, needles, needle cell structure, and organelle structure
of P. sylvestris var. mongolica seedlings, thus, destroying the normal metabolic pathway
and physiological function of cells. Morphological changes in organelles also provide
cytological evidence for the study of drought resistance in P. sylvestris var. mongolica. In
summary, P. sylvestris var. mongolica is affected by the increasing drought pressure caused
by current climate change, making its risk of recession under drought higher. Therefore,
special attention should be paid to the effect of environment on Mongolian pine when
afforestation is carried out in arid and semi-arid areas.
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