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ABSTRACT
Forest fires are one of the significant disturbances in forest ecosystems. It is essential
to extract burned areas rapidly and accurately to formulate forest restoration
strategies and plan restoration plans. In this work, we constructed decision trees and
used a combination of differential normalized burn ratio (dNBR) index and OTSU
threshold method to extract the heavily and mildly burned areas. The applicability of
this method was evaluated with three fires in Muli County, Sichuan, China, and we
concluded that the extraction accuracy of this method could reach 97.69% and
96.37% for small area forest fires, while the extraction accuracy was lower for large
area fires, only 89.32%. In addition, the remote sensing environment index (RSEI)
was used to evaluate the ecological environment changes. It analyzed the change of
the RSEI level through the transition matrix, and all three fires showed that the
changes in RSEI were stronger for heavily burned areas than for mildly burned areas,
after the forest fire the ecological environment (RSEI) was reduced from good to
moderate. These results realized the quantitative evaluation and dynamic evaluation
of the ecological environment condition, providing an essential basis for the
restoration, decision making and management of the affected forests.

Subjects Environmental Impacts, Spatial and Geographic Information Science
Keywords Forest fire, Burned areas, Sentinel-2, Remote sensing environment index, GEE platform,
OTSU threshold

INTRODUCTION
Forests, the terrestrial ecosystems’ mainstay, are the foundation of human survival and
development (Mitchard, 2018; Gao et al., 2020). Forest fires are fast-spreading, sudden and
difficult to control. They cause massive forest damage and severely affect the composition
of ecosystems, leading to a dramatic reduction in biomass and drastic changes in the
landscape and the global carbon cycle (Xaud, da Martins & Dos Santos, 2013; De Faria
et al., 2017; Liu, Ballantyne & Cooper, 2019; Zhao et al., 2021b, 2021a). In recent years,
global warming and frequent human production activities have increased forest fires
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worldwide (Hall et al., 2016; Forkel et al., 2019; Vargas-Cuentas & Roman-Gonzalez, 2021).
The forest fire prevention industry is facing a more complex situation, so new
requirements and challenges for the restoration work after the disaster (Andela et al.,
2017). It is critical to rapidly and accurately extract the extent of burned areas in forests,
enabling the timely development of forest restoration strategies and plans (Pezzatti et al.,
2020; Kim, Hwang & Choi, 2021). Traditionally, the burned area of forest fires is delineated
by manual field surveys, but this method is generally labor-intensive and costly because of
the complex topography of the southwestern forest area (Mitri & Gitas, 2008; Gitas et al.,
2012). Satellite remote sensing has significant advantages in extracting the burned areas
and assessing ecological changes in the forest fires, with its short imaging period and wide
monitoring range. The theory is that vegetation reduces chlorophyll content after fire
burning, and the reduction of chlorophyll causes wavelength changes in the visible,
red-edge and near-infrared (NIR) wavelengths (Mueller et al., 2017; Ba et al., 2019; Reddy
et al., 2019; Chuvieco et al., 2020; Laneve et al., 2020; Santana et al., 2020; Sudhakar et al.,
2020). The index threshold method is the most commonly used, which separates the
burned area by analyzing the spectral reflectance curve of the burned area, selecting the
appropriate waveband to establish the index, and choosing the appropriate threshold to
separate the burned area. The Burned Area Index (BAI) (Chuvieco, Martín & Palacios,
2010), Normalized Burn Ratio (NBR) (Cocke, Fulé & Crouse, 2005), Mid-InfraRed
Bispectral Index (MIRBI) (Smith et al., 2007) and other indices were derived successively.
In addition, the Normalized Divergence Vegetation Index (NDVI), Soil-Adjusted
Vegetation Index (SAVI), Global Environment Monitoring Index (GEMI), Enhanced
Vegetation Index (EVI) and other remote sensing vegetation indices are also commonly
used in burned areas mapping (Sun et al., 2019). It has been found that NBR can be used as
an indicator of burn severity in forested areas (Epting, Verbyla & Sorbel, 2005). Several
global burned areas products have been released in the past few years, mainly from remote
sensing satellite sensors such as MODIS, MERIS, or VEGETA, which have a higher
temporal resolution but a lower spatial resolution (>300 m) and cannot extract burned area
more accurately (Hall et al., 2016; Forkel et al., 2019; Santana et al., 2020; Valencia et al.,
2020; Franquesa et al., 2022). Sentinel-2 and Landsat data, which can provide more
detailed high-resolution remote sensing images, also bring further accuracy improvement
to the regional forest burned area extraction (Roteta et al., 2021). Traditional threshold
determination is an artificially selected threshold, which may artificially bias the results
(Giri, Qiu & Zhang, 2017; Sekertekin, 2021). The OTSU algorithm is a classical adaptive
thresholding segmentation algorithm, and it uses the maximum inter-class variance
adaptation to determine the optimal threshold to achieve the best segmentation effect.
The OTSU algorithm is computationally simple and independent of image brightness and
contrast, so it is widely used in automated extraction (Otsu, 1996; Huang & Jin, 2020; Pan,
Xi &Wang, 2020; Dutta, Talukdar & Bora, 2022). Fire can cause forest damage to different
degrees, generally divided into fire-traced areas (called mildly burned areas) and forest loss
areas (called heavily burned areas) (Rao, Wang & Huang, 2020). Available burned area
products do not break down the burned areas with different damage (Santana et al., 2020;
Valencia et al., 2020). However, the length of restoration and subsequent management of
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different damaged forests is different, so it is necessary to classify the burned areas.
Decision Tree Learning (DTL) is a critical remote sensing extraction method in the process
of statistics, data mining and machine learning, which divides samples through
hierarchical progressive attribute judgments. The decision tree is widely used in remote
sensing image classification extraction as an efficient yet simple machine learning method
(Yang et al., 2003; Zhou, Zhang & Zhang, 2016; Verma, Garg & Hari Prasad, 2017; Zhang
et al., 2017; Ghatkar, Singh & Shanmugam, 2019). There have been studies using the
decision tree to build a combination of the burning index and OTSU thresholds to extract
burned areas (Tianchi, Fuqin & Yan, 2020; Li et al., 2021a; Tang et al., 2021; Tian et al.,
2022), which can achieve better accuracy results. There are also comparative studies on the
extraction of the burned area from Sentinel-2 and Landsat 8 data sources, and they found
that Sentinel generally performed as well or better than Landsat for four spectral indices of
burn severity and that Sentinel’s higher spatial resolution improves opportunities for
examining finer-scale fire effects across ecosystems (Mallinis, Mitsopoulos & Chrysafi,
2018; Zhang et al., 2019; Howe et al., 2022). However, the extraction and evaluation of
burned areas with different damage using Sentinel-2 are lacking, so assessing the method’s
applicability is necessary. The Google Earth engine (GEE) is a tool that can batch-process
satellite image data. It can process large amounts of images quickly and in batches
compared with traditional tools for processing images, and is one of the most popular
remote sensing processing tools available. It is also starting to be used in burned area
extraction (Roteta et al., 2021; Seydi et al., 2021). In this study, we evaluated the
applicability of the dNBR and OTSU threshold methods based on the GEE platform for the
extraction of heavy and mildly burned areas from three forest fires.

On the other hand, the ecological environment of burned areas changes significantly
after the fire, such as soil, moisture, and biology. Firstly, the structure and quantity of
plants and leaves are limited, with a corresponding decrease in chlorophyll and overall
environmental moisture. The most apparent change is the increase in soil temperature, the
magnitude of which is closely related to fire intensity, fire duration, and soil moisture
content. These effects can be reflected by moisture, greenness, heat and dryness indicators:
soil moisture and vegetation water content caused changes in wetness. Vegetation health
status caused changes in greenness, soil temperature and ground cover caused changes in
heat, soil temperature and land degradation caused dryness changes (Attorre et al., 2015;
Chia et al., 2016; Day et al., 2020). There are some studies on the dynamic changes of
vegetation in the study area before and after forest fires (Zhou et al., 2019), but less
monitoring of ecological damage before and after the forest fires. Remote sensing
technology has strong advantages for monitoring ecological changes. The remote sensing
ecological index (RESI) is entirely based on remote sensing information technology, which
reduces the subjectivity and difficulty of index extraction in practical applications and
facilitates large-scale and continuous investigation and observation (Xu, 2013). It can be
used to reflect the comprehensive status of regional ecological quality (Jiang et al., 2021;
Yuan et al., 2021; Lian et al., 2022; Wang & Li, 2022). It couples four indicators that
intuitively reflect the superiority or inferiority of ecological quality status, such as wetness,
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greenness, heat and dryness, characterized by humidity index, normalized vegetation
index, surface temperature and dryness index, respectively.

Muli County is located in the Southwest Forest Region, one of the most frequent areas
where forest fires occur in China. Muli County had forest fires for three consecutive years
in 2019, 2020 and 2021. It has a complex landscape with high and low relief and rugged
closed terrain. Once a fire occurs, the high mountain and steep slope environment
accelerates the fire’s spread and exacerbates the difficulty of extinguishing it. Therefore,
Muli County is a high-risk area for forest fires and a key area of national fire risk (Li et al.,
2021b). In this work, taking Muli County, where fires occurred for three consecutive years,
as the study area, we used the dNBR index of sentinel-2 remote sensing images, combined
with the OTSU thresholding method and decision tree to extract the heavily burned areas
and mildly burned areas. In addition, we evaluated the ecological environment changes by
using RSEI and analyzing them to achieve the quantitative evaluation of ecological
environment status and dynamic evaluation.

MATERIALS AND METHODS
This work is divided into three main sections. The materials and methods are shown in the
following Figure (Fig. 1).

Extraction of the burned area
This work used the GEE cloud platform to rapidly extract the burned area caused by

three major fires in Muli County in 2019, 2020, and 2021, and the extraction process is as
follows: Firstly, Sentinel-2A images were acquired one month after the fire was
extinguished, and the median was synthesized as the post-fire image; Considering the
phenological cycle of the vegetation in the study area, the Sentinel-2A images were also

Figure 1 The workflow. Full-size DOI: 10.7717/peerj.14557/fig-1
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acquired one year before that period, and the median was synthesized as the pre-fire image,
and the specific image acquisition time is shown in the following Table 1.

Secondly, we constructed a decision tree to extract the burned area; we used the NIR and
SWIR bands to calculate the NBR index in pre-fire images and the NBR index in post-fire
images, and calculated the dNBR, then the OTSU algorithm was used to calculate the
dNBR threshold1 to extract heavily burned area, and used this result to mask the heavily
burned area and keep the other parts. Finally, the OTSU algorithm was used again to
classify and extract the mildly burned areas.

Establishment of ecological evaluation
The remote sensing ecological index (RSEI) be used to evaluate the ecological and

environmental of the burned area. It integrates moisture, greenness, heat and dryness
information using principal component analysis.

Comparative analysis of RSEI in different severity for three fires
We resample the extracted burning area to 30 m, with the same spatial resolution of

RSEI, and compare the variation of RSEI for different severity for three fires.

Study area
Muli County is located on the southeastern edge of the Qinghai-Tibet Plateau (longitude
100�03′–101�41′ east, latitude 27�40′–29�10′ north), at the boundary between the
Qinghai-Tibet Plateau and the Yunnan-Guizhou Plateau. Its main landform features are
mountains, canyons and mountain plains. The terrain is complex, and the altitude
difference a are enormous. It belongs to a typical alpine and canyon area. Muli County has
a subtropical monsoon climate, with rainy summers and less rain in winter. Muli is rich in
forest resources, with a forest coverage rate of 67.3%, including Picea asperata, Quercus
semicarpifolia, Pinus densata, etc., and more than 10 kinds of national first and
second-class protected tree species. The volume of standing trees is 117 million m2,
accounting for 10% of Sichuan Province and 1% of the whole country (Liu, 2014), and the
vegetation is vertically distributed.

The annual average temperature is about 14.0 �C, the temperature difference between
day and night is significant, and solar radiation is powerful. The four seasons are not
pronounced, and the dry and wet seasons are distinct. The dry season is from December to
March of the following year., the climate is dry, with little precipitation, long sunshine
hours, and uneven spatial and temporal distribution of precipitation, often suffering from
natural disasters such as droughts, debris flows and floods (Li et al., 2021d, 2021c). The wet
season is from June to September, the precipitation is concentrated, the rainfall is
abundant, the daily temperature difference is slight, and the climate is suitable. The forest

Table 1 Time of the images acquisition.

Time of fire Post-fire image Pre-fire image

March 30, 2019 April 10–May 10, 2019 April 10–May 10, 2018

March 28, 2020 April 7–May 7, 2020 April 7–May 7, 2019

April 5, 2021 April 9, 2021–May 9, 2021 April 9, 2021–May 9, 2020
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in the study area is widely distributed, the terrain is complex and changeable, and the forest
fire prevention situation is complicated. Forest fires have occurred in the region for three
consecutive years, causing massive casualties, economic losses and loss of forest resources.
The fire areas are shown in Fig. 2:

Data
Satellite images
The remote sensing images used in this work are sentinel-2 and Landsat 8 OLI from
the Google Earth Engine Cloud Platform (https://code.earthengine.google.com/). The
Sentinel-2 L2A dataset, which ESA had pre-processed for radiometric calibration,
atmospheric correction, etc., reflects the reflectance information at the surface; this dataset
is used to extract the burned areas in the study area. The Landsat 8 Level 2 Collection 2
Tier 1 is a reflectance product created by the Land Surface Reflectance Code (LaSRC) and
processed by a single-pass algorithm, including radiometric and geometric correction
datasets. Both datasets can be used without subsequent processing. The data information is
shown in Table 2:

Reference data
The reference data are the fire survey data of the Sichuan Forestry Survey and Design
Institute. It was vector data that was visually interpreted from sentinel-2 remote sensing
images and corrected using field verification. The reference data mainly includes the forest

Figure 2 Location of the study area (forest fires images are from Sentinel-2). Full-size DOI: 10.7717/peerj.14557/fig-2
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loss area (heavily burned area), the forest where fire passed area (forest loss is not apparent,
mildly burned area), and various survey data details are shown in Table 3.

dNBR computation
The NBR (Normalized Burn Ratio) is a remote sensing index obtained by replacing the red
band in the NDVI (Normalized Difference Vegetation Index) equation with the SWIR
band. Since the reflectance change in the NIR in the burned areas is more significant than
that in the SWIR compared with the non-burned areas, it can be used as an essential
indicator factor to extract burned areas. The NBR values range from 1 to −1 and negatively
correlate with forest fire intensity. However, the NBR index has some advantages in the
extraction of burned areas, but using the mono-temporal NBR is still affected by low
reflectivity areas such as water bodies, which is prone to significant errors. The dNBR
(delta Normalized Bun Ratio) (Chen, Loboda & Hall, 2020) utilized a multi-temporal that
is the difference of NBR index in the post-fire images and pre-fire images, and it can
effectively reduce the influence of factors such as clouds and aerosols compared with the
NBR index.

Moreover, it can be seen that the NBR reflectance of burned areas showed an increase
after the occurrence of forest fires. In contrast, the SWIR reflectance of burned areas is
extremely sensitive to water bodies, and the vegetation humidity in the forest decreases
after burning, so the higher the intensity of the forest fire, the more significant the decrease
in humidity within the forest and the decrease in humidity then leads to the decrease the
SWIR reflectance. Finally, the NBR index shows a decrease. Therefore, the dNBR index of
the burned area images is significantly higher than the low reflectance areas such as water
bodies. In summary, the dNBR index of multi-temporal can be used to distinguish the
burned areas. The NBR’s and the dNBR’s mathematical formulas are as Eqs. (1) and (2):

Table 2 Data information.

Datasets Temporal resolution Spatial
resolution

Sentinel-2 L2A 5 days 10 m

Landsat 8 Level 2 Collection 2 Tier 1 16 days 30 m

Table 3 The statistical table of fire area survey.

Time of fire Burned area (hm2)

Heavily burned area mildly burned area Total burned area

March 30, 2019 43.90 74.19 118.09

March 28, 2020 8,856.05 8,547.84 17,403.89

April 5, 2021 66.12 150.26 216.38
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NBR ¼ qnir � qswir
qnir þ qswir

(1)

dNBR ¼ NBRpre � NBRpost (2)

where qnir represents the NIR band reflectance of sentinel-2 (Band 8); qswir represents the
SWIR band reflectance of sentinel-2 (Band 11); NBRpre represents the pre-fire NBR index;
NBRpost represents the post-fire NBR index.

OTSU thresholding for image segmentation
Threshold segmentation is one of the most commonly used image segmentation methods;
it is simple and effective. Moreover, scholars have made researched the methods of
automatically obtaining thresholds in image segmentation work. The OTSU algorithm,
also known as the maximum interclass variance method, is an automatic algorithm for the
global binarization of clustered images proposed by Japanese scholar Zhenyuki Otsu in
1979 (Otsu, 1979). It can obtain more ideal segmentation results, has the characteristics of
high segmentation efficiency and broad application scenarios, the results are stable, and the
segmentation quality can be guaranteed, so it has been widely used (Fan et al., 2016).
It works as a discrete simulation of the one-dimensional Fisher discriminant. In computer
vision and image processing work, this algorithm assumes that an image contains only two
classes of pixels (background pixels and target pixels) after bimodal histogram processing
and then minimizes their intra-class variance and maximizes inter-class variance by
calculating the best threshold that can distinguish between the two classes of pixels.

The OTSU algorithm is computed as follows: Assuming that an image has several pixels,
the probability of occurrence in each gray-level pixel Pi is Eq. (3):

Pi ¼ ni=N; ði ¼ 0; 1; 2; 3 . . . L� 1Þ;
XL�1

i¼0
Pi ¼ 1 (3)

where the grayscale i takes a range 0; L� 1½ �, the number of pixels in the grayscale i level
is ni. The image was divided into background pixels C0 and target pixels C1 using
thresholding, C0 consisting of pixels with grayscale values 0; k½ � and C1 pixels with
grayscale values t þ 1; L� 1½ �. Then, the probability of occurrence of each gray lt is
Eq. (4):

lt ¼
XL�1

i¼0
iPi (4)

The occurrence probability of C0 and C1 pixels are Eqs. (5) and (6):

x0 ¼
XL�1

i¼0
Pi (5)

x1 ¼
XL�1

i¼tþ1
Pi ¼ 1� x0 (6)

The average gray l0 and li are Eqs. (7)–(9):
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l0 ¼
Xt

i¼0
iPi=x0

(7)

l1 ¼
XL�1

i¼tþ1
iPi=x1

(8)

lt ¼ x0l0 þ x1l1 (9)

The interclass variance d2t is Eq. (10):

d2t ¼ x0ðl0 � ltÞ2 þ x1ðl1 � ltÞ2 ¼ x0x1ðl0 � l1Þ2 (10)

The optimal threshold to distinguish between the two classes of pixels is the one that
takes the value in the interval when the maximum value is reached.

After a forest fire, there is a sharp increase in the maximum interclass variance within a
reasonable image element window, and the OTSU algorithm was applied to extract the
dNBR threshold automatically. It can be used as an essential parameter in active fire
detection.

Building decision trees
Decision tree learning is an essential method in the field of statistics, data mining and
machine learning, mainly used as a prediction model to analyze test and target variables in
a round-robin manner and finally to predict the category of the samples. The training
process is to obtain rules for classification by summarizing expert experience, simple
statistical analysis of mathematical models, induction, etc. A training set is divided into
several subsets, and the recursion is repeated in the resulting subsets. This top-down
decision tree induction method is one of the greedy algorithms and is one of the most
commonly used training methods, which can be applied in predicting continuous variables
and remote sensing classification.

In this work, we constructed a decision tree classification model with the dNBR based
on the sensitive feature analysis of burned areas. First, we divided burned areas into the
mildly burned areas (fire traced area) and the heavily burned area (forest loss area) and
calculated the first dNBR threshold based on OTSU, which was used to distinguish the
heavily burned area (forest loss area). Then a second dNBR threshold is calculated in the
rest area based on OTSU, which is used to distinguish between the mildly burned areas
(fire traced area) as well as the rest area, and the decision tree classification model is shown
in Fig. 3.

Accuracy verification
The accuracy verification of burned areas identification used the following calculation
formula (Eq. (11)):

P ¼ ð1Þ � a� b
b

����

����� 100% (11)
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P represents the accuracy of the method, a represents the number of image elements of
the identified burning area, and b represents the number of image elements visually
interpreted after the field survey respectively.

To better verify the experimental results, we used the kappa coefficient to verify the
accuracy. Its equation is as follows.

Kappa ¼ po � pe
1� Pe

(12)

where Po is the sum of the diagonals of the confusion matrix divided by the total number of
samples, and Pe is the sum of the “product of actual and predicted numbers” for each of the
categories, divided by the “square of the total number of samples”.

Construction of a comprehensive ecological index
Therefore, the remote sensing ecological index (RSEI) is rapid monitoring and evaluation
of the ecological method based on natural factors, which integrates moisture, greenness,
heat and dryness information and can also be used to evaluate the ecological and
environment of the burned area.

Greenness
In this work, the normalized vegetation index (NDVI) was selected to characterize the
greenness of the study area, which can reflect the plant biomass, leaf area index and
vegetation cover in the region, calculated as Eq. (13):

NDVI ¼ qnir � qred
qnir þ qred

(13)

where, qnir and qred represent the reflectance of Landsat images in the NIR and red bands,
respectively.

Figure 3 Decision tree classification model. Full-size DOI: 10.7717/peerj.14557/fig-3
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Wetness
The wetness index is characterized based on the moisture component obtained from the
tassel cap transformation, and the wetness can reflect the surface water body conditions,
especially the moisture of the soil and the calculation method for wetness extraction based
on Landsat8/OLI data is shown in Eq. (13) (Baig et al., 2014). Before extraction, the water
bodies were masked using the Modified Normalized Difference Water Index (MNDWI)
(Sun, Wu & Tan, 2012), so the wetness reflects the actual land surface moisture conditions.

Wet ¼ 0:1511b2 þ 0:1973b3 þ 0:3283b4 þ 0:3407b5 � 0:7117b6 � 0:4559b7 (14)

where: b2; b3; b4; b5; b6; b7 represents the reflectance of Landsat8/OLI images in bands 2,
3, 4, 5, 6, and 7, respectively; Wet represents the humidity component of Landsat8/OLI
images.

Heat
This work used Landsat 8 surface temperature to invert the land surface temperature (LST)
to indicate the hotness indicator. The dual-band feature of Landsat 8 thermal infrared data
offers the possibility of using a split-window algorithm to invert the surface temperature.
Therefore, single-channel surface temperature inversion methods are mainly used in
surface temperature inversion work to estimate surface temperature. This article chose the
single window algorithm (SMW) proposed by Ermida et al. (2020). The SMW algorithm is
based on an empirical relationship between TOA brightness temperatures in a single TIR
channel and LST and utilizes simple linear regression. The model consists of a linearization
of the radiative transfer equation that maintains an explicit dependence on surface
emissivity, and it is calculated as Eq. (15).

LST ¼ Ai
Tb

e
þ Bi

1
e
þ Ci (15)

where Tb is the TOA brightness temperature in the TIR channel, and e is the surface
emissivity for the same channel. The algorithm coefficients Ai; Bi; and Ci are determined
from linear regressions of radiative transfer simulations performed for 10 classes of Total
Column Water Vapor (TCWV) that values from NCEP/NCAR reanalysis data are
available on GEE (I = 1, …, 10), ranging from 0 to 6 cm in steps of 0.6 cm, with values of
TCWV above 6 cm being assigned to the last class.

(4) Dryness
The dryness index represents an indicator of land dryness, which also indicates the

degree of soil dryness and the land is affected by weathering and sanding. The dryness
index consists of the normalized building bare soil index (NDBSI) incorporating the bare
soil index (SI) and the building index (IBI), and the burned areas are mainly affected by the
SI, and most burned areas are far from the towns and not easily affected by the IBI.
Rikimaru’s model was used to calculate the following Eq. (16).

SI ¼ ðqswir1 þ qredÞ � ðqblue þ qNIRÞ
ðqswir1 þ qredÞ þ ðqblue þ qNIRÞ

(16)
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where, qblue; qred; qswir1; qNIR denotes the reflectance of the blue band, red band,
near-infrared band, and short-wave infrared band1 corresponding to the OLI image,
respectively.

The proposed ecological index should be able to appear both as a single indicator and to
combine the information from the above four indicators. Therefore, we used principal
component analysis (PCA) (Gewers et al., 2021), a multivariate statistical method, to
construct the ecological index. It is a multi-dimensional data compression technique that
can select a few critical variables by an orthogonal linear transformation. Its most
significant advantage is that the weights of the integrated indicators are not determined
artificially; instead, they are determined automatically and objectively according to the
contribution of each indicator to each principal component, thus avoiding the bias of the
results caused by the different weight settings from a person.

Since the four indices are not uniform, it is necessary to normalize the original values of
the four indices to a range between [0, 1] to avoid the imbalance of each index weight in the
principal component analysis, and the normalization formula is as Eq. (17):

BI ¼ ðIi � IminÞ=ðImax � IminÞ (17)

where, BI is the normalized image element value of a factor, Ii is the image element value of
a factor, Imax and Imin the maximum and minimum values of the factor, respectively, the
normalized indexes have a scale between 0 and 1. The normalized metrics are combined
into a new image, and a principal component analysis is performed on the new image to
obtain the first principal component (PC1) and related statistics. The obtained PCl is
normalized to obtain the RSEI.

RESULTS
The extraction results of burned areas
According to the OTSU calculation, the heavily burned threshold and mildly burned
threshold for each fire was obtained and then can get the heavily burned areas and mildly
burned areas, and the two areas were added to get the total burned area. The results are
shown in the following Table 4.

Table 4 Extraction results of burned areas and their accuracy.

Time of
fire

Heavy fire Mild fire Total burned area

dNBR_threshold1 Burned area
(hm2)

Accuracy Kappa dNBR_
threshold2

Burned area
(hm2)

Accuracy kappa Burned area
(hm2)

Accuracy

March 30,
2019

0.3010 43.20 98.4% 0.87 0.0654 77.62 95.38% 0.74 120.82 97.74%

March 28,
2020

0.3789 9,574.57 91.89% 0.81 0.1211 9,680.25 86.75% 0.71 19,254.82 89.32%

April 5,
2021

0.4024 66.81 98.96% 0.84 0.1464 159.59 93.79% 0.69 226.40 96.37%
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Figure 4 The burned area extraction map. Full-size DOI: 10.7717/peerj.14557/fig-4
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From Table 4, we can see that the accuracy of burned area extracted by combining the
dNBR and OTSU thresholding image segmentation method for three fires was 97.69%,
89.32%, and 96.37%, respectively. The method performs better in the accuracy of small
burned areas, but the performance is average in the extraction of the large burned area; the
accuracy of heavily burned area extraction is higher than that of mildly burned.

Combined with the actual visual interpretation areas, the burned areas map derived
from GEE using the OTSU threshold image segmentation method was compared, as
shown in Fig. 4.

As can be seen, the heavily burned areas that were extracted matched the visual
interpretation area, and the proposed method’s accuracy is 98.4%, 91.89% and 98.96%,
respectively. In contrast, the mildly burned areas are mainly distributed near the heavily
burned areas, and the extracted burned areas are complete with clear boundaries and close
to the visual interpretation results. However, it is difficult to intuitively extract the mildly
burned areas and discriminate them from the remote sensing images.

Ecological environment evaluation results
As can be seen from Table 5, NDVI and wetness both played a positive role in promoting
the ecological environment of the study area during the period, while SI and LST played a
negative role together, which is consistent with the actual situation. The PC1’s contribution
in the calculation of the RSEI was more outstanding than 90%, indicating that the PC1 had
concentrated most of the four indicators’ information in the three fires; meanwhile, the
four component indicators’ contribution to PC1 was relatively stable, so PC1 was chosen to
create the RSEI instead of the four component indicators.

Table 5 The results of PCA.

PC1 PC2 PC3 PC4

2019 Wet 0.6099 0.4007 0.3483 0.5884

NDVI 0.5874 0.3296 0.2112 0.7083

LST −0.4084 −0.4847 −0.7028 −0.3228

SI −0.3409 −0.7042 −0.5831 −0.2189

% 94.62 3.81 1.22 0.35

2020 Wet 0.6809 0.5059 0.3991 0.3480

NDVI 0.4609 0.2654 0.6608 0.5296

LST −0.3879 −0.5829 −0.4239 −0.5745

SI −0.4165 −0.5778 −0.4735 −0.5181

% 93.9 4.71 1.01 0.39

2021 Wet 0.6692 0.3997 0.6130 0.1289

NDVI 0.4924 0.2753 0.5972 0.5702

LST −0.4878 −0.3993 −0.4107 −0.6587

SI −0.2677 −0.7778 −0.3145 −0.4737

% 97.64 1.54 0.61 0.21
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The RESI’s mean values were calculated from the results of PCA in before and after the
fire as shown in the following Table 6.

We have concluded that the RSEI decreases significantly after three fires. To finely
analyze the changes of RSEI, we calculated the difference of RESI before and after the fire
for each pixel. Where −0.2 to −0.05 is a slight increase, −0.05 to 0.05 is no significant
change, 0.05–0.20 is a slight decrease, and greater than 0.20 is a significant decrease.
As shown in Fig. 5 below:

Table 6 RSEI’s mean values.

RSEImean 2019 2020 2021

Heavy fire area Mild fire area Heavy fire area Mild fire area Heavy fire area Mild fire area

Pre-RSEI 0.6623 0.6674 0.6953 0.6971 0.7270 0.7484

Post-RSEI 0.4928 0.6036 0.5321 0.5910 0.4239 0.5894

Difference 0.1695 0.0638 0.1632 0.1061 0.3031 0.4106

Figure 5 RSEI changes map. Full-size DOI: 10.7717/peerj.14557/fig-5
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As we can see the Fig. 5, the following phenomena were present in all three fires: The
post-RSEI of mildly burned and heavily burned was significantly lower than that of
pre-RSEI, indicating that the fires brought different degrees of damage to the ecological
environment; meanwhile, the difference in RSEI of heavy burned was higher than that of
mildly burned, indicating that the damage of RSEI in the area of heavy burned was more
serious, and the vegetation restoration measures in the area should be considered to reduce
the impact of burned on the ecological environment as early as possible.

The monitoring analysis of the ecological environment
To further investigate the changes in the local ecological conditions, the normalized RSEI
ecological index was divided into five levels according to the 0.2 value interval, from low to
high: excellent: 0.8–1.0; good: 0.6–0.8; moderate: 0.4–0.6; fair: 0.2–0.4; poor: 0–0.2.
We calculated the area and proportion of ecological classes before and after the three fires.
And the transfer matrix was used to analyze the ecological changes as follows.

In 2019, we can see (Table 7) that the ecological environment of the burned areas
changed: after the burn, the ecological environment had no excellent, but the poor
ecological environment had an area of 0.09 hm2; In the mildly burned area, the ecological
environment changed from good to medium with an area of 34.26 hm2, the changing area
accounted for 49.8%, and all the excellent ecological environment changed to good.
The ecological environment of the heavily burned area had changed more, and it has a
poor with an area of 2.59 hm2, the excellent ecological environment (1.08 hm2) changed to

Table 7 RSEI’s transfer matrix for heavily burned (a) and mildly burned (b) in 2019.

Fire_pre

Poor Fair Moderate Good Excellent Total

(a)

Fire_post Poor 0 0 0 0 0 0

Fair 0 0 0.09 0 0 0.09

Moderate 0 0 8.02 34.26 0 42.28

Good 0 0 0 34.53 0.72 35.25

Excellent 0 0 0 0 0 0

Total 0 0 8.11 68.79 0.72

Change 0 0 0.09 34.26 0.72

(b)

Fire_post Poor 0 0 0 0 0 0

Fair 0 0 1.51 1.08 0 2.59

Moderate 0 0 7.81 30.12 0.99 38.92

Good 0 0 0 1.6 0.09 1.69

Excellent 0 0 0 0 0 0

Total 0 0 9.32 32.8 1.08

Change 0 0 1.51 31.2 1.08

Zhang et al. (2023), PeerJ, DOI 10.7717/peerj.14557 16/27

http://dx.doi.org/10.7717/peerj.14557
https://peerj.com/


a medium (0.99 hm2) ecological environment with accounted for 95.12%, which means
that the ecological environment of the heavily burned area has changed more prominently.

In 2020, there was no poor ecological environment before the fire (Table 8), but poor
ecological conditions appeared after the fire with an area of 13.88 hm2. The areas of the
excellent ecological environment also decreased from 1,370.5 to 57.06 hm2. In the mildly
burned areas, the ecological environment was concentrated in the good ecological
environment before the fire, but after the fire, its ecological environment changed to
medium grade, accounting for 49.73% (3,962.3 hm2), and the ecological environment
changed from excellent to good grade, and it accounted for 92.30%. In the heavily burned
area, the ecological environment evaluation was concentrated in the good grade, but it was
concentrated in the medium grade after the fire. Changes in the ecological environment
were concentrated in the pre-fire good and excellent ecological environment, and most of
the excellent ecological environment was changed to the medium or poor ecological
environment, with accounted for 98.90%, and most of the good ecological environment
was changed to the medium ecological environment with accounted for 72.90%.

Also, we can see (Table 9) that the ecological environment of the burned area changed
in 2021: before the fire, there was no poor ecological environment, but after the fire, there
was a poor ecological environment with an area of 27.38 hm2, while the excellent ecological
environment changed from 32.68 to 0.63 hm2 with accounted for 61.51%, and the excellent
ecological environment changed to good or medium with accounted for 97.93%; In the
heavily burned area: medium ecological environment all changed to the worse ecological
environment with accounted for 100%, and good ecological environment changed to the

Table 8 RSEI’s transfer matrix for heavily burned (a) and mildly burned (b) in 2020.

Fire_pre

Poor Fair Moderate Good Excellent Total

(a)

Fire_post Poor 0 0.54 2.88 0.72 0.09 4.23

Fair 0 0.72 310.08 122.67 3.06 436.53

Moderate 0 0 513.99 3,962.3 70.74 4,547.03

Good 0 0 0 4,130.75 512.75 4,643.5

Excellent 0 0 0 0 48.96 48.96

Total 0 1.26 826.95 8,216.44 635.6

Change 0 0.54 312.96 4,085.69 586.64

(b)

Fire_post Poor 0 0 4.45 5.11 0.09 9.65

Fair 0 0.09 539.52 516.75 7.55 1,063.91

Moderate 0 0 476.81 5,178.1 202.12 5,857.03

Good 0 0 0 2,118.84 517.04 2,635.88

Excellent 0 0 0 0 8.1 8.1

Total 0 0.09 1,020.78 7,818.8 734.9

Change 0 0 543.97 5,699.96 726.8
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worse or medium ecological environment with accounted for 99.02%, excellent ecological
environment mainly changed to the medium and worse ecological environment with
accounted for 100%.

In summary, there was no poor ecological environment in the three pre-fires, but the
ecology showed a poor level after being burned in high fire intensity in 2020 and no poor
level after the 2019 and 2021 fires. So in terms of area burned and ecological changes, the
fires in 2020 were more severe than those in 2019 and 2020. On the other hand, regardless
of the heavily burned area and mildly burned area, the pre-fire ecology had a good area, but
its post-fire ecology change area was also the largest, and the post-fire ecology had the most
moderate area. It shows that the ecological environment changed from good to moderate
after the fire.

DISCUSSION
Forest fires are frequent and costly, so it is crucial to use remote sensing techniques to
quickly extract burned areas and assess their ecological change (Liu, Ballantyne & Cooper,
2019; Mota et al., 2019). Remote sensing images have the advantages of low cost, high
accuracy, and high efficiency, and they play an essential role in fire scene identification and
burning.

Remote sensing burn indices are often used for extracting burned areas, but most of the
studies have focused on major fires (burned area over 100 km2) (Tian et al., 2022), and the
applicability of the method has rarely been evaluated. On the other hand, the often used
remote sensing data, such as sentinel-2, Gaofen, etc., have a high spatial resolution, large

Table 9 RSEI’s transfer matrix for heavily burned (a) and mildly burned (b) in 2021.

Fire_pre

Poor Fair Moderate Good Excellent Total

(a)

Fire_post Poor 0 0 0 0 0 0

Fair 0 0 0.09 25.85 0.09 26.03

Moderate 0 0 0 38.01 1.51 39.52

Good 0 0 0 0.63 0.63 1.26

Excellent 0 0 0 0 0 0

Total 0 0 0.09 64.49 2.23

Change 0 0 0.09 63.86 2.23

(b)

Fire_post Poor 0 0 0 0 0 0

Fair 0 0 0.09 1.26 0 1.35

Moderate 0 0 0.9 78.83 10.7 90.43

Good 0 0 0 48.06 19.12 67.18

Excellent 0 0 0 0 0.63 0.63

Total 0 0 0.99 128.15 30.45

Change 0 0 0.09 80.09 29.82
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storage space and low data processing efficiency, which means that their wide industrial
application may be limited. In order to get accurate information and dynamics of forest
fires, efficient and reliable forest fire identification algorithms are especially important.
In this study, using sentinel-2 remote sensing data on the GEE platform, we used the idea
of a decision tree to extract the burning area of three fires in Muli County by combining the
dNBR and OTSU thresholding methods. Accuracy comparing the results of the method
using the remote sensing technology with the published research results.

Among them, in 2019, compared with Rao, Wang & Huang (2020), the accuracy of
heavy burning was improved by 3.73%, the accuracy of light burning was improved by
4.44%, and the overall accuracy was improved by 7.03%. In 2020, Li et al. (2021a) extracted
a burned area of 180.37 km2 by calculating the Difference Normalized Vegetation Index
(dNDVI) from Landsat 8 remote sensing imagery km. However, the area visually
interpreted in that study was 204.54 km2, while the area extracted in this study was
192.55 km2, while Tian et al. (2022), based on the visual interpretation results of Li et al.
extracted the burning area of 209.17 km2 using Sentinel-2 images combined with dNBR,
which improved the accuracy compared with the area of 204.54 km2 based on the visual
interpretation of Landsat 8 remote sensing images. However, the empirical threshold
method was used in that study. In this study, the burned area extracted by using the OTSU
automatic extraction threshold method in this study is 192.55 km2, which is close to the
fire survey data of the Sichuan Forestry Survey and Design Institute obtained visual
interpretation based on Sentinel-2 remote sensing images. No study has been published for
the 2021 Muli fire, and the area burned in Muli County in 2021 has not been monitored in
the remote sensing fire product MOD14A2 resolution due to its large spatial resolution
(1 km). Therefore, this method can extract the burning area of smaller fires more
accurately, but the extraction accuracy is lower for larger fires such as the 2019 fire, which
may be potentially due to fire having heterogeneous effects at scales finer than 30 m,
particularly in non-stand replacing fires, resulting in high sub-pixel variability in tree
mortality (Schroeter & Foster, 2004; Howe et al., 2022) and frequency of smaller-sized
unburned patches. However, the larger the area, the greater the heterogeneity of fire images
presented, so it is also a question of whether to choose a more accurate way, such as deep
learning, to extract the burning area in the method for a higher spatial resolution.
In addition, the accuracy of this method for extracting heavily burned area is higher than
that of mildly burned area, which is similar to the study of Zhang et al. (2021) and Silva-
Cardoza et al. (2022), In addition, the novelty of this method lies in the rapid acquisition of
before and after fire images through the GEE cloud computing platform. GEE and the
developed algorithm are very attractive and suitable for providing near real-time burned
area maps in that both burned areas and the different levels of burn severity can be
identified automatically and without using fixed threshold values. So the method proposed
in this article can quickly and accurately extract the burned area and provide important
information for the subsequent assessment of ecological changes before and after the fire.

The changes in vegetation cover before and after the fire have been studied (Zhou et al.,
2019), but fire also brings changes to the ecological environment, such as soil moisture and
heat. So the ecological changes of different degrees of fire also provide basic information
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for the subsequent environmental restoration. In this article, the ecological environment
changes before and after the fires were evaluated using the RSEI remote sensing ecological
index, and it is obvious to see in the three fires that the ecological environment changes
more in the heavy fires, so whether to intervene artificially in the ecological environment
restoration of the heavily burned area is also one of the future research priorities.

In addition, the natural conditions of the study area do create prerequisites for fires to
occur, as it is located in the Hengduan Mountains, with complex topography, high
mountains and dense forests. Most areas are primitive forests with dense vegetation, where
Yunnan pine and other species commonly grow and are rich in oil. Together with the
long-term accumulation of dead branches and leaves forming the ground humus layer, all
provide combustible material conditions for forest fires to break out. In addition, the
mountain landscape is complex, and the terrain is highly undulating; fire spread was
accelerated because of the steep mountain environment. The region should focus on
highlighting the mechanized forest firefighting professional team equipment construction
to improve the ability to deal with forest fires.

Furthermore, what measures should be taken to restore the vegetation in the burned
area? It should be considered the fire intensity, fire area and the natural renewal
characteristics of the original vegetation in the area. With time, the mildly burned areas
will naturally recover to the pre-fire state, and no excessive artificial disturbance measures
are usually needed. For heavily burned areas, if the soil conditions are good, can be
considered for vegetation restoration measures to speed up forest restoration and achieve
economic benefits as early as possible, such as artificial or semi-artificial disturbances.
So which stage of fire area restoration to take disturbance measures and what disturbance
measures to take are essential elements of scientific research; if the stand conditions of
burned areas are poor, such as high mountains and steep slopes, infertile soil, etc., such as
March 30, 2019, Sichuan Muli County heavy burned area, it is not suitable to take more
artificial disturbance measures except for the necessary aircraft seeding to provide seed
source.

CONCLUSIONS
Muli County is a national fire risk area. This study clarified the burned area caused by three
fires based on the dNBR index calculated from sentinel-2 remote sensing images, while
combining the OTSU threshold and the decision tree methods. On March 30, 2019, the
burned area was 120.82 hm2, of which the heavily burned area (forest loss area) was
43.20 hm2 and the mildly burned area (fire traced area) was 77.62 hm2; on March 28, 2020,
the burned area was 19,254.82 hm2, of which 9,574.57 hm2 is heavily burned area (forest
loss area), and 9,680.25 hm2 is mildly burned areas (fire traced area), March 30, 2019,
burned area is 226.40 hm2, of which 66.81 hm2 is heavily burned area (forest loss area) and
159.59 hm2 is mildly burned areas (fire traced area). The accuracy verification with the
visual interpretation results obtained 97.69%, 89.32%, and 96.37% extraction accuracy
based on field survey data. This result improved our understanding of the ecological
quality changes through a forest fire and helped the post-fire vegetation recovery.
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Meanwhile, the RSEI remote sensing index was used to quantitatively evaluate the
ecological environment changes in the three fires. It concluded that RSEI after the three
forest fires was significantly lower than that before the fires, indicating that the fires
brought different degrees of damage to the ecological environment in the area. Also, the
RSEI difference of the heavily burned area fires was higher than that of the mildly burned
areas; from the two dimensions of heavily burned areas and mildly burned areas, the area
changes of forest RSEI before and after the three fires were quantified by using the transfer
matrix. It is quantitatively analyzed the damage caused by fire to the ecosystem.
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