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ABSTRACT
Apex predators ideally require vast intact spaces that support sufficient prey
abundances to sustain them. In a developing world, however, it is becoming
extremely difficult to maintain large enough areas to facilitate apex predators outside
of protected regions. Free-roaming leopards (Panthera pardus) are the last remaining
apex predator in the Greater Cape Floristic Region, South Africa, and face a
multitude of threats attributable to competition for space and resources with
humans. Using camera-trap data, we investigated the influence of anthropogenic
land modification on leopards and the availability of their natural prey species in two
contrasting communities—primarily protected (Cederberg) and agriculturally
transformed (Piketberg). Potential prey species composition and diversity were
determined, to indicate prey availability in each region. Factors influencing spatial
utilisation by leopards and their main prey species were also assessed. Estimated
potential prey species richness (Cederberg = 27, Piketberg = 26) and diversity indices
(Cederberg—H′ = 2.64, Ds = 0.90; Piketberg—H′ = 2.46, Ds = 0.89), supported by
both the Jaccard’s Index (J = 0.73) and Sørensen’s Coefficient (CC = 0.85), suggested
high levels of similarity across the two regions. Main leopard prey species were
present in both regions, but their relative abundances differed. Grey rhebok,
klipspringer, and rock hyrax were more abundant in the Cederberg, while Cape
grysbok, Cape porcupine, chacma baboon, and common duiker were more abundant
in Piketberg. Leopards persisted across the agriculturally transformed landscape
despite these differences. Occupancy modelling revealed that the spatial dynamics of
leopards differed between the two regions, except for both populations preferring
areas further away from human habitation. Overall, anthropogenic factors played a
greater role in affecting spatial utilisation by leopards and their main prey species in
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the transformed region, whereas environmental factors had a stronger influence in
the protected region. We argue that greater utilisation of alternative main prey
species to those preferred in the protected region, including livestock, likely facilitates
the persistence of leopards in the transformed region, and believe that this has further
implications for human-wildlife conflict. Our study provides a baseline
understanding of the potential direct and indirect impacts of agricultural landscape
transformation on the behaviour of leopards and shows that heavily modified lands
have the potential to facilitate mammalian diversity, including apex predators.
We iterate that conservation measures for apex predators should be prioritised where
they are present on working lands, and encourage the collaborative development of
customised, cost-effective, multi-species conflict management approaches that
facilitate coexistence.

Subjects Animal Behavior, Biodiversity, Conservation Biology, Ecology, Zoology
Keywords Leopards, Predator, Prey, Species diversity, Transformed landscape, Human-wildlife
conflict, Space-use, Community structure, Occupancy modelling, Camera-trapping

INTRODUCTION
Apex predators are generally large carnivores that can act as keystone species and as such,
they have been labelled as ecosystem engineers (Palazón, 2017). One way in which apex
predators primarily influence ecosystems is by exhibiting prey species control: they can
directly reduce prey species numbers by predating on them (reducing competitive
exclusion among herbivores, thus inducing greater diversity), but also by influencing them
indirectly through behavioural changes, which affect ecosystem resources (Miller et al.,
2001; Frank, 2008; Estes et al., 2011; Rosenblatt et al., 2013). As such, the local extinction of
apex predators within ecosystems can often bear drastic trophic cascade consequences
(Terborgh et al., 2001; Hebblewhite et al., 2005; Ripple et al., 2014, 2016; Suraci et al., 2016).
For example, biodiversity can be reduced (Estes et al., 2011) while the transmission of
infectious diseases to humans (Keesing et al., 2010) and damages to crops can increase
(Brashares et al., 2013). Apex predators also tend to be seen as charismatic species sought
after by tourists and hunters (Lindsey et al., 2007; Van der Meer, Badza & Ndhlovu, 2016),
thereby holding an important economic value to society. Thus, the disappearance of apex
predators from ecosystems is likely to stimulate knock-on effects which may adversely
impact human wellbeing (Díaz et al., 2006; Estes et al., 2011).

Traditionally, it was believed that vast, relatively intact ecosystems were required to
effectively support viable apex predator populations (Sillero-Zubiri & Laurenson, 2001;
Morrison et al., 2007). Their high trophic position and large body size suggests that they
require extensive home ranges which sustain sufficient prey abundances (Morrison et al.,
2007; Ripple et al., 2014). These spatial requirements often bring apex predators into conflict
with humans (Inskip & Zimmerman, 2009; Nyhus, 2016) as they are amongst the first
species to be affected by the expansion of human populations and associated cultivation of
previously untouched habitats (Morrison et al., 2007; Ripple et al., 2014; Aebischer et al.,
2020). A species that is influenced by anthropogenic development to an increasing extent
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across the globe is the leopard (Panthera pardus; Linnaeus, 1758). Leopards are the most
widespread large felid, occurring across much of Africa and tropical Asia (Nowell &
Jackson, 1996; Stein et al., 2020). They are very adaptable and successfully occupy a large
variety of habitats across their range (Jacobson et al., 2016; Stein et al., 2020), including areas
alongside large urban spaces (Kuhn, 2014; Braczkowski et al., 2018). However, their ability
to inhabit areas in such close proximity to humans makes them particularly susceptible to
competition with humans for space and resources, inevitably placing leopards at great risk.

Globally, leopards are considered as Vulnerable as their populations are declining and
they face multiple threats to their survival (Stein et al., 2020). An estimated 75% of their
historic range has been lost (Jacobson et al., 2016), where the average loss for large
carnivore species is only around 53% (Ripple et al., 2014). Although suitable habitat in
southern Africa—arguably hosting the healthiest leopard population across the species’
range (Stein et al., 2020)—remains widely distributed, it is highly fragmented, having
experienced ~51% decline since 1750 (Jacobson et al., 2016). Anthropogenic activities, in
particular agricultural practices, are primarily deemed responsible for this fragmentation
(Swanepoel et al., 2013). Indeed, Brink & Eva (2009) showed that agricultural land
increased by 57% at the expense of natural vegetation in sub-Saharan Africa in just 25 years
(1975–2000). In South Africa, ~68% of remaining habitat suitable for leopards is found in
areas that are naturally susceptible to land-use transformation (Swanepoel et al., 2013).
Leopards that occupy these non-protected regions are most at risk of being killed by
human-induced causes such as snares, hunts, poison, or motor vehicle collisions (Balme,
Slotow & Hunter, 2010; Swanepoel et al., 2013, 2015). Consequently, it is vitally important
that conservation measures be established to accommodate free-roaming leopards across
transformed landscapes to facilitate functional population connectivity and ensure
ecosystem resilience (Balme, Slotow & Hunter, 2010; Swanepoel et al., 2013; Swanepoel,
Somers & Dalerum, 2015). Most research on leopards in South Africa has taken place
inside protected areas (Balme et al., 2014), which means that inadequate data is likely
jeopardizing the conservation of the species on working lands.

Free-roaming leopards are the last remaining apex predator found in the Cape Floristic
and Succulent Karoo Regions (Martins & Martins, 2006), which are both biodiversity
hotspots and together forms the Greater Cape Floristic Region (Born, Linder & Desmet,
2007), in the Western Cape province of South Africa. Here, leopards generally occupy
considerably larger home ranges (Patterson, 2008) and occur at much lower densities
(Martins & Martins, 2006) than leopards found elsewhere in Africa (excluding the
Kgalagadi; Mizutani & Jewell, 1998; Bothma & Bothma, 2012). Furthermore, these
leopards are also considered to be smaller on average than most leopards (excluding
Arabian leopard; Spalton & Al Hikmani, 2006) found elsewhere throughout the species’
range (Stuart, 1981;Martins &Martins, 2006). Almost 90% of the total area of the Western
Cape is regarded as potential farmland, and the human population of the province (±55
people per km2; Statistics South Africa, 2021) has consistently grown at a faster rate than
the national average (Partridge, Morokong & Sibulali, 2021). The Western Cape is
therefore an ideal location to investigate the influence of landscape transformation, both
directly and indirectly, on this apex predator.
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The aforementioned characteristics of leopards in the Western Cape all presumably
reflect adaptation to a different diet (Martins et al., 2010). With a great diversity in habitat
usage, leopards opportunistically hunt a wide range of prey, depending on local availability
(Hayward et al., 2006). A decline in their primary prey base can, however, impact leopard
population structure (Marker & Dickman, 2005; Ray, Hunter & Zigouris, 2005; Wolf &
Ripple, 2016), and may also affect human-wildlife conflict levels by altering leopard
behaviour (Khorozyan et al., 2015). Human-wildlife conflict has long been prevalent in the
Western Cape and remains a complex challenge to this day (Martins & Martins, 2006;
Nieman, Wilkinson & Leslie, 2020). Indeed, leopards within this region are not only
deemed responsible for livestock losses, but direct conflict also exists with leopard prey
species, often regarded as crop raiders (G Malherbe–Off-reserve Conservation Manager at
CapeNature, G Malherbe, 2021, personal communications).

The primary (main) prey base for leopards across the Western Cape include common
duiker (duiker; Sylvicapra grimmia, Linnaeus, 1758), Cape grysbok (grysbok; Raphicerus
melanotis, Thunberg, 1811), klipspringer (Oreotragus oreotragus, Zimmermann, 1783),
and grey rhebok (rhebok; Pelea capreolus, Forster, 1790), as well as rock hyrax (hyrax;
Procavia capensis, Pallas, 1766), Cape porcupine (porcupine; Hystrix africaeaustralis,
Peters, 1852), and chacma baboons (baboon; Papio ursinus, Kerr, 1792) (Martins et al.,
2010; Drouilly, Nattrass & O’Riain, 2018; Mann et al., 2019; Müller et al., 2022a).
In addition to suffering retaliatory killings, these species are also targeted for the illegal
harvesting of bushmeat by means of snaring in the province (Nieman et al., 2019). An akin
competitive relationship between humans and leopards has previously been documented
in the Congo Basin (Henschel et al., 2011), with profound negative consequences for
leopards. Illegal hunting, which impacts prey species availability, is a continuous concern
for wildlife worldwide (Lindsey et al., 2013;Heurich et al., 2018). Besides, snares can also be
responsible for the direct capture of leopards resulting in severe injury or death (Swanepoel
et al., 2015; Williams et al., 2017; Nieman, Leslie & Wilkinson, 2019; Gubbi, Kolekar &
Kumara, 2021).

As the only terrestrial apex predator to persist in the Western Cape, free-roaming
leopards are expected to be sensitive to changes in prey species populations. Yet, little is
known about the extent to which this relationship may be influenced by humans in the
context of commercial agriculture. Several studies investigating the drivers of leopard
occurrence, density, or ranging behaviour (e.g. Jiang et al., 2015; Allen et al., 2020; Searle
et al., 2020; Snider et al., 2021; Loveridge et al., 2022), and predator-prey overlap (e.g. Dias,
de Campos & Rodrigues, 2018; Havmøller et al., 2020; Palei et al., 2022; Sehgal et al., 2022;
Zaman et al., 2022), have been performed worldwide. However, until relatively recently,
few studies have investigated African leopard (P. p. pardus) ecology in human-disturbed
landscapes (see Marker & Dickman, 2005; Williams et al., 2017; Strampelli et al., 2018)—
particularly in commercial agricultural regions. Furthermore, limited comparisons of
predator populations between analogous protected and non-protected regions have been
made (e.g. Swanepoel, Somers & Dalerum, 2015; Drouilly, Nattrass & O’Riain, 2018;
Curveira-Santos et al., 2020; Faure et al., 2021). Considering that half of all habitable land
worldwide is used for agriculture (Ellis et al., 2010; Ritchie & Roser, 2013)—regarded as the
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biggest driver of terrestrial habitat loss (IPBES, 2019)—our understanding of factors which
could best enable (or inhibit) the persistence of apex predators in agriculturally
transformed environments, including variables influencing the availability of their natural
prey species, is vital to aid management decision making and account for in cost-benefit
models that aim to minimise conflict. Inferences about spatial variation in species
composition and diversity (richness and evenness; Colwell, 2009) are also important, both
to ecological hypotheses about structure and function of communities and to
community-level conservation management (Nichols et al., 1998).

This study investigated potential prey species diversity, community structure, and
factors affecting the spatial behaviour of leopards and their main prey species, in both an
agriculturally transformed and a largely protected landscape. First, we aimed to determine
whether any real differences exist with reference to potential prey species found in each
community and whether any such difference is evidently reflected in the respective leopard
subpopulations. Second, we aimed to evaluate and compare drivers of habitat utilisation by
leopards and their main prey in each region. We anticipated a greater diversity of potential
leopard prey species to exist in the protected community, as well as differences in
community structure. Relative leopard and prey abundances were predicted to be lower in
the transformed agricultural region, and anthropogenic factors were expected to negatively
influence space-use, by leopards as well as their main prey species, across the greater
landscape.

MATERIALS AND METHODS
Ethical statement
Relevant permissions to conduct our research were granted by the Social, Behavioural and
Education Research Ethics Committee at Stellenbosch University (Project ID #15315),
CapeNature (Permit #CN44-59-12321), and in writing by all landowners involved. Data
collection was performed using camera-traps, which is a non-invasive research method.
All data, including any images captured of human subjects, were treated as strictly
confidential.

Study area
The Piketberg region (hereafter Piketberg) encompasses a transformed landscape that is
primarily characterised by mixed agricultural practices. Our study area is located
approximately 130 to 160 km north of Cape Town, South Africa, and situated southwest of
the Cederberg region (Fig. 1). The survey area was approximately 1,500 km2 in size
(53–864 m above sea level), covering 55 privately owned mixed agricultural farms
extending north from the town of Piketberg to Paleisheuwel, with Citrusdal in the east and
Aurora on the western boundary (Fig. 1). The area consists of natural vegetation forming a
mosaic, highly fragmented by livestock (e.g. cattle (Bos taurus, Linnaeus, 1758), horses
(Equus ferus caballus, Linnaeus, 1758), sheep (Ovis aries, Linnaeus, 1758), goats (Capra
hircus, Linnaeus, 1758), pigs (Sus domesticus, Erxleben, 1777)), fruit, and other crop
farmlands in and around mountainous terrain (Linder, 1976;Mucina & Rutherford, 2006).
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The Cederberg region (hereafter Cederberg), known for its rugged remoteness, is a
largely protected area first proclaimed in 1973 and located 200 to 250 km northeast of Cape
Town (Fig. 1). This survey area was approximately 1,700 km2 in size (254–1,455 m above
sea level) and included the Matjiesrivier Nature Reserve and the Cederberg Wilderness
Area. Both areas are formally protected and managed by the provincial conservation
regulation body and authority in the Western Cape, known as CapeNature (Fig. 1).
Privately owned areas included were Bushmans Kloof Wilderness Reserve, community
owned land used for the harvesting of rooibos and limited pastoralism by subsistence
farmers, and the Cederberg Conservancy, consisting of pro-conservation farms that are
used for ecotourism and largely kept in a natural ecological state. The two main biomes
present are Fynbos and Succulent Karoo in mountainous terrain (Mucina & Rutherford,
2006).

The Western Cape has a Mediterranean type climate characterised by hot, dry summers
and cold, wet winters (Cowling & Holmes, 1992). Localised climatic conditions vary across
the greater study area because of its mountainous nature, and the vastness of the landscape
makes it extremely difficult to describe the climate of the study area in general terms.

Figure 1 Location of survey regions. Maps showing the location of the Western Cape province within South Africa (A), and the proximity of the
survey areas within the Western Cape (B). Main map shows the location of camera-trap stations for both Cederberg and Piketberg. Failed cam-
era-trap stations (because of major camera malfunctioning, fire, other damage, or theft) are noted. Formally proclaimed protected areas (i.e.,
CapeNature reserves) are also highlighted. Full-size DOI: 10.7717/peerj.14575/fig-1
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In essence, average annual rainfall appears slightly higher, and average summer air
temperatures somewhat lower in Piketberg compared to the Cederberg (Climate-Data.org,
2020). Average winter air temperatures are more uniform across both regions, but snowfall
is more abundant in the Cederberg which is generally at a higher altitude (Climate-Data.
org, 2020).

Field sampling methods
Camera-trap surveys
Single season (dry summer—November to March) subsets of photographic data that were
collected in the Cederberg (2017–2018) and Piketberg (2019–2020) were used for our
study. The 73 camera-trap stations (n = 146 cameras) in the Cederberg were all located
within areas with protected status, whereas the 64 camera-trap stations (n = 128 cameras)
in Piketberg were situated in non-protected areas nestled between and on farmlands
(Fig. 1). Paired motion and heat detecting Cuddeback X-Change series camera-traps were
used at each camera station during both surveys. Our setup procedures followed standard
protocols optimised for the detection of leopards, whereby the landscape across both study
regions was divided into 50 km2 blocks (Fig. 1), based on the minimum estimated home
range size recorded for a female leopard with cubs in the Western Cape (37 km2;Martins,
2010; also see Müller et al., 2022a, 2022b). Camera-trap stations were dispersed across
mountainous habitat with mean distances of 2.78 km (Cederberg) and 3.09 km (Piketberg)
between individual stations and two to three stations per block (Fig. 1). Camera-trap
locations were selected based on the presence of tracks and signs of leopards and their
main natural prey species found in the nearby vicinity on initial site investigation. Cameras
were mounted ~40 cm above the ground and perpendicular to a game trail, road, or
drainage line. Camera-traps were serviced at an interval of roughly 8 weeks to download
images, change batteries, perform site data collection (i.e., recording covariates around
each site), and for general maintenance.

Covariate data

Environmental (i.e., altitude, vegetation type, vegetation age, nearest water source type and
its distance) and anthropogenic (i.e., distances to the nearest road and human habitation,
evidence of disturbance, livestock, and/or hunting) covariates surrounding each
camera-trap station were recorded during each servicing period (see Supplementary
Material, Table S1). Some categorical and binomial covariates were determined with a
repeated physical site inspection of the surroundings performed by a trained and
experienced individual covering a 100 m radius around each station (Table S1). Other
variables were determined by a combination of physical investigation, with recordings
made using a GPS unit (ETrex 10; Garmin, Olathe, KS, USA), and local knowledge
(Table S1). Any further verification was performed using Google Earth (Google, 2019) and
historical fire records (Table S1). The chosen covariates reflect natural and human-induced
factors that could influence predator and prey space-use or detection at each site.
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Data analyses
Camera-trap data
Camera Base software (Tobler, 2010) was used to process images and extract meta-image
information from each photograph (image name, date, and time) while correcting for any
time stamp errors. Faunal species and number of individuals in each photograph was
identified where possible. Primary analyses were performed using the Camera Trap
Analysis Package (CTAP) software developed by the Zoological Society of London (Amin
& Wacher, 2017). Only terrestrial mammals >0.5 kg, including leopard (see Charsley
(1977), Steyn & Funston (2006), and Balme & Hunter (2013) for examples of reported
cannibalism), were considered as potential leopard prey species for analyses. They are the
main target group for camera-traps set up in this manner and are also generally regarded
as the main dietary component of leopards (Hayward et al., 2006; Tobler et al., 2008;
Martins et al., 2010; Drouilly, Nattrass & O’Riain, 2018; Mann et al., 2019; Müller et al.,
2022a). Relative abundance indices (RAI; i.e., number of events, where an “event” is
defined as any image sequence for a given species occurring after an interval of ≥60 min
from a previous sequence of that species, per 100 days of camera trapping; Karanth &
Nichols, 1998; Amin et al., 2018) per camera-trap station were calculated for known main
prey species of leopards in the study area, sympatric meso-carnivores—caracal (Caracal
caracal, Schreber, 1776) and black-backed jackal (Canis mesomelas, Schreber, 1775)—and
leopards, and used as biotic covariates during occupancy modelling (Table S1). Despite
being influenced by sampling design or species’ behaviour (Sollmann et al., 2013), RAI is
still considered a suitable tool for assessing species occurrence (Hedwig et al., 2018; Palmer
et al., 2018).

Community structure
Biological communities can differ in species composition, total number of species
(richness), and the relative abundance of species (evenness) (Colwell, 2009). Species
sample-based rarefaction curves were constructed and the terrestrial medium-to-large
(>0.5 kg) mammal species richness (S), representing potential leopard prey species, was
estimated for each surveyed community using a non-parametric incidence-based estimator
Jackknife with order one (Bunge & Fitzpatrick, 1993). Livestock and other domestic species
were excluded from analyses. We calculated Simpson’s (Ds) and Shannon-Wiener (H’)
diversity indices for each community using global RAI values in the package ‘vegan’ in R
statistical software (see Table S2; Oksanen et al., 2019). Simpson’s diversity index is most
sensitive to changes in more common highly abundant species, while the Shannon-Wiener
diversity index is most sensitive to changes in rare less abundant species (Magurran, 2004).
Community structure plots representing the RAI as a factor of trophic level and mean
adult body weight of potential prey species were also constructed. Jaccard’s Index (J) and
the Sørensen’s Coefficient (CC) were calculated as measures of similarity, directly
comparing Piketberg and the Cederberg, using the following formulae:
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J ¼ A
Aþ Bþ C½ � CC ¼ 2A

2Aþ Bþ C½ �
A = Number of species shared by two communities,
B and C = Number of species unique to each of the two communities, respectively.
The latter places more emphasis on the shared species present rather than the unshared

and retains sensitivity in more heterogeneous data sets. Sørensen’s ecological distance
(DCC = 1 − CC) is therefore useful as many species may potentially be present in a
community, but not present in a sample from that community (Magurran, 2004).

Occupancy modelling

Naïve occupancy, defined as the proportion of sites that recorded at least one photograph
of the target species, was calculated for leopards of each community:

wna�ive ¼ # of sites detected
# of sites sampled

To accurately model occupancy, unique detection histories consisting of 1s (detection)
and 0s (non-detection) were created for leopards and their main prey species (i.e., baboon,
duiker, grysbok, hyrax, klipspringer, porcupine, and rhebok) in the Cederberg and
Piketberg. The unique detection histories reflected the presence or absence of each species
at each camera-trap site on each occasion (maximum value ‘1’ per 24 h period) for each
region. Original unique detection history datasets (Cederberg N occasions = 151; Piketberg
N occasions = 132) for each species were collapsed into data subsets by merging the
occasions into intervals of between five to 11-day sampling occasions. This was deemed
appropriate as it reduced each species dataset into manageable sizes for computational
purposes and accurately represented the rarity of the study species (Sollmann, 2018).

All continuous covariate values were scaled into standardized z-scores (Bruggeman
et al., 2016). Multi-collinearity was tested for by calculating variance inflation factors
(VIF), whereby covariates with VIF scores greater than three were removed (Wang et al.,
2018). A global occupancy model that included all ecologically relevant covariates (see
Table S1) was applied to the subsets of data for each species and tested for goodness-of-fit
(MacKenzie & Bailey, 2004). Subset data for each species that had the closest over
dispersion statistic (ĉ) to 1 (extreme values over (>3) or under 1 (<0.90) indicate poor fit of
the data) and an insignificant chi-square probability (χ2p > 0.05) was chosen for further
occupancy analyses (see Table S3; Mazerolle, 2017). This showed maximum model fit
without over compressing statistical power of the data (Burnham & Anderson, 2004;
MacKenzie & Bailey, 2004). Our study violates the assumption of spatial autocorrelation
and independence of camera-trap sites, which means that our results should be interpreted
within the context of area used (i.e., space-use) rather than area occupied (MacKenzie &
Nichols, 2004).

For each species, only combinations of covariates that could affect the two modelling
parameters (space-use probability, ψ, and detection probability, p) and that presented
ecologically reasonable hypotheses were included (McDonald et al., 2016). With such a
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large number of covariates, the set of candidate models that we might have examined was
extremely vast (Schuette et al., 2013). Therefore, we used a stepwise procedure following
Dugger, Anthony & Andrews (2011), whereby the first step was to model p by investigating
additive combinations of covariates while treating ψ as constant (i.e., intercept only).
For model selection, the over dispersion statistic (ĉ) estimated from the global model for
each species was used to compute quasi-likelihood information criteria (QAICc: for small
sample sizes) by scaling the log-likelihood of each model, for each species, by its
corresponding ĉ value (Mazerolle, 2017). Therefore, QAICc model-selections were used to
retain the best pmodel for each species to use in subsequent analyses of factors affecting ψ.
The second step was to model ψ by investigating additive combinations of covariates.
The package ‘unmarked’ (Fiske & Chandler, 2011) was used to fit models and to estimate
covariate coefficients for each parameter in R (version 4.1.2, R Development Core Team,
2017). The R package ‘AICcmodavg’ was used for all model selection computations
(Mazerolle, 2017).

The lowest DQAICc scores (<2) and highest QAICc weights (w >0.10) were used to
select the best-approximating models for each species in each community (see Tables S4
and S6; Burnham & Anderson, 2004). We drew conclusions about strength of evidence of
relationships between covariates and parameters based on 95% confidence intervals (CIs)
of coefficients and the direction of relationships (see Tables S5 and S7; Arnold, 2010).

RESULTS
A total of 10,114 operational camera-trap days (mean 140 days/station) were accumulated
in the Cederberg, with only one station failure (refer to Fig. 1). In Piketberg, 6,258
operational camera-trap days (mean 103 days/station) were accumulated, and three
camera-trap stations failed (Fig. 1). The outcomes of our study are unlikely to be affected
by this difference as sampling effort across both regions was sufficient (see Fig. 2) and
indices based on relative abundance values were employed, providing equal weight to both
communities, therefore allowing comparison.

Figure 2 Rarefied species accumulation curves for medium-to-large (>0.5 kg) terrestrial mammals
(i.e., potential leopard prey species) photographed in the Cederberg and Piketberg regions. Both
curves approach an asymptote, indicating sufficient sampling effort.

Full-size DOI: 10.7717/peerj.14575/fig-2
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Species richness
Piketberg had an estimated potential prey species richness (S = 26) similar to that of the
Cederberg (S = 27). The rarefied species accumulation curves do however show more species
detected per unit effort in the Cederberg compared to Piketberg (Fig. 2). Both the
Shannon-Wiener (H′) and Simpson diversity (Ds) indices were only marginally higher in the
Cederberg (H′ = 2.64,Ds = 0.90) compared to Piketberg (H′ = 2.46,Ds = 0.89). Thirty potential
natural prey species were photographed across the two regions (Cederberg: 27; Piketberg: 25),
with five species unique to the Cederberg and three to Piketberg (Table S2).

Community structure
Differences in community structure were largely complementary, providing a similar
pattern across trophic guilds for both the Cederberg and Piketberg (Fig. 3). The same
number of carnivore species were detected in both regions (n = 10), but no Cape fox
(Vulpes chama, Smith, 1833) or large grey mongoose (Herpestes ichneumon, Linnaeus,
1758) were recorded in the Cederberg, whereas black-backed jackal and water mongoose
(Atilax paludinosus, Cuvier, 1826) were not detected in Piketberg. Herbivores were the
most frequently encountered guild across both regions; more herbivorous species were
encountered in the Cederberg (n = 13) than in Piketberg (n = 11). Main leopard prey
species (i.e., baboon, duiker, grysbok, hyrax, klipspringer, porcupine, and rhebok) were all
accounted for in both communities (Table S2).

Across all guilds, global trap rates (RAIs) for species detected were generally higher in
Piketberg (Fig. 3 & Table S2). Noteworthy exceptions included hyrax (Cederberg: 4.05;
Piketberg: 3.16), klipspringer (Cederberg: 3.56; Piketberg: 2.41), and rhebok (Cederberg:
0.84; Piketberg: 0.14). A marked difference was the higher RAIs of all carnivores >4 kg—
including leopard (Cederberg: 3.52; Piketberg: 4.65)—as well as most medium (>0.5 kg and
<100 kg) herbivores, in the Piketberg region (Fig. 3 & Table S2). Baboons were the most
frequently detected species across both communities (Cederberg: 608 events; Piketberg:
592 events), followed by hyrax in the Cederberg (410 events) and porcupine in Piketberg
(540 events). No single species dominated (i.e., >50% of total trap rates) in any of the two
communities.

Figure 3 Distribution of medium-to-large (>0.5 kg) terrestrial mammals (i.e., potential leopard prey
species) in the Cederberg and Piketberg on the basis of body size and trophic category. Each circle
represents a species in functional space. The size of the circle is proportional to the trapping rate (RAI) for
that species. Full-size DOI: 10.7717/peerj.14575/fig-3
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High levels of similarity between the two study regions were shown by both the Jaccard’s
Index (J = 0.73) and Sørensen’s Coefficient (CC = 0.85). The Jaccard’s Index suggested that
73% similarity exists between the contrasting communities. Similarly, the Sørensen
Coefficient suggested that the ecological distance that separate the two regions is merely
15%, supporting close relatedness of ecological make-up in each community.

Spatial behaviour
Camera-trap stations were excluded from occupancy (i.e., space-use) analyses when
cameras were operational for <80% of occasions (see Fig. 1). Baboon and rhebok were
excluded due to insufficient model fit (Table S3). Only strong relationships with space-use
and detection probabilities are discussed (see Table 1). In essence, factors that strongly
influenced the spatial dynamics of leopards and their main prey species in the Cederberg
were primarily environmental (56%), whereas anthropogenic (32%) and biotic variables
(12%) played a less significant role (Table 1). In contrast, anthropogenic variables (41%)
dominated in Piketberg relative to notable influences by biotic (36%) and environmental
(23%) factors (Table 1).

Leopard
Leopards occurred across the landscape in both communities and were detected at 55
camera-trap stations in Piketberg and 60 stations in the Cederberg, providing naïve
occupancy estimates of 0.852 (Piketberg) and 0.833 (Cederberg) respectively. The spatial
dynamics of leopards differed between the Cederberg and Piketberg, except for both
leopard populations preferring to utilise areas further away from human habitations
(Table 1; Figs. 4A and 5A). In the Cederberg, leopards also preferred areas in closer
proximity to permanent rather than seasonal water sources (Table 1; Fig. 4B) but were
more likely to be detected further away from water (Table 1; Fig. 4E). Furthermore,
leopards of the Cederberg were generally less likely to be detected in areas where sympatric
meso-carnivores were more abundant (Table 1; Fig. 4C) and at higher altitudes (Table 1;
Fig. 4D). In Piketberg, leopards were less likely to be detected if present at sites
characterised by Sandveld vegetation and in areas utilised by livestock (Table 1; Figs.
5B–5E).

Main prey species

The space-use of grysbok, hyrax, klipspringer, and porcupine were influenced by slightly
different factors in the primarily protected Cederberg and agriculturally transformed
Piketberg (Table 1). None of the variables we considered were found to strongly influence
duiker space-use (Table 1). In the Cederberg, grysbok preferred areas farther away from
roads, porcupine preferred areas of older vegetation, while hyrax preferred areas
characterised by Karoo vegetation and seemingly avoided areas where caracal and
black-backed jackal were abundant. In Piketberg, both hyrax and klipspringer avoided
areas where caracal were more prevalent (black-backed jackal are absent), but porcupine
appeared to prefer areas that had greater caracal presence.

The detection probabilities (i.e., detectability) of these prey species were affected by
various combinations of factors across the greater landscape (Table 1). In both study
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Table 1 QAICc weights (w) for covariates from well-supported models (w > 0.10 and DQAICc < 2)
for each species (leopard + main prey) in each community. Either the direction of the relationship for
covariates from the best fit models or the parameter probability estimate (± standard deviation) for top
models are indicated in parentheses.

Species Parameter Covariate Cederberg Piketberg

Leopard Ψ Habitation 0.49 (+)* 0.12 (+)*

Water source (seasonal) 0.49 (−)* 0.14 (+)a

Prey 0.49 (−)a

Livestock (yes) 0.28 (−)a 0.14 (+)b

Altitude 0.26 (−)a

Null 0.33 (0.92 ± 0.04)

p Carnivores 0.49 (−)*

Altitude 0.49 (−)*

Water 0.49 (+)*

Prey 0.49 (+)a

Vegetation (Renoster) 0.33 (−)a

Vegetation (Riverine thicket) 0.33 (+)b

Vegetation (Sandveld) 0.33 (−)*

Livestock (yes) 0.33 (−)*

Duiker Ψ Road 0.72 (−)a

Altitude 0.72 (+)a

Carnivores 0.28 (+)a

Water source (seasonal) 0.28 (−)a

Caracal 0.17 (+)a

Water 0.13 (+)a

Disturbance (yes) 0.10 (+)a

Vegetation (Renoster) 0.10 (−)a

Vegetation (Riverine thicket) 0.10 (−)a

Vegetation (Sandveld) 0.10 (+)a

Null 0.22 (0.55 ± 0.08)

p Altitude 0.72 (−)* 0.22 (−)*

Leopard 0.72 (+)a 0.22 (−)*

Water 0.72 (+)*

Vegetation age 0.72 (−)*

Vegetation (Karoo) 0.72 (−)a

Habitation 0.72 (−)* 0.22 (−)*

Road 0.72 (−)a 0.22 (−)*

Grysbok Ψ Road 0.16 (+)*

Leopard 0.16 (+)a 0.18 (+)a

Water source (seasonal) 0.16 (−)a

(Continued)
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Table 1 (continued)

Species Parameter Covariate Cederberg Piketberg

Altitude 0.37 (+)a

Disturbance (yes) 0.15 (−)a

Vegetation (Karoo) 0.11 (+)a

Null 0.30

p Vegetation (Karoo) 0.16 (−)*

Road 0.16 (−)* 0.37 (−)*

Disturbance (yes) 0.16 (+)*

Leopard 0.37 (+)*

Altitude 0.37 (+)*

Habitation 0.37 (−)*

Hyrax Ψ Vegetation (Karoo) 0.36 (+)*

Carnivores 0.36 (−)*

Water 0.27 (+)a

Leopard 0.22 (+)a 0.24 (+)a

Disturbance (yes) 0.15 (−)a

Caracal 0.37 (−)*

Habitation 0.24 (+)a

p Vegetation (Karoo) 0.36 (+)*

Road 0.36 (+)*

Altitude 0.36 (−)*

Carnivores 0.36 (−)a

Leopard 0.37 (−)*

Caracal 0.37 (+)*

Klipspringer Ψ Altitude 0.32 (+)a

Water source (seasonal) 0.32 (+)a

Livestock (yes) 0.15 (+)a

Caracal 0.17 (−)*

Water 0.12 (+)a

Disturbance

Leopard 0.17 (−)a

p Vegetation (Karoo) 0.32 (+)*

Carnivores 0.32 (−)*

Disturbance (yes) 0.32 (−)*

Water source (seasonal) 0.17 (−)*

Water 0.17 (−)*

Road 0.17 (−)*
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regions, duiker were more likely to be detected (if present) nearer to human habitations
and at lower altitudes, grysbok were more likely to be detected in closer proximity to roads,
and klipspringer were more likely to be detected where meso-carnivores were less
abundant. Considering only the Cederberg, detectability of duiker was greater farther away
from water sources and lower in areas consisting of older vegetation. Detection of grysbok
was more likely in areas that showed signs of anthropogenic disturbance, but less likely at
sites characterised by Karoo vegetation. Similarly, the probability of detecting porcupine
was also lower in areas of Karoo as well as older vegetation, and greater in areas closer to
roads. By contrast, the detectability of both hyrax and klipspringer in the Cederberg was
greater within the Karoo biome. Furthermore, hyrax were more likely to be detected at
lower altitudes and farther away from roads, whereas the probability of detecting
klipspringer was less at anthropogenically disturbed sites. In Piketberg, detection
probability of klipspringer was greater closer to water, particularly permanent water
sources. Both klipspringer and duiker were also more likely to be detected in the vicinity of
roads in this region. Additionally, duiker, as well as hyrax, were less likely to be detected
where leopard RAI was greater. Instead, hyrax detectability increased as caracal RAI
increased. On the other hand, grysbok in Piketberg were more likely to be detected in areas
where leopards were seemingly more abundant. Their detection probability was also
greater at higher altitudes and in areas closer to human habitations. Detectability of
porcupine, however, was lower nearby human habitations. Yet, porcupine were more likely

Table 1 (continued)

Species Parameter Covariate Cederberg Piketberg

Caracal 0.17 (−)*

Porcupine Ψ Caracal 0.38 (+)*

Road 0.31 (−)a

Disturbance (yes) 0.30 (+)a

Vegetation age 0.38 (+)*

Water 0.38 (+)a

Leopard 0.18 (−)a

p Habitation 0.38 (+)*

Disturbance (yes) 0.38 (+)*

Altitude 0.38 (+)a

Vegetation (Karoo) 0.38 (−)*

Vegetation age 0.38 (−)*

Road 0.38 (−)*

Carnivores 0.38 (+)a

Notes:
* Strong evidence of relationship (CI estimates do not overlap 0).
a Medium evidence of relationship (CI estimates overlap 0, but are not centred on 0).
b Weak evidence of relationship (CI estimates overlap 0 and are centred on 0).
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to be detected in areas that showed other signs of anthropogenic disturbance across the
agriculturally transformed region.

DISCUSSION
Prevalence of leopards
Contrary to expectations, our results, in terms of both relative abundance indices (RAI:
Cederberg: 3.52; Piketberg: 4.65) and naïve occupancy (ψnaïve: Cederberg: 0.833; Piketberg:
0.852), suggest that leopards are at least as relatively widespread across the agriculturally
transformed Piketberg landscape, and potentially even more abundant, than they are in the
primarily protected Cederberg region. We similarly observed greater relative abundances
of all carnivorous species >4 kg shared between the two communities (Fig. 3 & Table S2).
Assuming comparable average activity levels, leopards of Piketberg may therefore occupy
smaller or more overlapping home ranges than leopards found in the Cederberg (refer to
Müller et al., 2022b). Recently, Snider et al. (2021) showed that it is indeed common for
free-roaming leopard home-range size to be smaller (inferring greater density) within areas

Figure 4 Detection and space-use (i.e., occupancy) probabilities for leopards with regards to variables with strong associations in the
Cederberg. Full-size DOI: 10.7717/peerj.14575/fig-4
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Figure 5 Detection and space-use (i.e., occupancy) probabilities for leopards with regards to
variables with strong associations in Piketberg. Full-size DOI: 10.7717/peerj.14575/fig-5
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of greater human population density. Alternatively, should activity levels differ greatly
between the two subpopulations, leopards could also occupy larger home ranges in
Piketberg (Neilson et al., 2018; Rogan et al., 2019). Since the relationship between
occupancy (or space-use), abundance, and density is influenced by the number of
individuals, home range size, and the degree of spatial overlap between individuals, neither
relative abundance nor the space-use parameter can be used to ascertain differences in
density with absolute certainty (Rogan et al., 2019). Nonetheless, greater predator
abundances can only be sustained by a greater relative carrying capacity (i.e., prey
availability). Higher RAIs were also noted in Piketberg compared to the Cederberg for
most medium sized (>0.5 kg and <100 kg) herbivores (Table S2), which are regarded as the
primary prey component for leopards (Hayward et al., 2006). Therefore, prey populations
in Piketberg appeared sufficient to facilitate and sustain relatively greater, potentially
denser, and at least as equally successful predator populations to those found in the
Cederberg. Notable differences that we observed in the RAIs of main leopard prey species
between the two study regions, however, suggests that leopard diet composition is likely to
differ (based on availability; Hayward et al., 2006) in the agriculturally transformed
landscape.

The main prey species considered in this study are known to comprise approximately
85% of the biomass consumed by leopards in the Cederberg (Müller et al., 2022a), while in
other areas of the Western Cape they comprise as much as 91% (Boland) and as little as
57% (Little Karoo) of leopard diets (Mann et al., 2019). Grey rhebok, klipspringer, and
rock hyrax were more abundant in the Cederberg, while Cape grysbok, Cape porcupine,
chacma baboon, and common duiker were more abundant in Piketberg (Table S2).
Leopards in the Cederberg appear heavily reliant on hyrax and klipspringer in particular,
which together constitutes ~61% of biomass consumed (Martins et al., 2010; Müller et al.,
2022a). Despite lower relative abundances recorded for both these prey species in
Piketberg (Table S2), where leopard diet composition remains unknown, the leopard
population here appeared unaffected. Our findings thus suggest the persistence of leopards
in this agriculturally transformed region, highlighting the adaptability, but also the
potential vulnerability, of these large apex predators. Leopards in the Soutpansberg and
Waterberg mountains (Limpopo Province) of South Africa have also been shown to thrive
outside of protected regions (Chase Grey, Kent & Hill, 2013; Swanepoel, Somers &
Dalerum, 2015), as is the case across a densely populated agricultural landscape in India
(Athreya et al., 2013). Therefore, together with our results, it is evident that a landscape
level approach is needed to ensure that the appropriate conservation policies, laws, and
practices are implemented (Athreya et al., 2013) to ensure the safeguard of leopards
throughout the entirety of their distributional range and not just in protected areas.
The importance of protected regions is, however, not to be underestimated (see
Mohammadi et al., 2021).

Natural prey species availability
Our camera surveys appear to have recorded almost all natural potential prey species
(mammals >0.5 kg) present, as the number of species captured was very close or equal to
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the total number estimated in both communities. Community composition of potential
prey species did differ, but niche composition remained relatively intact across both
regions, and each supports complete communities of carnivores and herbivores (Fig. 3).
Generally, carnivores do not play a significant role in leopard diet in the Western Cape
(Martins et al., 2010; Drouilly, Nattrass & O’Riain, 2018; Mann et al., 2019; Müller et al.,
2022a), although elsewhere small carnivores are commonly killed (Palomares & Caro,
1999; Hayward et al., 2006). Herbivores unique to each community in our study (gemsbok
in Cederberg; kudu in Piketberg: Table S2) were both large antelope species (>100 kg)
which also generally do not constitute a major component of leopard diet in the Western
Cape, except in the Little Karoo (Martins et al., 2010; Drouilly, Nattrass & O’Riain, 2018;
Mann et al., 2019; Müller et al., 2022a). Here, their marked presence in leopard diet has
been attributed to land-use change, characterised by an increase in game farming in recent
years (Mann et al., 2019). It is however improbable that the very low abundances
(Table S2) and limited distributions (detected at only one station each) we recorded for
these large antelopes in Piketberg would effectively support its leopard population. Instead,
predation on these introduced individuals would be likely to ultimately result in
farmer-predator conflict and increase the level of risk that leopards are exposed to
(Constant, Bell & Hill, 2015). Hence, the minor differences observed in potential prey
species composition and richness between the Cederberg and Piketberg are unlikely to
influence leopard diet substantially, and consequently population persistence, in the latter.

Variance of main prey species
Leopards in Piketberg are more likely to rely on alternative main prey species to those
primarily utilised in the Cederberg, based on observed differences in their perceived
availability in each community (Table S2). By considering the factors that strongly affects
habitat use of main prey species (Table 1), we broadly infer some potential underlying
drivers of these differences. Due to the inability to model probabilities of space-use and
detection for baboon and rhebok, we did not speculate on probable causes for differences
in their availability (i.e., RAIs). It should also be noted that our results for hyrax may be
unintentionally skewed because of their restricted habitat (being confined to rocky
outcrops; Skinner & Chimimba, 2005) not being accounted for in our camera set-up
procedures; we advise caution in interpretation thereof.

Unsurprisingly, the relative impact on prey species by anthropogenic factors
accompanying agricultural practices (e.g. roads, disturbances, habitations) was greater in
Piketberg, but not all species were negatively influenced (Table 1). In essence,
anthropogenic drivers were generally more likely to strongly influence preferred main prey
species of the Cederberg (hyrax and klipspringer) in a negative manner, but alternative
main prey species (duiker, grysbok, and porcupine) appeared less sensitive, some even
showing a potential preference for disturbed sites. These alternative prey species are
therefore likely to play a relatively larger role in leopard diet and facilitation of the leopard
population in Piketberg. The greater perceived abundance of duiker, grysbok, and
porcupine in the agriculturally transformed region may further be facilitated by a
preference for readily available crop food resources as these species are known to frequent
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the fringes of agricultural land (Birss, Relton & Selier, 2016; Bragg & Child, 2016; Palmer
et al., 2016). Elsewhere in the Western Cape, however, it has recently been shown that
duiker and grysbok both remain dependent on natural vegetation even within severely
transformed landscapes (Jansen van Vuuren, Fritz & Venter, 2022). We therefore believe
that suitable natural habitat within the mosaic Piketberg landscape plays a pivotal role for
sustaining these species. Thus, we promote the maintenance of natural vegetative corridors
within and between transformed lands. Remaining natural vegetation in Piketberg can
generally be considered denser than across the Cederberg, thereby having the potential to
further cater for grysbok and porcupine which are both known, and shown by this study, to
require sufficient vegetative cover (Bragg & Child, 2016; Palmer et al., 2016). In contrast,
the sparser Karoo vegetation of the Cederberg appear to be favoured by hyrax and
klipspringer (Birss et al., 2016; Visser &Wimberger, 2016). These two species also appeared
to be the most affected by top-down influences of predators as both species in both
communities seemingly avoided areas heavily utilised by caracal and black-backed jackal,
resulting in an indirect spatial overlap with leopards in the Cederberg. Interestingly,
leopard RAI strongly influenced main prey species in Piketberg only, exhibiting direct
overlap with grysbok. Yet again, hyrax and duiker in Piketberg appeared to be influenced
in an opposing manner. In the Cederberg and elsewhere, hyrax are particularly favoured as
prey by both leopard and caracal (Hayward et al., 2006;Müller et al., 2022a). It is thus also
plausible that hyrax may in fact experience significant predation pressure and therefore
their numbers and activity may appear relatively limited in areas shared more frequently
with leopards in Piketberg (Wittmer, Sinclair & Mclellan, 2005).

Livestock—an alternative food source?
Aside from alternative main prey species playing an important role, unnatural prey (i.e.,
livestock or domestic species) might also supplement leopard diet in Piketberg. In a
national park in Pakistan and a human-dominated landscape in India for example,
leopards have previously been shown to be almost completely dependent on livestock and
other domestic species as prey (Shehzad et al., 2015; Athreya et al., 2016). Our decision to
exclude livestock and other domestic species from abundance analyses was because the
vastly greater use of livestock proof fences in the Piketberg region prevented accurate and
comparable detection of livestock at camera-trap stations. While fences do not prevent the
movement of leopards across a landscape, the energetic costs to leopards that accompany
their presence may be a driving factor for the killing of more livestock (Wilmers et al.,
2017). Müller et al. (2022a) showed that 7% biomass of leopard diet in the Cederberg was
comprised of livestock. Subsequently, we believe a greater proportion can be expected in
Piketberg, which is a conclusion that seems to be supported by higher levels of livestock
predation events reported in recent years (C Luyt—Community Outreach Officer at the
Cape Leopard Trust, C Luyt, 2020, personal communications). Although not found to be
strongly correlated in either region, the inverse relationship between space-use by leopards
and presence of livestock in the two contrasting study regions (Table 1), is noteworthy.
Leopards in the Cederberg tended to avoid areas with signs of livestock, while in Piketberg
they appear to have shown a greater preference for areas with livestock. This observation
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could suggest a plausible tendency for greater reliance on livestock by leopards in
Piketberg. In the Cederberg, livestock roam more freely but tend to be guarded by herders,
whereas in Piketberg they are generally fenced and unguarded. Unguarded, fenced
livestock that are not completely predator-proofed may result in leopards being attracted
to livestock as prey, especially when preferred natural prey abundances are low (Odden,
Nilsen & Linnell, 2013; Khorozyan et al., 2015). This may subsequently result in an increase
in illegal retaliatory killings, making the leopard population in Piketberg particularly
vulnerable (Inskip & Zimmerman, 2009; Soofi et al., 2022).

Importantly, if livestock serve as regular prey, this has the potential to result in less
pressure and reduced ecological regulation of natural prey species, regarded as agricultural
pests (Norton, 1980; Kingdon, 1982; Estes, 1991; Skinner & Chimimba, 2005). Examples of
this have been described for other apex predators like snow leopards (Panthera uncia,
Schreber, 1775) in Nepal and dingoes (Canis lupis dingo, Meyer, 1793) in Australia
(Johnson & Wallach, 2016; Shrestha, Aihartza & Kindlmann, 2018). Conversely, leopards
that are less reliant on livestock as prey, provided sufficient preventative measures for
livestock predation are employed, can partially limit population explosions of their natural
prey species (O’Bryan et al., 2018). Effective preventative mitigation of conflict with crop
pests (i.e., prey species) may also cater for leopards, offering sufficient natural prey
availability in the future which may minimise livestock losses (Odden, Nilsen & Linnell,
2013; Khorozyan et al., 2015). Hence, leopards and their prey species can be regarded as
assets on a landscape scale, and pro-active (preventative and non-lethal) measures
employed together by livestock and crop farmers in an agricultural community can thus
benefit them both instead of either one indirectly inducing conflict onto the other.
We therefore agree with Du Toit, Cross & Valeix (2017) that a shift in attitude towards
asset management, rather than problem control by means of retaliatory killings, would be
advantageous as the removal of conflict-prone species is likely to be counter-productive for
the community (Conradie & Piesse, 2013; Lennox et al., 2018).

Impacts on leopard behaviour
Besides potential for retaliatory killings of leopards, a further direct negative impact due to
humans was reflected by the avoidance of human habitations by leopards in both study
regions (Table 1; Figs. 4A and 5A). This reiterates that anthropogenic development is
responsible for habitat loss (Swanepoel et al., 2013; Jacobson et al., 2016). Environmental
factors that directly dictated the spatial dynamics of leopards differed between the two
regions (Table 1). Greater detectability further away from water in the Cederberg, where
sources are presumably more limited, can be explained since leopards are largely
independent of water (Bothma, 2005). Leopards in this region did however show a
preference for areas closer to permanent (e.g. rivers; Table S1) rather than seasonal (e.g.
streams; Table S1) water sources, but this is likely to be a simple consequence of the
seasonal water sources being dry and unusable at the time of our study. The lower
detection probability of leopards in Sandveld vegetation and areas presumably used for
grazing in Piketberg indicate that fine-scale habitat utilisation by leopards is likely to be
selective and affected by agricultural activities. The influence of altitude observed in the

Greyling et al. (2023), PeerJ, DOI 10.7717/peerj.14575 21/33

http://dx.doi.org/10.7717/peerj.14575/supp-1
http://dx.doi.org/10.7717/peerj.14575/supp-1
http://dx.doi.org/10.7717/peerj.14575
https://peerj.com/


Cederberg is assumed to be a consequence of the slightly higher density recorded for
leopards in the region during the summer months, which relates to individuals occupying
smaller home ranges on the more accessible lower mountain slopes at this time of year
(Müller et al., 2022b). Finally, the relationship we observed between leopards and
meso-carnivores in the Cederberg is consistent with the conclusions of Müller et al.
(2022a): caracal (meso-predator) tend to avoid leopards (apex predator) in time and space.
Interestingly, the availability of natural main prey species did not directly dictate spatial
utilisation by leopards, which is probably because leopards (and natural prey) occurred
widely across the study area. It is important to note that the impacts we observed on the
behaviour of various main prey species, both environmental and anthropogenic, do have
the potential to indirectly affect leopards going forward. Therefore, continuous monitoring
and evaluation of the environmental and anthropogenic factors affecting the ecology of
both leopards and their natural prey is of vital importance to ensure the persistence of
leopards in both protected and unprotected areas.

Study limitations
Potential criticisms of our study are that data were collected roughly 2 years apart, and that
we investigated factors influencing behaviour only at a single spatial scale. We are aware
that community structure could be influenced by weather on a seasonal or annual basis.
The Western Cape experienced a relatively dry year (South African Weather Service, 2021)
prior to the Cederberg survey and recorded precipitation of 212.9 mm below the annual
mean (2017; Data provided by www.meteoblue.com) in the region. A precipitation
anomaly of 139.9 mm below the mean (2019; Data provided by www.meteoblue.com) was
also noted prior to the survey in the Piketberg region. Nonetheless, Müller et al. (2022b)
showed that the leopard population in the Cederberg remained relatively stable during the
decade prior to, and including, our study period. Currently, the same quantitative insight
does not exist for the Piketberg community, highlighting a need for long-term population
monitoring. Ideally, ecological modelling should aim to incorporate different orders of
scale (e.g. Pitman et al., 2017), but this is not always practical. We concur that spatial scale
must, however, be accounted for in conservation decision-making.

CONCLUSIONS
Our findings exemplify how severely transformed, commercial agricultural regions have
the potential to facilitate biological diversity—including apex predators—to (at least) the
same standard as analogous protected landscapes (also see Linell, Swenson & Andersen,
2001). Indeed, no real differences were apparent between the potential prey species
composition or richness, or the prevalence of leopards, in the agriculturally transformed
Piketberg and the primarily protected Cederberg communities. Despite the preferred prey
species of leopards in the Cederberg being relatively less abundant in Piketberg, the leopard
population here seemingly persevere. We believe that greater utilisation of alternative main
prey species to those preferred in the Cederberg, likely further subsidised by livestock,
facilitates persistence of the Piketberg leopard population. Consequently, this adaptation is
a probable driving factor of high levels of human-wildlife conflict. Therefore, in the context
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of mixed-farming communities, we argue that a holistic multi land-use, multi-species
(predator and prey), pro-active management approach, that encourages co-existence and
aims to limit the cascade of ecosystem effects that could follow human-induced changes to
the landscape, can benefit both livestock and crop farmers. Ultimately, such a collaborative
and holistic approach can provide incentive to conserve apex predators and their prey and
is therefore useful to ensure the conservation of apex predators on working lands
worldwide. Furthermore, we also provide insights on the different combinations of factors
influencing the spatial dynamics of leopards and their main prey species. In essence, this
study can be used to inform conservation policies that aim to cater for free-roaming
leopards in commercial agricultural landscapes, and act as a baseline for ecological
monitoring of the Piketberg community, thereby guiding adaptive management going
forward. We encourage further detailed investigation of the leopard population in
Piketberg, including density, home-range, population structure, dietary and
human-wildlife (both leopards and their prey) conflict analyses, to further inform local
conservation management decision-making and maintain its leopard population into the
future.
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