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ABSTRACT

To improve the accuracy of preoperative diagnoses and avoid over- or undertreatment,
we aimed to develop and compare computed tomography-based radiomics machine
learning models for the prediction of histological invasiveness using sub-centimeter

subsolid pulmonary nodules. Three predictive models based on radiomics were built
using three machine learning classifiers to discriminate the invasiveness of the sub-

centimeter subsolid pulmonary nodules. A total of 203 sub-centimeter nodules from
177 patients were collected and assigned randomly to the training set (n = 143) or

test set (n=60). The areas under the curve of the predictive models were 0.743 (95%
confidence interval CI [0.661-0.824]) for the logistic regression, 0.828 (95% CI [0.76—
0.896]) for the support vector machine, and 0.917 (95% CI [0.869-0.965]) for the

XGBoost classifier models in the training set, and 0.803 (95% CI [0.694-0.913]), 0.726
(95% CI [0.598—-0.854]), and 0.874 (95% CI [0.776-0.972]) in the test set, respectively.
In addition, the decision curve showed that the XGBoost model added more net benefit
within the range of 0.06 to 0.93.

Subjects Bioinformatics, Computational Biology, Radiology and Medical Imaging, Respiratory
Medicine

Keywords Radiomics, Machine learning, CT images, Sub-centimeter subsolid pulmonary
nodules, Invasiveness

INTRODUCTION

Owing to advances in medical imaging technology and the wide application of low-
dose computed tomography (CT), the detection of pulmonary nodules has drastically
increased over the past decade. Among these, subsolid nodules (SSNs), which behave as
ground-glass opacities on a CT scan, have drawn significant attention. The Dutch—Belgian
Randomized Lung Cancer Screening Trial (Nederlands Leuvens Longkanker Screenings
Onderzoek; NELSON) has shown that SSNs are detected in 3.3% of patients (Scholten et al.,
2015). In another study in Chinese medical staff, SSNs diagnosed as adenocarcinoma via
histopathology were detected in 2.0% of cases (Zhang et al., 2020). However, preoperative
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diagnose of SSNs remains an unresolved issue, and the accurate diagnosis and detection of
early triggers have become a key topic in public health. In the present study, we focused
specifically on the subtype of sub-centimeter SSNs.

The pulmonary nodule is defined as an area of increased attenuation of the lung in
a CT scan with a diameter of less than 30 mm (Erasmus et al., 2000). Depending on the
component of the nodule, it can be classified into two subtypes: a solid or a subsolid nodule.
A subsolid nodule is defined as an area that partly or entirely disappears in the mediastinal
window of a CT scan (Bueno, Landeras ¢ Chung, 2018; Clark et al., 2015) and presents with
a variety of histopathological findings. On the one hand, it can be a benign lesion, such as
focal fibrosis, inflammation, bleeding, or a precancerous lesion (e.g., atypical adenomatous
hyperplasia [AAH]). On the other hand, it can be adenocarcinoma in sifu (AIS), minimally
invasive adenocarcinoma (MIA), or invasive adenocarcinoma (IAC) (Henschke et al., 2002;
Hutchinson, Moreira & Ko, 2017; Travis et al., 2015). Usually, AAH and AIS are considered
preinvasive lesions, whereas MIA and IAC are regarded as invasive lesions (Travis et al.,
2015).

The screening of I-ELCAP (the International Early Lung Cancer Action Program)
indicated that 34% of SSNs are malignant, whereas only 7% of solid nodules are
malignant (Yip et al., 2015). According to the international multidisciplinary classification
of lung adenocarcinoma published in 2015, wedge resection and segmental resection
without lymph node dissection are recommended before lesions reach the level of
invasive adenocarcinoma. Conversely, for IAC, lobectomy and lymph node dissection
are recommended (Goldstraw et al., 2016 Liu et al., 2016). Moreover, Fu et al. (2021a)
reported that SSNs with a diameter of more than 10 mm are more often diagnosed
as IAC. Therefore, preoperative diagnosis of sub-centimeter SSNs is crucial. To date,
numerous studies have focused on SSNs; however, research on sub-centimeter nodules
is scarce (Meng et al., 2021; She et al., 2017; Sun et al., 2019; Sun et al., 2020). Therefore,
improving the accuracy of preoperative diagnoses of subsolid sub-centimeter nodules and
providing a reference for clinicians is particularly important.

At present, preoperative diagnosis methods for sub-centimeter SSNs include (Godoy &
Naidich, 2012), (1) CT characteristics, such as diameter, density, spiculation, lobulation,
cavity, bubble-like lucency, air bronchogram, vascular breakthrough sign, and pleural
indentation sign; (2) positron emission tomography (PET)-CT; and (3) biopsy. The
limitation of CT characteristics is the difficulty in achieving interobserver agreement of
findings. The limitation of PET-CT is that the maximum standard uptake values of SSNs
are generally low (Nomori et al., 2004). Successful biopsy cannot be guaranteed because
the diameter of the nodule is small, and the rate of false negatives is high (Ng ef al., 2008;
Ricciardi et al., 2021). Moreover, biopsy is a highly invasive method. Totally, there is an
urgent need for a different approach to provide reference for preoperative decisions.

In 2012, Lambin et al. (2017) developed the concept of radiomics, which overcame
the limitations of existing techniques (Lambin et al., 2012). Currently, radiomics has
been applied widely to diagnosis, staging, efficacy assessment, and prognosis. Moreover,
a considerable number of studies have demonstrated that radiomics is helpful for the
preoperative diagnosis of SSNs (Meng et al., 20215 She et al., 2017; Sun et al., 2019; Sun et
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al., 2020). Therefore, we conducted a retrospective review of patients who had undergone
surgery for sub-centimeter SSNs to evaluate the performance of CT-based radiomics
machine learning models for discriminating the invasiveness of subsolid sub-centimeter
nodules.

MATERIALS AND METHODS

Patient selection

In this retrospective study, we obtained the medical records of patients who had undergone
surgical resection at our hospital from 2019 to 2021 and whose nodules had been confirmed
to be adenocarcinoma spectrum lesions. The cases met the following inclusion criteria: (1)
the maximum diameter of the SSN in the largest slice in the CT scan was < 10 mm; (2) the
lesion was confirmed as AAH, AIS, MIA, or IAC via histopathology; (3) the preoperative
CT scan had a slice thickness of < 1.5 mm; (4) the interval between the preoperative CT
scan and surgical resection was < 1 month. The exclusion criteria for the study were: (1)
confirmation of histopathological result by biopsy or bronchoscopy; (2) the patient had
undergone other therapies for tumors, such as chemotherapy, radiotherapy, and targeted
therapy. The cases were divided into two groups depending on histological invasiveness:
Group A (AAH/AIS/MIA) and Group B (IAC). According to the ratio of cases in Group A
and B, the cases were divided into two sets: 70% of cases were divided into the training set,
and 30% of cases were divided into the test set.

CT image acquisition

The CT examination was performed on a Definition AS 40-detector (Siemens Healthineers,
Erlangen, Germany), a Definition Flash 64-detector and Dual-energy Force (Siemens
Healthineers), a Somatom EMOTION 16-detector (Siemens Healthineers), and an IQon
64-detector and Dual-energy Force (Philips Healthcare, Amsterdam, Netherlands). Scans
covered the area between the thorax inlet and the bilateral adrenal glands in the supine
position. The scanning parameters were as follows: 120 kV, automatic tube current,
pitch 0.75-1.5, field of view 336 x 336 mm, and resolution 512 x 512. CT images were
interpreted by two experienced pulmonologists who were blinded to the histopathological
diagnosis in the lung and mediastinal windows. The following subjective features of the
lesion were recorded: (1) component of the lesion (part solid or non-solid), (2) lesion
diameter (the maximum diameter in the largest slice), (3) lesion location, and (4) the
characteristics of the lesion, including lobulation (absent, present), spiculation (absent,
present), bubble-like lucency (absent, present), cavity (absent, present), pleural indentation
sign (absent, present), vascular breakthrough sign (absent, present), sharp (round or oval,
irregular or polygonal), and margin (clear, unclear).

Histopathological analysis

Surgical specimens were analyzed separately by two experienced pathologists blinded

to the CT findings, according to the 2015 International Association for the Study of
Lung Cancer/American Thoracic Society, the European Respiratory Society classification
system 2015 (McKee et al., 2016), and the World Health Organization classification of lung
neoplasms (Travis et al., 2011).
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Figure 1 Schematic processes of the nodule segmentation. (A) Original CT image of the nodule; (B) 2D
segmentation result of the nodule; (C) 3D volumetric reconstruction of the nodule.
Full-size & DOI: 10.7717/peer;.14559/fig-1

Nodule segmentation

At present, semi-automatic segmentation remains a relatively reliable method (Owens et
al., 2018). Segmentation was performed using 3D Slicer 4.11 (https:/slicer.org/). First, CT
images were downloaded to the workstation from the picture archiving and communication
system. Second, one pulmonologist outlined the margin of the nodule slice-by-slice. The
software then automatically calculated the region of interest (ROI) in three dimensions
according to the selected region (Fig. 1). In addition, the mean and standard deviation
(SD) of the CT attenuation of the lesion were calculated by the software. Finally, another
pulmonologist reviewed the processes and results. In order to reduce the heterogeneity bias
caused by different CT scanners or parameters, ROIs were resampled after segmentation.

Radiomics feature extraction

Radiomics feature extraction was performed using pyRadiomics (https:/pyradiomics.
readthedocs.io/), which is an open-source Python package. The types of features extracted
included: (1) first-order statistics; (2) shape-based 3D; (3) shape-based 2D; (4) Gray
Level Co-occurrence Matrix (GLCM); (5) Gray Level Run Length Matrix (GLRLM); (6)
Gray Level Size Zone Matrix (GLSZM); (7) Neighboring Gray Tone Difference Matrix
(NGTDM); and (8) Gray Level Dependence Matrix (GLDM). In addition, there were
eight filters that could transform the original images to obtain further features from the
transformed images, which included: (1) Wavelet; (2) LoG; (3) Square; (4) SquareRoot;
(5) Logarithm; (6) Exponential; (7) Gradient; (8) Local Binary Pattern 2D (LBP2D); and
(9) Local Binary Pattern 3D (LBP3D). In total, more than 1,700 radiomics features were
extracted.

Radiomics feature selection and predict model construction

The process of radiomics feature selection from the radiomics feature data extracted from
the training set was as follows: (1) removal of the redundant features with a Pearson
correlation coefficient >0.9; (2) removal of the features with a p > 0.05 in the Mann—
Whitney U test; (3) retaining features filtered by the least absolute shrinkage and selection
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operator (LASSO). Using the retained features, three machine learning models were
constructed according to three classifiers using the training set for differentiating Group A
(AAH/AIS/MIA) from Group B (IAC). The classifiers included a logistic regression (LR)
classifier, a support vector machine (SVM) classifier, and an XGBoost (XGB) classifier.
After the models were constructed, the training dataset and test dataset were fitted to the
model to calculate the area under the receiver operator characteristic (ROC) curve (AUC),
sensitivity, specificity, and accuracy. Differences in the ROC curves between the training
and test sets were assessed using the Delong test. To compare the clinical benefit between
the different models, we performed decision curve analysis (DCA) by calculating the net
benefit for a range of threshold probabilities based on all datasets (Vickers et al., 2008).

Statistical analysis

All statistical analyses and calculations were conducted using R version 4.2.0 (https:
[wrww.r-project.org/) (R Core Team, 2022). LASSO was performed using “glmnet”. The
ROC analysis and DeLong tests were performed using “pROC”. DCA was plotted using
“rmda”. Data division and model construction were conducted using “caret”, “kernlab”,
and “XGBoost”. AUCs are presented with 95% confidence intervals (Cls), which were
bootstrap bias corrected. All statistical tests were two-tailed, and p-values less than 0.05 were
considered statistically significant. The differences of continuous variables were assessed
by Kruskal-Wallis Rank Sum test. The differences of categorical variables were assessed by

Fisher’s exact test.

Ethics approval and consent to participate

Our study was approved by Shenzhen Second People’s Hospital Clinical Research Ethics
Committee, and the requirement for informed consent was waived. (Approval Number:
2022035).

RESULTS

The characteristics of the cases are summarized in Table 1. A total of 203 sub-centimeter
nodules from 177 patients (49 males, 128 females; mean age: 50.6 £ 12.04 years) were
included and assigned randomly to the training set (n = 143) or test set (n = 60). Among
the lesions, 104 SSN's were confirmed as IAC and 99 were classified as AAH/AIS/MIA. No
significant differences in age, sex, component, location, lobulation, spiculation, bubble-like
lucency, cavity, pleural indentation sign, sharp, or margin were found between Group A
(AAH/AIS/TAC) and B (IAC) in either the training or test sets. However, the mean and SD
of CT attenuation differed significantly between the two groups (p < 0.05).

In total, 1,781 radiomics features were extracted. After correlation analysis and the
Mann-Whitney U tests, 1027 radiomics features were retained. The LASSO with a k-fold
(k =10) cross-validation yielded an optimal A value of 0.07718 and a corresponding log
(1) value of —2.562. There were 10 radiomics features with non-zero coefficients (Figs. 2
and 3), which included firstorder_Maximum, glszm_LargeAreaLowGrayLevelEmphasis,
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Table 1 Summary of the characteristics of cases.

Training Set Test Set
Total AAH/AIS/MIA IAC p Total AAH/AIS/MIA IAC P
(n=143) (n=70) (n=73) (n=60) (n=29) (n=31)
AGE (years) 50.0+11.4 49.1 £10.0 50.8 + 12.5 0.356 519+ 13.5 50.1 +£13.2 53.5+ 13.8 0.337
SEX 0.149 0.438
Male 43 (30.1%) 25 (35.7%) 18 (24.7%) 12 (20.0%) 7 (24.1%) 5 (16.1%)
Female 100 (69.9%) 45 (64.3%) 55 (75.3%) 48 (80.0%) 22 (75.9%) 26 (83.9%)
DIAMETER 0.73 £0.19 0.69 £ 0.20 0.77 £ 0.18 0.025 0.73 £ 0.20 0.68 £0.17 0.77 £ 0.21 0.061
(mm)
COMPONENT 0.258 0.881
Part-solid 110 (76.9%) 51 (72.9%) 59 (80.8%) 45 (75.0%) 22 (75.9%) 23 (74.2%)
Non-solid 33 (23.1%) 19 (27.1%) 14 (19.2%) 15 (25.0%) 7 (24.1%) 8 (25.8%)
LOCATION 0.674 0.695
Left Up- 43 (30.1%) 25 (35.7%) 18 (24.7%) 19 (31.7%) 11 (37.9%) 8 (25.8%)
per Lobe
Left 15 (10.5%) 7 (10.0%) 8 (11.0%) 13 (21.7%) 6 (20.7%) 7 (22.6%)
Lower
Lobe
Right Up- 38 (26.6%) 16 (22.9%) 22 (30.1%) 16 (26.7%) 7 (24.1%) 9 (29.0%)
per Lobe
Right 10 (7.0%) 5(7.1%) 5 (6.8%) 7 (11.7%) 2 (6.9%) 5(16.1%)
Middle
Lobe
Right 37 (25.9%) 17 (24.3%) 20 (27.4%) 5(8.3%) 3 (10.3%) 2 (6.5%)
Lower
Lobe
LOBULATION 0.711 0.931
Absent 130 (90.9%) 63 (90.0%) 67 (91.8%) 54 (90.0%) 26 (89.7%) 28 (90.3%)
Present 13 (9.1%) 7 (10.0%) 6 (8.2%) 6 (10.0%) 3 (10.3%) 3 (9.7%)
SPICULATION 0.324 0.638
Absent 118 (82.5%) 60 (85.7%) 58 (79.5%) 51 (85.0%) 24 (82.8%) 27 (87.1%)
Present 25 (17.5%) 10 (14.3%) 15 (20.5%) 9 (15.0%) 5(17.2%) 4 (12.9%)
BUBBLE- 0.581 0.460
LIKE LU-
CENCY
Absent 83 (58.0%) 39 (55.7%) 44 (60.3%) 36 (60.0%) 16 (55.2%) 20 (64.5%)
Present 60 (42.0%) 31 (44.3%) 29 (39.7%) 24 (40.0%) 13 (44.8%) 11 (35.5%)

(continued on next page)
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Table 1 (continued)

Training Set Test Set
Total AAH/AIS/MIA IAC P Total AAH/AIS/MIA IAC P
(n=143) (n=170) (n=73) (n=60) (n=29) (n=31)
CAVITY 0.780 0.962
Absent 134 (93.7%) 66 (94.3%) 68 (93.2%) 58 (96.7%) 28 (96.6%) 30 (96.8%)
Present 9 (6.3%) 4(5.7%) 5 (6.8%) 2 (3.3%) 1 (3.4%) 1(3.2%)
PLERUAL 0.780 0.185
INDENTA-
TION SIGN
Absent 134 (93.7%) 66 (94.3%) 68 (93.2%) 55 (91.7%) 28 (96.6%) 27 (87.1%)
Present 9 (6.3%) 4(5.7%) 5 (6.8%) 5 (8.3%) 1(3.4%) 4(12.9%)
VASCULAR 0.004 0.655
BREAKTHROU-
GH SIGN
Absent 47 (32.9%) 31 (44.3%) 16 (21.9%) 15 (25.0%) 8 (27.6%) 7 (22.6%)
Present 96 (67.1%) 39 (55.7%) 57 (78.1%) 45 (75.0%) 21 (72.4%) 24 (77.4%)
SHARP 0.832 0.931
Round or 130 (90.9%) 64 (91.4%) 66 (90.4%) 54 (90.0%) 26 (89.7%) 28 (90.3%)
oval
Irregular 13 (9.1%) 6 (8.6%) 7 (9.6%) 6 (10.0%) 3 (10.3%) 3 (9.7%)
or polygo-
nal
MARGIN 0.080 0.833
Clear 90 (62.9%) 39 (55.7%) 51 (69.9%) 36 (60.0%) 17 (58.6%) 19 (61.3%)
Unclear 53 (37.1%) 31 (44.3%) 22 (30.1%) 24 (40.0%) 12 (41.4%) 12 (38.7%)
Mean CT at- —663.26 £ 102.56 —685.36 £ 93.10 —642.06 £+ 107.28 0.011 —657.46 99.14 —687.61 £ 76.30 —629.26 £ 110.44 0.021
tenuation
(HU)
SD of CT at- 141.1 £54.9 129.8 £+ 55.1 151.9 + 52.7 0.015 1453 £ 624 127.0 £ 55.0 162.5 + 64.9 0.026
tenuation
(HU)
Notes.

The differences of continuous variables were assessed with the Kruskal-Wallis Rank Sum test. The differences of categorical variables were assessed by Fisher’s exact test.
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Figure 2 Radiomics features are selected via least absolute shrinkage and selection operator (LASSO)
logistic regression. (A) The tuning parameter (1) is selected by 10-fold cross-validation with minimum
criteria. Log(A) (x-axis) was used to plot the binomial deviance (y-axis). The dotted vertical lines were
drawn at the optimal value of A, which is the point where the model fits the data best. Log(A) = —2.562,
while A was optimally valued at 0.07718. (B) The LASSO coefficient profiles of all the features. As shown
in the plot, the dotted vertical line corresponds to the value selected by k-fold (k = 10) cross-validation,
where 10 optimal features with non-zero coefficients were indicated in the plot.

Full-size & DOI: 10.7717/peerj.14559/fig-2

glszm_LowGrayLevelZoneEmphasis, wavelet-LHL_firstorder_Minimum, wavelet-
LHL_glem_InverseVariance, wavelet-HLL_gldm_DependenceNonUniformity, wavelet-
HLH_glem_Imc2, wavelet-HHH_firstorder_Skewness, wavelet-LLL_firstorder_RootMeanSquared
and squareroot_ngtdm_Strength.

Using these 10 radiomics features, three machine learning models were built using the
LR, SVM, and XGB classifiers. An overview of the results is provided in Table 2 and Fig. 4.
In the training set, the predictive accuracies of the three models were 0.720 for LR, 0.762
for SVM, and 0.881 for XGB. Those in the test set were 0.750 for LR, 0.700 for SVM, and
0.850 for XGB. The AUC:s of the predictive models were 0.743 (95% CI [0.661-0.824]) for
LR, 0.828 (95% CI [0.760-0.896]) for SVM, and 0.917 (95% CI [0.869-0.965]) for XGB in
the training set, and 0.803 (95% CI [0.694-0.913]) for LR, 0.726 (95% CI [0.598-0.854])
for SVM, and 0.874 (95% CI [0.776-0.972]) for XGB in the test set. The predictive
performance of the radiomics models in the test set was not significantly different from
that in the training set (Delong tests: p > 0.05). These results indicated that the machine
learning models were beneficial for discriminating between IAC and AAH/AIS/MIA with
subsolid sub-centimeter pulmonary nodules. The DCA results of the three models are
presented in Fig. 5. The decision curve showed that the XGB model offered a greater net
benefit than the LR and SVM models within the threshold probability ranges of 0.06 to
0.93. Among the three predictive models, the XGB model had the best performance.
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Figure 3 Ten filtered radiomics features with non-zero coefficients. Y -axis represented the values of
coefficients.
Full-size Gl DOI: 10.7717/peerj.14559/fig-3
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Figure 4 The ROC curves for the diagnosis of three radiomics models in the training set and test sets.
Full-size Gal DOI: 10.7717/peerj.14559/fig-4

DISCUSSION

For many years, SSNs were considered one of the imaging manifestations of pneumonia
until it was revealed that SSNs can be early-stage lung cancer (Jang et al., 1996; Kuriyama
et al., 1999). Because lung cancer is usually asymptomatic in the early stage, early detection
is challenging. The global lung cancer mortality rate is the highest of all cancers, with 1.08
million deaths in 2020 (Ferlay et al., 2020). Moreover, there has been a significant increase
in the prevalence of adenocarcinoma, which is now the most prevalent type of lung cancer,
accounting for 50% of all lung cancer diagnoses (Bray et al., 2018; Nagy-Mignotte et al.,
2011; Barta, Powell & Wisnivesky, 2019). Thus, lung adenocarcinoma is a highly relevant
topic in public health research.
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Table2 Performance of the three radiomics models on the training sets and the test sets.

Training Set Test Set Delong
Test
AUC Accuracy Sensitivity Specialty AUC (95%CI) Accuracy Sensitivity Specialty 4
(95%CI)
LR 0.743 0.720 0.644 0.800 0.803 (0.694-0.913) 0.750 0.710 0.793 0.387
(0.661-
0.824)
SVM 0.828 0.762 0.740 0.786 0.726 (0.598-0.854) 0.700 0.710 0.690 0.172
(0.76-
0.896)
XGB 0.917 0.881 0.918 0.843 0.874 (0.776-0.972) 0.850 0.935 0.759 0.446
(0.869-
0.965)
=
o
— SVWM
—— Xgboost
Logistic Regression
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Figure 5 Decision curve analysis of the prediction models. The y-axis represented the net benefit. The
red line represented the SVM model. The blue line represents the XGB model. The yellow line represented
the LR model. The gray line represented the assumption that all patients had ICA. The black line repre-
sented the hypothesis that none of patients had ICA. The x-axis represented the threshold probability. The
threshold probability was where the expected benefit of treatment as ICA was equal to the expected bene-
fit of treatment as AAH/AIS/MIA. The decision curve showed that the XGB model added more net benefit
than the SVM model or the LR model within the range of 0.06 to 0.93.

Full-size Gl DOI: 10.7717/peerj.14559/fig-5
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In CT images, lung adenocarcinomas may appear as ground-glass nodules during the
earliest stages. In histopathology, AAH, AIS, MIA, and IAC are considered a spectrum
of adenocarcinomas (Bray et al., 2018). In the lining of alveolar walls or respiratory
bronchioles, AAH is characterized by a limited proliferation of mildly to moderately
atypical type II pneumocytes and/or Clara cells. AIS is a localized small adenocarcinoma
that grows within pre-existing alveolar structures, without invaders from the stroma, blood
vessels, or pleura. MIA is a small, solitary adenocarcinoma, with a predominantly lepidic
pattern and a maximal 5-mm invasion in the greatest focus. The prognosis of IAC differs
significantly from that of MIA and AIS. Following surgery for a preinvasive lesion and
MIA, patients have a 5-year survival rate of roughly 100%. In contrast, the progression-free
survival rate for patients with TAC is 74.6% (Goldstraw et al., 2016; Liu et al., 2016). Thus,
a well-performing predictive model using radiomics features and machine learning may
provide a reference for surgeons and the public.

Zhang et al. (2019) constructed a histogram analysis and reported a sensitivity of 0.794
and specificity of 0.914 for differentiating AIS/MIA from IAC. However, their inclusion
criteria included lesions measuring < 30 mm. Shi et al. (2021) demonstrated that radiomic
features could be applied for predicting the invasiveness of SSNs measuring 5-10 mm
in diameter; the AUC of their model was only 0.831 in the training set and 0.792 in an
internal test set. Jiang et al. (2021) also used radiomics features to distinguish IAC from
MIA (accuracy = 0.768, AUC = 0.892), but their study only included 53 cases of IAC and
47 cases of MIA. Our study developed novel models for predicting the risk of IAC from
sub-centimeter subsolid nodule imaging data with good performance. In particular, the
XGB model showed an accuracy of 0.881 in the training set and 0.850 in the test set for
differentiating IAC from AAH/AIS/MIA. The sensitivity and specificity were all above 0.750
in both sets. In addition, ROC curves revealed AUCs of 0.917 (95% CI [0.869—-0.965]) and
0.874 (95% CI [0.776-0.972]) for the training and test sets, respectively, demonstrating that
the radiomics machine learning models may provide a reference for surgeons to evaluate
the invasiveness of sub-centimeter SSNs accurately and avoid over- or undertreatment. In
addition, DCA demonstrated that the XGBoost model was more clinically useful.

Usually, objective CT characteristics are used to evaluate the invasiveness of SSNs in
clinical practice (Ricciardi et al., 2021). However, it’s not reliable when we evaluate the
sub-centimeter SSNs. Firstly, the effectiveness of using objective CT characteristics is still
controversial. Some studies suggested the mean and SD of CT attenuation as factors for
evaluating the invasiveness of SSNs (She et al., 2017; Kitami et al., 2016), but other studies
have reported no correlation between mean and SD of CT attenuation and invasiveness and
shown that only lesion size is the influencing factor (Fu et al., 2021b). Whether the mean
and SD of CT attenuation reflect the invasiveness of SSNs remains inconclusive. Secondly,
in contrast to larger nodules, sub-centimeter SSN's lack obvious different morphological CT
signs, such as lobulation, spiculation, cavity, and bubble-like lucency (Chen et al., 2021; Wu
et al., 2017). Similarly, the present analysis showed that these morphological CT signs were
not independent predictors of IAC, indicating that nodules without these morphological
features should not be ignored. Thirdly, agreement on evaluations of morphological CT
signs between clinicians is often low (Zhao et al., 2019).
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In contrast to objective CT features, radiomics converts image data into quantitative data
using high-throughput mining. The massive data obtained contribute to diversity analysis
in higher dimensions (Lambin et al., 2012; Lambin et al., 2017). Radiomics features are
considered to quantitatively reflect the heterogeneity of lesions, which can predict tumor
behavior (Lambin et al., 2012; Lambin et al., 2017; Nioche et al., 2018; Chen et al., 2020).
Previous large-scale studies have confirmed that radiomics features exhibit good diagnostic
performance. Chen et al. (2018) demonstrated 76 relevant radiomics features selected from
750 extracted features that differed significantly between benign and malignant pulmonary
nodules. Hawkins et al. (2016) reported that radiomics could be applied to screen the
risk of lung cancer (accuracy = 0.800). In the present study, 1,781 radiomics features
were extracted from the ROIs of lesions selected using multiple methods. At last, we
identified 10 radiomics features that were more strongly associated with invasiveness than
other features. The results demonstrated that the radiomics models reached satisfactory
prediction performance, and the Delong tests between the training and test sets showed
stability of the radiomics models, which may help clinicians in selecting appropriate
treatment measures.

Further, our models were constructed using three different machine learning classifiers.
Machine learning has been applied widely and validated to improve predictive performance.
Previous studies have commonly used LR, random forest, and SVM as classifiers to build
predictive models (Huang et al., 2016; Parmar et al., 2015; Yang et al., 2015; Ypsilantis et
al., 2015). However, in the present study, we selected a relatively novel classifier, XGB,
and compared it with the other two classifiers, revealing that XGB model had the best
performance when assessed by ROC curve analysis and DCA. The XGB model may
provide a better strategy for diagnosis in clinical practice. In fact, the XGB classifier
has been demonstrated to have high flexibility in other fields (Dhaliwal, Nahid ¢ Abbas,
2018; Gumus ¢ Kiran, 2017; Ren et al., 2017; Torlay et al., 2017). In the Kaggle data science
competition, more than half of the challenge-winning solutions used XGB models (Chen ¢
Guestrin, 2016). Regularization of L1 and L2 in XGB prevents the model from overfitting
and takes advantage of parallel processing (Tang et al., 2019), which likely contributes to
its superiority.

We also acknowledge that our research has limitations. First of all, the present study
design was retrospective and the models were not validated using an external dataset.
Therefore, a multicenter clinical trial with a larger sample size and prospective validation
set are needed to determine the generalization of the models. Besides, our data showed
that the mean and SD of CT attenuation helped to distinguish the invasiveness of lesions
and the vascular breakthrough sign with in the training set. Our next plan is to identify
more meaningful clinical features to construct a combined model to enhance predictive
performance. Moreover, because only surgically cases were included, the cases inevitably
were skewed toward the malignant nodules in morphology. Thus, more cases are supposed
to be allowed for the inclusion of study.
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CONCLUSION

Our newly developed prediction models were able to distinguish between IAC and
AAH/AIS/MIA. We revealed that radiomics features reflect the heterogeneity and
invasiveness of sub-centimeter SSNs. These models may offer a noninvasive and convenient
method to improve preoperative prediction for surgeons to avoid over- or undertreatment.
The predictive performance of the models will be further improved by including additional
clinical factors and validating using multicenter datasets.
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