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ABSTRACT
Background. We quantified and evaluated the allocation of soil and water resources in
the Aksu River Basin to measure the consequences of climate change on an agricultural
irrigation system.
Methods. We first simulated future climate scenarios in the Aksu River Basin by using
a statistical downscaling model (SDSM). We then formulated the optimal allocation
scheme of agricultural water as a multiobjective optimization problem and obtained
the Pareto optimal solution using the multi-objective grey wolf optimizer (MOGWO).
Finally, optimal allocations of water and land resources in the basin at different times
were obtained using an analytic hierarchy process (AHP).
Results. (1) The SDSM is able to simulate future climate change scenarios in the Aksu
River Basin. Evapotranspiration (ET0) will increase significantly with variation as will
the amount of available water albeit slightly. (2) To alleviate water pressure, the area of
cropland should be reduced by 127.5 km2 under RCP4.5 and 377.2 km2 under RCP8.5
scenarios. (3) To be sustainable, the allocation ratio of forest land andwater body should
increase to 39% of the total water resource in the Aksu River Basin by 2050.

Subjects Agricultural Science, Climate Change Biology, Natural Resource Management,
Ecohydrology
Keywords Semi-arid land, Climate scenarios, Allocation of land and water resources,
Multi-objective programming, Grey wolf optimization, Analytic hierarchy process

INTRODUCTION
Economic and social development are constrained by various factors, including shortages
of available water and land resources, climate change and environmental degredation
(Bai et al., 2015). The IPCC’s Sixth Assessment Report (AR6) has made clear that climate
change is intensifying the water cycle and affecting rainfall patterns (IPCC, 2021), which
will have a significant impact on the global hydrological cycle and water balance (Miller
& Belton, 2014). With rapid population and economic growth, it is difficult to recocile
trade-offs among water and land management, ecological environmental protection, and
socio-economic development (Mei et al., 2010).

As the world population and consequent demand for food increase, safe water for
agricultural use has become increasingly scarce (Summerlin et al., 2021). This phenomenon
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is pronounced in arid and semiarid regions with irrigation (Rasouli, Kiani Pouya &
Cheraghi, 2012). The total amount of argicultural irrigation is often determind by planting
area and planting structure. However, ET is usually calculated as a crop coefficient in
irrigation planning with evapotranspiration (ET0) as a key indicator (Wu et al., 2021).

Recent studies have found that ET0 should change with the effects of climate change,
especially where agricultural water consumption accounts for a large proportion of use (Zou
et al., 2020). Our ability to accurately simulate future climatic scenaros will be the basis for
estimating the ET0. Although future climate conditions can be roughly estimated using
general circulation models (GCMs), meeting requirements for high resolution has been
challenging (Wilby, Dawson & Barrow, 2002). Therefore, it is necessary to use downscaling
methods to ‘‘shrink’’ the study area to specific areas or sites for practical application
(Hewitson & Crane, 2006).

There are two dominant downscaling approaches: dynamic and statistical. Statistical
downscaling is widely used because of its simple operation and low cost (Vallam & Qin,
2018). A statistical downscaling model (SDSM) is used to produce the required high-
resolution climate projection by developing a statistical relationship between the large-
and local-scale climate variables (Gebrechorkos, Hülsmann & Bernhofer, 2019). As such it is
more stuitable for climate change simulation at local scales. In previous studies, the impact
of climate change on regional inflow and demand and the feedback relationship between
supply and demand were ignored (Fu et al., 2014). For example, Sun et al. (2018) have
considered the impact of climate change on watershed runoff, but ignored the impact of
different climatic conditions on agricultural and ecological water demand. Therefore, how
to simultaneously consider changes in water resources and water demand under climate
change and realize a balanced allocation of regional water and land resources is a problem
that needs to be solved urgently.

However, industrial/domestic and ecological water are considered equally important for
regional development. Water and land optimization allocation is also a complex problem
that involves many elements (Habibi Davijani et al., 2016). How to rationalize planting
structure with the effects of climate change is an important consideration in water resource
management. The best way to solve this problem is to build a multi-objective model for
optimization. Approaches such as evolutionary (EA), genetic (GA), and nondominated
sorting genetic algorithms (NSGA-II), linear (LP) and non-linear programming (NLP),
among others, have been applied to optimize water and land resources (Keshtkar et
al., 2020). These methods provide multiple options for decision makers by finding a
model Pareto solution set. However, most have a number of shortcomings, (e.g., local
optima traps or slow convergence). The grey wolf optimizer (GWO) algorithm, which
was proposed by Mirjalili, Mirjalili & Lewis (2014), is a relatively novel population-based
metaheuristic algorithm that combines fast convergence and high optimization accuracy
(Rashidi et al., 2018). The GWO algorithm utilizes the simulated social leadership and
encirclingmechanism in order to find the optimal solution for single-objective optimization
problems (Mirjalili, Mirjalili & Lewis, 2014). For preforming multi-objective optimization,
the multi-objective GWO (MOGWO) extends the advantages of GWO to more complex
scenarios. However, the shortcomings of GWO (initial value effects, local optimum traps)
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when solving multi-objective problems have been improved (Mirjalili et al., 2016). Then,
the analytic hierarchy process (AHP) is used to select the most suitable options from the
Pareto solutions. AHP was an analytic technique for multiobjective decesions combined
with qualitative and quantitative analysis, and determines the weights of factors by using
the multifactor classification method (Di et al., 2018). Water demand allocation would be
qualitative rather than quantitative, which was an advantage of the AHP method.

Xinjiang Province is a typical of arid and semi-arid region in China that lacks significant
water resources, and the surface runoff are primarily generated by glacier meltwater in
adjacent mountains (Chen et al., 2020). Water shortages have become a source of conflict
in the Tarim River Basin of Southern Xinjiang with intense confrontations between
environmental protection and economic development (Lam, Kleinn & Coenradie, 2011).
As an ecologically fragile area, the Tarim River Basin has experienced a significant decline
of its riparian desert forests (Zhang et al., 2019). Additionally, the Tarim River Basin is
a major source of cotton and fruit production. Therefore, it is particularly important to
improve water use efficiency and optimize allocation of water resources in this region.

This study improves on previous research as follows: (1) we considered the case that
crop water requirements were not fixed but rather varies with climate change; (2) the
machine learning method was used to estimate the runoff with climate data in the future;
(3) this study was a novel attempt to solve the problem of water conflicts by integrating
the AHP and multi-objective GWO. The main aims of our study were the following
aspects: (1) forecast regional climate change scenarios using the SDSMmodel; (2) calculate
regional water supply and demand in different climate scenarios; (3) determine water
consumption among crops and establish a multi-objective programming model using the
MOGWO algorithm to solve water-use conflicts for agricultural production, ecosystems,
and drinking water supply; (4) select the most suitable options from the Pareto solutions
using an analytic hierarchy process (AHP).

MATERIALS & METHODS
Study area
The study area was the Aksu Valley (75◦35′–82◦00′E, 40◦00′–42◦27′N, excluding Akqi) in
Xinjiang, China. The area is approximately 3.6×104 km2, including six counties or cities
in the Aksu area (Aksu, Wensu, Awati, Wushi, Keping and Alar). It is served by the western
upper reaches of the Tarim River Basin (Fig. 1) and sand dunes are the predominant
landform (El-Tantawi et al., 2019). The water used for agricultural irrigation makes up
more than 95% of the total regional water consumption. Themost important irrigated crop
is cotton, which has increased in annual planting area (Li et al., 2020a; Li et al., 2020b).

Data sources
Meteorological data were obtained from the China Meteorological Science Data Network
(1961–2005) (http://data.cma.cn/). Large-scale climate variables (predictors) for the current
climate and future scenarios under the RCPs in years 1961 to 2050 obtained from Canadian
Climate Data and Scenarios (http://climate-scenarios.canada.ca/). We used grid resolution
2.815◦ latitude by 2.815◦ longitude. River discharge data (1961–2005) were from the Aksu
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Figure 1 Location of study area.
Full-size DOI: 10.7717/peerj.14577/fig-1

Valley Chronicles (Aksu River Basin Management Office, 2006). Socio-economic data were
gathered from the Aksu Region Yearbook and Xinjiang Construction Corps Yearbook
(Bureau of Statistics of Xinjiang Production and Construction Corps, 2009).

Simulation of climate scenarios
Statistical downscaling model under two scenarios (RCP 4.5 and RCP 8.5)
RCP 2.6 represents a stringent mitigation scenario, RCPs 4.5 is intermediate mitigation
scenarios and RCP 8.5 is low mitigation scenario with very high greenhouse emissions
(Carvalho et al., 2019). Due to better representation of actual emissions since 2000 by other
RCPs (Peters et al., 2012), we excluded RCP 2.6 in this study. The CanESM2 predicators
provide 26 parameters (https://climate-scenarios.canada.ca/?page=pred-canesm2). To
produce climate data for future analyses, the SDSMmodel was parameterized by inputting
daily observations (Fig. 1) and 26 predictors from CanESM2 (1961–1990 data for model
building and 1991–2005 data for the model validation). Five predictors (daily maximum
and minimum temperature, daily relative humidity, annual rainfall, and annual sunlight)
were selected based on the correlation matrix, partial correlation, and P-value (Fowler,
Blenkinsop & Tebaldi, 2007) (Table S1). Final model accuracy was examined using both
the coefficient of determination (R2) and Root Mean Square Error (RMSE) (Wood et al.,
2004) (Table S1).

Estimation of water demand and supply in Aksu River Basin
Total water demand
Agricultural water demand. The Hargreaves equation and downscaling simulation results
were used to calculate the reference crop evapotranspiration (ET0). Previous research
showed that Hargreaves equation had good applicability in arid and semi-arid regions
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(Wang et al., 2013a;Wang et al., 2013b).

ET0=
K
λ
(Tmax+Tmin)

n
·(Tmean+Toff) ·Ra (1)

Tmean= (Tmax+Tmin)/2 (2)

where K is the conversion coefficient (recommended value = 0.0023), λ is the latent heat
of water vaporization (recommended value = 2.45 MJ/kg), Tmax, Tmin are the highest and
lowest temperature (◦C), n is the exponential coefficient (recommended value= 0.5), Tmean

is the average temperature (◦C), Toff is the temperature constant (recommended value
= 17.8), and Ra is the solar insolation at the top of the atmosphere MJ/(m2/d) (Bautista,
Bautista & Delgadocarranza, 2009). The water requirement of the main crops in the study
area was calculated as:

WGD=

n∑
i=1

m∑
j=1

Pi(ET0ijKcij−0.52Tij) (3)

where WGD is the water requirement per unit area of arable land (104m3/km2), Pi is
the proportion of crop i per unit area of arable land, ET0ij is the reference crop water
requirement for crop i in month j (growing season), Kcij is month j (growing season) of
crop i, Tij is month j (growing season) of crop i rainfall, and 0.52 is the rainfall utilization
coefficient (Rahman, Islam & Hasanuzzaman, 2008).

Irrigation water requirement per unit area:

WGDi=WGD∗ai/bi1+WGD∗(1−ai)/bi2 (4)

where WGDi is the amount of irrigation water per unit of arable land, a i isthe proportion
of water-saving irrigation area in year i, and bi1 and bi2 are respectively the conventional
and water-saving irrigation water utilization coefficients in year i.

Industrial and domestic water demand (WIDi). According to 2018 statistics data, industrial
water consumption per km2 was calculated by dividing the total industrial outputs with
total industrial water consumption in Aksu. The water consumption of the industrial added
value of ten-thousand yuan was approximately 110 m3. Residential water consumption
per unit area is calculated using the resident population and the water consumption per
municipality. According to the Plan for Reform and Development of the Aksu Region
(2020–2050), and these are summed for the Aksu River Basin (Table 1).

Ecological water demand. We consider water for the forests and water bodies as ecological.
The formula for the calculation of forest demand is:

WLD=Ks

m∑
j=1

(ET0jKcj−0.52Tj) (5)

where WLD is the water demand per unit area of woodland in the watershed (104m3/km2),
Ks is the soil moisture limitation coefficient, ET0j is month j of the forest land (growing
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Table 1 Water demand for construction land per unit area (104 m3/km2).

Administrative
regions

Wushi Wensu Keping Awati Aksu Alar

2020 11.88 23.20 16.48 6.14 17.40 10.45
2035 16.45 30.84 25.13 9.45 29.20 23.57
2050 22.11 25.31 21.19 8.50 23.81 18.18

season) reference crop water demand, Kcj is the crop coefficient of forest land in month j,
and Tj is the rainfall of forest land in month j.

WLDi=WLD/bi2. (6)

Here, WLDi is the amount of irrigation water per unit of woodland, and bi2 is the
water-saving irrigation water utilization coefficient in decade i.

The water demand for the water bodies:

WWA= 0.58∗E0 (7)

ET0= 0.556∗E0 (8)

where WWA is water demand per unit of water area. Xi & Cheng (2002) estimated the
conversion coefficient between a 20 cm2 dish and a 20 m2 evaporating pool was 0.58. ET0

was estimated by multiplying E0 by a coefficient 0.556 (Xi & Cheng, 2002). We assume that
grasslands are not irrigated in this study.

Total water demand = total agricultural water demand + total industrial and domestic
water demand + total ecological water demand.

Total water supply in the future climate
Total water supply = available surface water + available groundwater resources. The sum
runoff data of two hydrological stations (Sahliguilanke and Xiehela) was used as water
resource input and the river flow at the Alar station was used as the residual amount of
water resource (Fig. 1). The difference between the two flows was computed as the amount
of available surface water in the study basin. A neural networks model was used to estimate
runoff data for the hydrometric station.

The specific analysis we used followed Zarghami et al. (2011). Using the runoff and
meteorological data from 1958–1995, the feedforward neural network models between
runoff and meteorological factors were parameterized. Data from 1996–2003 were selected
for verification and the fluctuation and precision judgment indices were set to evaluate
neural network performance. Because the number of network layers was 20, the two indexes
reach the minimum value by trial-and-error. The following data were used in the models:
runoff (R), precipitation (P), relative water content (RWC), minimum temperature (Tmin),
maximum temperature (Tmax), average daily sunshine hours (ADS), mean temperature
(Tmean) and ET0, all indexed to time (years). The resulting model is:

R(t )= f (P(t ),RWC(t ),Tmax(t ),Tmin(t ),Tmean(t )ADS(t )ET0(t )). (9)
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The modeling process was performed using the ANN toolbox in the MATLAB
environment. Annual average meteorological values predicted by SDSM under RCP4.5
and RCP8.5 scenarios were entered into the neural network model to estimate the annual
runoff at the hydrological station. Finally, an expected future amount of water resources
could be calculated from the estimated hydrological station data. The available amount of
groundwater in Aksu River Basin was considered as unchanged.

Multi-objective optimal allocation model of water and soil resources
The multi-objective optimal allocation model must cover the balance of the economic,
social and ecological benefits. We used the gross national product (GDP) as the economic
indicator, the maximum benefit of water per cubic meter as the social indicator and
ecological green equivalent as the ecological indicator. The computational formula is:

F1(X)=max
∑n

i=1

∑m

j=1
aijXij (10)

F2(X)=max

∑n
i=1

∑m
j=1aijXij∑n

i=1
∑m

j=1bijXij
(11)

F3(X)=max
n∑
i=1

m∑
j=1

cijXij (12)

n∑
i=1

bijXij≤Ws (13)

n∑
i=1

Xij=T (14)

n∑
j=1

X1j≥PLmin (15)

n∑
j=1

X2j≥ FLnow (16)

n∑
j=1

X3j≥CLnow (17)

n∑
j=1

X4j≥WLnow (18)

n∑
j=1

X5j=NLnow (19)

where F1(X) is total GDP, F2(X) is the utilization of maximum benefits per cubic meter
of water, F3(X) is the ecological green equivalent of the river basin, Xij is the area of land
types in each area (km2), ai is gross national product per unit area of each land type (10,000
yuan/km2), bi isthe water demand per unit area of each land use type (m3), and ci is the
green equivalent value of each area of each land type. T is the total area (km2), PLmin is the
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Table 2 Pairwise comparison scale for analytic hierarchy process (AHP) preferences.

Definition Equally
important

Moderately
important

Strongly
important

Verystrong
important

Extremely
important

Numerical 1 3 5 7 9

Table 3 AHP calculation results.

Weight of each target Test rating

Economic
benefit

Social
benefit

Ecological
benefit

CI CR

2020 0.6267 0.0936 0.2797 0.0429 0.0825
2035 0.5695 0.0974 0.3331 0.0123 0.0236
2050 0.5273 0.0992 0.3735 0.0018 0.0036

red line of cultivated land in the study area (km2), FLnow is the current forest area (km2),
BLnow is the current construction land area, WLnow is the current water area, and NLnow is
the current unused land area.

The MOGWO algorithm and the optimal solution
Design of MOGWO algorithm
We modified the grey wolf algorithm (GWO) to incorporate two new components
(storing non-dominated Pareto optimal solutions archive and a leader selection strategy)
to comprise the MOGWO (Mirjalili et al., 2016). The detailed procedures are described in
Fig. 2.
Weobtained a set of non-dominated solutions for themulti-objectivemodel. The parameter
settings were number of wolves = 100, achieve = 100, range = 20% and iterations = 100.

The best optimal value for multi-objective model based on analytic hierar-
chy process method (AHP)
To establish a judgment matrix, the relative weight of each target is determined. At the
same time, the consistency index of the judgment matrix is calculated to verify the validity
of the weight. The consistency of the matrix is considered acceptable when the consistency
ratio (CR) is less than 0.1. We determined importance indicators for establishing the
judgment matrix (Table 2) and the proportions and test indicators of the three planning
goals calculated by the analytic hierarchy process (Table 3).

RESULTS
Projected future climate and water resource change
We projected temperatures and precipitation at the Aksu Basin using the downscaled global
climate models (GCMs) (Fig. 3). Warming was predicted for this area’s subregions. By the
year 2050 (starting in 2020), the projected temperature could increase up to 1.3, 0.9, 0.8,
and 0.2 ◦C, at Aksu, Keping, Alar, and Akqi under RCP4.5, respectively. Under the RCP8.5
climate scenarios, the temperatures were predicted to increase at a faster rate. As opposed
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Figure 2 Flowchart for the MOGWO algorithm.
Full-size DOI: 10.7717/peerj.14577/fig-2

to temperature trends, the precipitation showed decreasing trends except at the Keping
station.

The minimum and maximum temperatures predicted by SDSM from 2006 to 2050
change over the whole basin’s ET0 (Figs. 4 and 5). ET0 values of the four weather stations
showed an upward trend during the period 2010–2050. There was no significant difference
between the RCP4.5 and RCP8.5 climate scenarios during the first years, but ET0 has
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Figure 3 Average changes of temperature (T) and rainfall (R) of the basin under RCP4.5 (A) and
RCP8.5 (B) scenarios during 2006–2050.

Full-size DOI: 10.7717/peerj.14577/fig-3

Figure 4 Average changes of reference evapotranspiration (ET0) of the basin under RCP4.5 (A) and
RCP8.5 (B) scenarios during 2006–2050.

Full-size DOI: 10.7717/peerj.14577/fig-4

an increasingly higher value under RCP8.5 scenarios relative to RCP4.5 after 2035. The
difference value is expected to be as high as 50 mm by 2050.

By using the neural network model to estimate the runoff flow of the hydrological
station, the available surface water in the basin gives a trend of slow future increase (Fig.
6). Until 2050, the annual average run off is predicted to increase 7. 963× 108 m3 and 10.
41× 108 m3 under RCP4.5 and RCP8.5, respectively. The amount of runoff was higher
under the RCP8.5 scenario than the RCP4.5 scenario (Table 4).

The optimal allocation of the water and land resources
Future water shortage is predicted to be about 5.83 × 108m3 in the basin (Table 5). The
Pareto frontier under the five scenarios obtained by MOGWO is shown in Fig. S1; the
specific values of water and soil resource allocation in the basin are shown in Tables S2–S7.
Due to the high emission concentration (RCP8.5), with the exception of construction
land, the water demand per unit area of the other land types is higher compared to the low
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Figure 5 Average changes of reference evapotranspiration (ET0) of the basin under RCP4.5 and
RCP8.5 scenarios during 2006–2050: (A–D) Aksu, Keping, Alar, and Akqi, respectively.

Full-size DOI: 10.7717/peerj.14577/fig-5

Figure 6 Neural network predictions of runoff: (A) RCP4.5; (B) RCP8.5.
Full-size DOI: 10.7717/peerj.14577/fig-6
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Table 4 Prediction results of basin water resource availability.

Climate scenarios RCP4.5 RCP8.5

Year 2020 2035 2050 2035 2050
Available amount of water
resources(108m3)

47.20 50.48 51.17 52.36 53.61

Table 5 Optimal solution objective function value and water resource supply and demand in RCP4.5 and RCP8.5.

Economic benefit Social benefit, Ecological benefit, Water demand Available water
GDP
(108 yuan)

Unilateral water benefit
(yuan/m3)

green equivalent
(km2)

108m3 108m3

2018 Actual 544.21 10.47 8991.40 51.87 46.04
2020 Recent 613.53 13.00 9011.21 47.19 47.20

RCP4.5 1833.82 36.33 8999.27 50.47 50.48
2035

RCP8.5 1836.32 35.89 9004.21 51.17 51.17
RCP4.5 4909.23 97.47 9164.84 50.37 52.36

2050
RCP8.5 4910.22 96.93 9168.69 50.66 53.61

emission concentration (RCP4.5). Although the total cultivated area in the basin under the
two climate scenarios is similar, the change of cultivation in each region of the basin differs.
Water and land resource allocation in the recent-term (2020), medium-term (2035), and
long-term (2050) plan under two emission concentrations showed, in general, a trend of
decreasing arable land and grassland and increasing other land (Fig. 7). The arable land
areas of Awati, Aksu, and Alar exhibited a continuous downward trend as the result of the
policy for restoring farmland to save water, but the arable land areas was likely to continue
to increase in Wushi County (Fig. 8). In addition, the area of grassland in the Wushi and
Wensu regions was trending downward, while the Alar was increasing (Fig. 9).

DISCUSSION
We found that SDSM had higher predictive accuracy for temperature relative to rainfall
using a formal accuracy index. Thismaymimic themodel’s limitations in simulating rainfall
(Wilby, Dawson & Barrow, 2002). Downscaled climate change model scenarios suggestted
that the warm-wet climate trend would continue in the semi-arid region. Rainfall showed
a declining trend (except for Keping station) in the region during 2021–2050, which had
been also found in other studies (Chu et al., 2010;Wilby & Dawson, 2013; Zhu et al., 2019).

The change of ET0 caused by climate change would have a significant impact on
agricultural and ecological water demand (Guo & Shen, 2016; Hadinia, Pirmoradian &
Ashrafzadeh, 2016). ET0 values in the Aksu River basin trend upward in the future (Fig.
6) as in other areas of China such as the Tibetan Plateau, Haihe River Basin and Hetao
Irrigation District (Wang et al., 2013a; Wang et al., 2013b; Xing et al., 2014; Zhou et al.,
2017). The increasing ET0 rate was also inversely related to elevation (Zou et al., 2020),
therefore ET0 of the Akqi station had the lowest increasing rate in Aksu River basin.
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Figure 7 Allocation of water and soil resources throughout the basin: (A) RCP4.5 land resources; (B)
RCP8.5 land resources; (C) RCP4.5 water resources; (D) RCP8.5 water resources. PL, plowland; GL,
grassland; FL, forest land;WA, water area.

Full-size DOI: 10.7717/peerj.14577/fig-7

Figure 8 Allocation of plowland in each county in the basin under RCP4.5 (A) and RCP8.5 (B).
Full-size DOI: 10.7717/peerj.14577/fig-8

Because of the hydrology in Xinjiang under future climate change scenarios (Li et al.,
2020a; Li et al., 2020b; Shen et al., 2020; Xu et al., 2010), we suggestted that surface runoff
in the basin would trend upward in the future. We suspected that the main reason for
increased runoff was an increase in temperature leading to amplified loss of seasonal snow
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Figure 9 Allocation of grassland in each county in the basin under RCP4.5 (A) and RCP8.5 (B).
Full-size DOI: 10.7717/peerj.14577/fig-9

cover, glacier and ice sheet melting (IPCC, 2021). In the past 30 years, ice and snow melt
water had been increasing and would continue to increase until 2050 in the Aksu River
Basin (Wang, 2018; Zhang, 2010), which also supportted our model results. Ding & Reng
(2007) reported that glacier melt water around the Tarim Basin would continually grow
potentially reaching a level of 108 m3/a (Xia Jun, 2011). The upward trend in runoff was
also predicted to be greater under RCP 8.5 than RCP4.5 (Fig. 6).

Water scarcity continues to be a major crisis in the Aksu River Basin. With the ET0

increased, water demand from agricultural production and ecological protection had
increased annually. The multi-objective allocation of soil and water resources to economic,
societal, and ecological goals, compelled us to recommend reducing the area of cultivated
land to alleviate the current water shortage (Xu et al., 2010). Currently, the Aksu River
Basin is facing a shortage of water resources estimated to be 5.83× 108 m3 (Table 5). To
balance water supply and demand, the Aksu River Basin needs to reduce agricultural water
use as a measure to protect the environment. The most effective mitigation action is to
reduce the arable land area. Forests and water bodies should be expanded to strengthen
ecological protection and improve ecosystem services. Therefore, regions should adopt
alternative allocation strategies to achieve the optimal comprehensive benefits for the whole
basin. Decision makers should enact recommended configurations according to their own
conditions under a changing climate and in different regions.

Notably, the change of cultivation in each region of the basin differs. The arable land
areas of Awati, Aksu, and Alar exhibited a continuous downward trend as the result of the
policy for restoring farmland to save water, but the arable land areas were likely to continue
to increase inWushi County (Fig. 8). The reason for this heterogeneity may be the different
water requirements per unit area of arable land in each county under the two scenarios.
The output value per unit area of Wushi County was lower than other regions due to the
large proportion of crops planted on arable land. As well, water demand per unit area
was smaller than in other regions. If water shortages constrained watershed development
and are red line constraint of arable land, then lower water use in Wushi would have a
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greater impact on the overall benefits of the entire watershed than a low output value. We
provided the following policy recommendations: To cope with this shortage in the basin
and measure including strictly following the ‘‘red line’’ restriction of cultivated land, the
area of the cropland should be reduced by 127.5 km2 under RCP4.5 or 377.2 km2 under
RCP8.5 models. For the sake of ecological sustainability, the allocation ratio of forest and
water bodies should increase to 39% of the total water volume in the Aksu River Basin by
2050.

There is some limitation in this study, and the model could still be improved. For
example, due to the lack of data on future the cultivated land planting structure, we used
current cultivated planting structure for calculating future water demand per unit area.
And in the AHP method, the interconnection between the factors in the criterion level was
ignored and considered as independent of each other, and the factors could be refined in
the later study to make the results closer to the actual situation.

CONCLUSIONS
In the future, the ET0 of the Aksu River Basin would increase variably according to the
climate predictions of an SDSM model. Our study indicated that the water resources,
mainly generated by glacier/snow meltwater, increased according to the neural network
model. Climate change may have beneficial effects on agriculture in Aksu River Basin.
This outcome may force governments to find new and sustainable adaptation strategies to
rescue the future water supply. The water governance in this region should be more flexible
and decentralized to cope with climate change.
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