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ABSTRACT
Background. Agriculture is essential for food security. However, conventional agri-
culture alters the water and carbon cycle and soil properties. We investigated the effect
of conventional management (CM) and sustainable management (SM) on the carbon
and water cycle in crops of nopal (Np) and wheat (Wh).
Methods. Amicrometeorological eddy covariance tower was installed tomeasure water
use through evapotranspiration (ET) and the net exchange of CO2 during the crop’s
development. Gross primary productivity (GPP), water use efficiency (WUE), and soil
properties were obtained.
Results. The results showed that both agricultural managements influenced the carbon
flux of the ecosystem, with a lower GPP and Reco in the nopal field (1.85 and 0.99
mmol C m−2 s−1, respectively), compared to the wheat field (6.34 and 1.8 mmol C
m−2 s−1, respectively). It was mainly attributed to the metabolic plant differences,
phenological stages, and wheat biomass developed during the winter. On the other
hand, the accumulated ET in the SM-Wh plots was lower than SM-Np. Therefore,
the crops subjected to sustainable practices use water more efficiently with 1.42 and
1.03 g C m−3 H2O for nopal and wheat, respectively. In regard to soil properties, it was
observed that tillage alters microbial activity affecting organic matter and carbon. It can
be concluded that the differences in agricultural management for both crops altered the
carbon and water cycle and soil quality. In addition, implementing good agricultural
practices allows more efficient use of water by the plant, higher retention of water in
the soil, and less ET.

Subjects Agricultural Science, Plant Science, Soil Science, Natural Resource Management, Food,
Water and Energy Nexus
Keywords Minimum tillage, Ecosystem respiration, Gross primary productivity, Eddy covariance,
Water use efficiency
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INTRODUCTION
Agricultural activities encounters several challenges including water consumption,
and waste (D’Odorico et al., 2020), greenhouse gas emissions like CO2, N2O and CH4

(Friedlingstein et al., 2020; Mirzaei & Caballero Calvo, 2022; Mohammed et al., 2022).
Currently, there are different agricultural management techniques; however, the
conventional (e.g., monocultures, deep plowing, application of synthetic chemicals,
genetically modified organisms) approaches are ubiquitous worldwide and in Mexico
(INEGI, 2019; Mirzaei et al., 2021). Furthermore, due to the adverse impacts of
conventional agricultural practices on carbon and water cycles (Davis et al., 2010; Fisher et
al., 2017; Camarotto et al., 2018), and on the soil quality (Nadeu et al., 2015), it is crucial
to promote the use of sustainable agricultural practices. In addition, due to the effects of
climatic and edaphic characteristics on sustainable practices, it is necessary to know how
they affect locally to determine the feasibility of application at this scale.

The Food and Agriculture Organization (FAO, 2020) has recommended a series of
‘‘Good Agricultural Practices’’ (GAP), which are based on the maintenance of soil organic
carbon (SOC). These are: (i) management of available water and efficient irrigation;
(ii) reduced plowing, minimal or no plowing or residue management; (iii) maintenance
of pastures to maintain vegetative cover; (iv) use of cover crops (a close-growing crop
that provides soil protection, seeding protection, and soil improvement between periods
of normal crop production), perennials, or pastures; (v) balanced use of fertilizers or
use of organic amendments (compost, animal manure, plant residues); (vi) the use of
biofertilizers; (vii) crop rotation and the use of improved species; (viii) integration of
production systems (silvopasture, agroforestry); (ix) landscape management to prevent
erosion, surface water management, and drainage; (x) the cultivation of indigenous plants.
These practices aim to conserve soil health and reduce water consumption. Measuring
the different management practices’ effect on carbon and water fluxes and the soil quality
at a local scale will permit a contrast between conventional and GAP (i.e., i, ii, and v) to
reduce water consumption, avoid carbon emissions to the atmosphere, and conserve the
soil. These practices are much needed in semi-arid regions where the human population is
increasing, and where a better use of resources for the food supply needs to be considered.

Carbon and water fluxes in agricultural systems have been the subject of several
studies (Xiao et al., 2011; Yang et al., 2017; Cleverly et al., 2020; Wagle et al., 2021; Mirzaei
& Caballero Calvo, 2022). One of the most widely used technique for measuring gaseous
exchanges between the ecosystems and the atmosphere is eddy covariance (EC) (Baldocchi,
2014; Kautz et al., 2019; Baldocchi, 2020; Thienelt & Anderson, 2021). Measurements using
EC can help elucidate the temporal and spatial variability of energy, water and CO2

fluxes and the conditions that affect them, such as the different agricultural management
(Niu et al., 2011; Vote, Hall & Charlton, 2015). At ecosystem scale water is loss via
evapotranspiration (ET), and CO2 can be gain or loss via photosynthesis and respiration
respectively (Baldocchi, 2020). Both processes are coupled through the water use efficiency
(WUE), or ratio between C assimilation per water used (Cai et al., 2021), which can be
estimated with GPP or crop yield. Carbon and water fluxes have been studied on wheat, a
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staple cereal in the human diet (Guan et al., 2020) and more recently cactus crops (Nopal),
as the latter are adapted to arid areas (Consoli, Inglese & Inglese, 2013; López Collado et
al., 2013; Guillen-Cruz et al., 2021). The study of these fluxes is important for achieving
sustainable agricultural goals and to improveWUE. In addition, the carbon andwater cycles
of agricultural systems are influenced by location, soil type, and management practices
such as fertilizer application, type of irrigation, crop rotation and selection (Drewniak et
al., 2015;Waldo et al., 2016).

The objective of the study is to evaluate the effect of conventional and sustainable
management over the soil quality, and the carbon and water fluxes. We hypothesize that
(a) the sustainable management would show a better water use efficiency and a higher soil
quality, due to the conservation of resources that these practices promote; and (b) using a
native crop (nopal) would show a low carbon and water fluxes, due to the adaptations of
this plants to the dry conditions, in comparison with no-native crops, like wheat. Therefore,
native crops like nopal would present better WUE than introduced crops.

MATERIALS & METHODS
Study site description
The study site was established within the San Isidro ranch at the General Cepeda
municipality of Coahuila de Zaragoza state in northernMexico (Fig. 1). Climate is semiarid
BSKw (García, 2004) with a mean annual temperature of 18.4 ◦C; the hottest month has
a maximum temperature of 30.3 ◦C, and in the coldest month, a minimum temperature
of 6 ◦C. The mean annual precipitation is 377 mm, with the highest precipitation during
July, August, and September (CICESE, 2018).

The dominant vegetation is microphile and rosetophile desert scrub, with dominant
species such as Fouquieria splendens, Larrea tridentata, Yucca carnerosana, Y. filifera,
Dasylirion cedrosanum, and various species of the Cactaceae family (Campuzano, Delgado-
Balbuena & Flores-Renteria, 2021; Flores-Rentería et al., 2022). The main crops established
in the municipality are corn, beans, and wheat, with rain-fed monoculture agriculture. The
area used to establish experimental plots was abandoned for approximately 20 years.

Experiment design
The study area was divided into four 10 × 10 m plots. Two plots were planted with
nopal (Opuntia ficus-indica L.), and the two other plots with local variety wheat (Triticum
aestivum, var. AN373F2016) adapted to the region. Each crop was given conventional or
sustainable management with a factorial design (Fig. 1). For the conventional management
(CM), conventional tillage was applied by plowing to depth of 30 cm, regardless of the crop;
then a crawl was carried out with discs, breaking large clods of soil, finally grooves were
used to even soil surface. The wheat conventional management also included chemical
fertilization with 2 g m−2 of liquid urea on two periods, 22 and 158 days after sowing
(DAS). In the case of sustainable management (SM), minimum tillage was applied for
the wheat crop only in the top 10 cm of soil depth, in addition, a seeder was used in the
wheat plots. In the case of nopal, no tillage was applied, only individual holes were dug.
Organic fertilization was applied at 1 kg m−2 of pork compost. The wheat sowing was
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Figure 1 Site location and distribution of experimental plots with Nopal andWheat crops subjected to
conventional or sustainable practices in aMexican semi-arid region.Map data c© 2022 Google.

Full-size DOI: 10.7717/peerj.14542/fig-1

done with a planter (80 kg of seed per h), whereas nopal (20,000 per h) was half-buried
manually, regardless of the management. Wheat (Wh) was sowed in early September 2020
and harvested from plots with CM in April 2021 (236 DAS) and WH with SM in May
2021 (263 DAS). Nopal (Np) crop was established in early September 2020. The nopal
growth nonetheless of the management was insufficient to harvest, since did not reach
the minimum of two cladodes levels or cladodes 15–25 cm length (Flores-Valdez, 1995).
According to regional recommendations, harvest before reach this minimum size would
not reflect the real production values (Luna Vázquez, 2011).

Two 450-liter water tanks connected to a water pump were installed for better water
pressure. A meter was also installed to keep track of irrigation. Nopal (Np) plots were
drip-irrigated, and a micro-aspersion system irrigated the Wh field. The amount of water
applied was controlled weekly according to the crop requirements. Irrigation applied for
the entire growth period was 610.30 mm for SM-Np, 738.99 mm for CM-Np, 100.20 mm
for SM-Wh, and 173.61 mm for CM-Wh. Average soil water content (SWC) monitored
continuously with WatchDog sensors and 1,400 datalogger (Spectrum Technologies, Inc.,
El Paso, TX, USA). SWC was maintained for Wh between 8 ± 4% and in 17 ± 5% by
applying between 5–20 mm3 for SM and 15–45 mm3 for CM (Avila Miramontes et al.,
2014). In the case of Np SWCwas maintained between 8± 5% and in 5± 4%, according to
regional recommendation and based on different studies (Luna Vázquez, 2011; FAO, 2018).
Irrigation was maintained along the crop period, except in the case of end-Wh, where the
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irrigation was stopped to permit grain maturation. The accumulated precipitation for the
crop period was 126.7 mm (Fig. S1).

Soil and plant properties
Soil cores (two cm in diameter) were taken from a depth of 0–15 cm before tillage
(pre-tillage), after tillage (post-tillage), and after harvesting (post-harvesting) at each plot
(n= 3), for a total of 12 samples per treatment. Soils were sieved (<2 mm) and air-dried.
Soil pHwas determined in a 1:2 (w:v) aqueous suspension (Orion Star A211, Thermo Fisher
Scientific, Inc, Waltham, MA, USA). Soil quality was evaluated by its soil physicochemical
characteristics: soil organic matter (SOM) was assessed by loss on ignition at 400 ◦C for 4 h.
Organic carbon (COS) was determined by Walkley and Black method (Walkley & Black,
1934). Available phosphorus and nitrogen were determined using Bray’s and Kjeldahl’s
method (Bray & Kurtz, 1945; Bremner, 1960). The volumetric method determined the soil
bulk density. The soil texture was determined according to Bouyoucos hydrometer (ASTM
152H) (Ashworth et al., 2001).

After cropping, Wh crop was characterized by taking five cores of the plant crop
(4′′diameter) at each plot. For the assessment of aerial wheat biomass, plant material was
dried in a forced-air oven at 60 ◦C to a constant weight, weighed, and separated into grain
and straw. Quality of the crop was characterized by the analyses of nutrients in the aerial
part of the plant, since the main purpose of the Wh variety is as fodder. For this, nitrogen
content by Kjeldahl’s method (H2SO4 digestion) (Bremner, 1960); phosphorus content
by vanadate/molybdate method (Hanson, 1950); potassium content by atomic emission
(Thermo Scientific, Model ICE3300); and Fe content by atomic absorption (Thermo
Scientific, Model ICE3300). For the P, K, and Fe determinations, the plant samples were
first digested in HNO3+HClO4 2:1 solution (Huang & Schulte, 1985).

Soil respiration
To determine the soil respiration (Rsoil) rate, a portable dynamic closed chamber type
SRC- 1 (PP Systems, Amesbury, MA, USA) was used, attached to an infrared gas CO2

analyzer (EGM-5; PP Systems, Amesbury, MA). Rsoil measurements (60 s) were carried
out between 12:00–15:00 h at maximum daily soil temperature (Campuzano, Delgado-
Balbuena & Flores-Renteria, 2021) in three points per plot for each crop and management
(n= 12). Rsoil measurements were made by synchronizing the irrigation of the two
crops with the different agricultural managements, approximately every 50 days and
before and after irrigation. At each sampling point and during the Rsoil measurement,
soil moisture and soil temperature was measured with a sensor (Hydra Probe II; Stevens
Water Monitoring Systems, Inc., Portland, OR, USA) connected to the EGM-5, this was
introduced into the soil at eight cm depth. In addition, a micro station (WatchDog 1450;
Spectrum Technologies, Inc., El Paso, TX, USA) was used to measure relative humidity and
ambient temperature. After that, photosynthetically active radiation was measured with a
MQ-200 sensor (PAR; Apogee Instruments, Logan, UT, USA).
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Meteorological and net ecosystem exchange measurements
At the center of the experimental plots (25◦18′07′′ N, 101◦23′24.01′′ W), a 3 m
micrometeorological tower was installed. An eddy covariance system conformed by a
three-dimensional sonic anemometer (WindMaster Pro, Gill Instruments, Lymington,
UK) and an open path infrared gas analyzer (LI-7500DS; LI-COR Biosciences, Lincoln,
NE, USA) was used. Flux data were sampled at 10 Hz and stored in a USB device in the
SmartFlux R© 3 system, averaging files every 30 min along the crop period from September
3rd, 2020, to April 27th, 2021.

Additionally, meteorological variables were continuously collected during the same
period at a rate of five seconds and averaged and stored at half-hour intervals using
a datalogger (Sutron Xlite 9210). Both a quantum sensor (LI-190R-SMV-5, LI-COR
Biosciences) and a pyranometer sensor (LI-200R-SMV-5; LI-COR Biosciences) were
used to measure the photosynthetic active radiation (PAR); whereas the net radiation
was measured with a radiometer (NR-Lite2; Kipp & Zonen). A Vaisala sensor (Vaisala
HMP155) was used to measure the relative humidity (RH) and air temperature (Tair).
Soil heat flux was monitored by three soil heat flux plates (HFP01; Hukseflux Thermal
Sensors BV) at eight cm depth. Three soil moisture and temperature probes (Hydra Probe
II, Stevens) at five cm depth were also placed. A tipping bucket rain gauge (TE525, Texas
Electronics) was installed to monitor precipitations.

Data processing
Raw eddy covariance data were processed in EddyPro R©, as previously described in
Campuzano, Delgado-Balbuena & Flores-Renteria (2021); Flores-Rentería et al. (2022).
Specifically, night time fluxes below the threshold of u* = 0.12 m s−1 were removed;
this threshold was defined through the 99% criterion (Reichstein et al., 2005). Additionally,
90% of cumulative fluxes <= 40 m, footprint model was retained (Kljun et al., 2004). In
the data period, 56% of half-hour data were lost after quality filtering. The energy balance
closure was >90% for the whole period.

Since the plots were well oriented towards each cardinal point, the peak fluxes separation
was possible using MATLAB R2021a (MathWorks, Inc., Natick, MA, USA). The footprint
data was obtained for the entire growth period, and then the fluxes were separated by
management and crop, according to the cardinal point where the data were obtained.
The data fluxes were separated into angular sectors of the wind direction. At θ<90◦ for
CM-Wh, 90◦ <θ<180◦ for SM-Wh, 180◦ <θ<270◦ for SM-Np and 270◦ <θ for CM-Np
(Fig. 2). After quality filtering and separation of data we had 42.3% of the half-hour data
from CM-Wh (5,698), 14.6% from SM-Wh (1,962), 21.6% from SM-Np (2,909) and
21.5% from CM-Np (2,893). Flux partitioning was performed in the online MPI Jena
tool (http://www.bgc-jena.mpg.de/REddyProc/brew/REddyProc.rhtml), using Tair by the
night-time-based flux-partitioning algorithm (Reichstein et al., 2005).

Data analysis
The conversion factor of 0.1584 (Lamptey, Li & Xie, 2018) was used to convert the Rsoil
rates fromgCO2m−2 h−1 toµmolCO2m−2 s−1.Water use efficiency (WUE)was calculated
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Figure 2 (A) Footprint and (B) wind rose of crop data. Northeast conventionally managed wheat;
southeast sustainably managed wheat; southwest sustainably managed cactus; and northwest for
conventionally managed cactus. Conventionally managed wheat (CM-Wh; gray triangle, θ <90◦);
sustainably managed wheat (SM-Wh; white circle, 90◦ < θ <180◦); sustainably managed cactus (SM-Np;
white circle, 180◦ < θ <270◦); conventionally managed cactus (CM-Np; gray circle, 270◦ < θ). The
direction of the stripe shows the wind direction, and the color of the stripe indicates wind speed (m s−1)
(Sep 3th–May 26th).

Full-size DOI: 10.7717/peerj.14542/fig-2

as the ratio of GPP to ET (Cai et al., 2021), where GPP was obtained by partitioning NEE
and ET with the EC method: WUE = GPP/ET. For the calculation of WUE, the average
GPP in the growing season and accumulated ET of the same period were taken.

One-way analyses of variance (ANOVA) (p < 0.05) were performed to assess the
effect of management for a given crop on soil and plant properties, CO2 fluxes, and
evapotranspiration. Tukey’s honesty test was used to evaluate significant differences
between means. All ANOVAs were run in R (R Core Team, 2020). Normality and
homoscedasticity of the residuals was met in all analyses. To investigate the variable
importance between environmental factors and carbon fluxes in the experimental plots,
Principal Component Analysis was used, using princomp function in R (R Core Team,
2020).

RESULTS
Effect of agricultural management on soil and crop yield
The initial soil texture in the experimental plots was clay loamwith proportions of sand, silt,
and clay 34:35:31. Initial tillage and fertilization modify the soil’s organic matter, organic
carbon, and bulk density (Table 1). Specifically, the application of 30 cm-tillage positively
impacted the organic matter content top layer. This tillage also incremented the bulk
density, with lower values shown in CM in both Np and Wh. In the case of soil chemical
properties, the soil pH and electric conductivity were also affected by tillage; conventional
tillage (30 cm) results in higher pH and lower electric conductivity than minimum tillage
(10 cm). The post-harvesting soil quality (i.e., SOM, pH, EC, nutrients) also reflected the
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effect of management in a short period (one crop cycle). This effect was evident in the case
of the Wh crop, whereas the Np crop did not show significant differences in the soil quality
associated with the management. The soils from SM-Wh presented higher bulk density,
pH, and organic matter content, as well as higher available N and P.

Only Wh crop yield and plant nutrients were characterized due to the short evaluation
period for Np (263 DAS). CM-Wh showed higher straw crop yield (21,104 ± 1,129 kg
ha−1), in comparison with the SM-Wh (16,909 ± 1,785 kg ha−1). Both straw and root
length were higher in the case of SM-Wh (Table 2). Nutrient’s content (N, P, and K) was
higher in the Wh with CM in comparison with the SM, except for Fe, which was three-fold
higher in the SM.

Effect of agricultural management on carbon and water fluxes
During the crop period (September 3rd, 2020, to April 27th, 2021), the environmental
conditions were typical to this semi-arid region (Fig. S1). Global radiation was 228.72
± 308.79 W m−2 (mean ± standard deviation), relative humidity of 45.71 ±25.05%, and
air temperature 15.58 ± 7.92 ◦C, for a vapor pressure deficit (VPD) of 12.17 ± 10.17
hPa. The implementation of SM or CM influenced the C flux from the ecosystem to the
atmosphere, particularly in the Np crop. Averages of GPP and Reco showed a similar
tendency during the crop period (Fig. S2). As expected, the Np crops showed a lower daily
mean GPP (1.85 µmol C m−2 s−1) and Rsoil (6.25 µmol C m−2 s−1) than the Wh crops,
with GPP (6.34 µmol C m−2 s−1) and Rsoil (11.36 µmol C m−2 s−1) (Fig. 3). The SM-Np
crop showed higher daily mean GPP, ET, and lower Reco. On the other hand, only daily
mean ET was sensitive to management in the Wh crops with a higher ET in the CM (Fig.
3B).

Management had contrasting effects over total GPP and ET depending on the crop.
SM-Np showed a GPP of 56.27 g Cm−2 and CM-Np of 21.92 g Cm−2, and an accumulated
ET of 20.91 and 11.97 mm for SM-Np and CM-Np, respectively. Conversely, SM-Wh had
a GPP of 184.05 g C m−2 and CM-Wh of 331.79 g C m−2. Total ET was also higher for the
CM-Wh (125.16 mm) than the SM-Wh (65.93 mm; Fig. 4). These accumulated values also
showed that SM influenced the capacity of the crops to use water, with higher WUE of the
crops subjected to SM (1.42 and 1.03 g C m−3 H2O for Np and Wh, respectively) than the
CM (0.77 and 0.48 g C m−3 H2O for Np and Wh, respectively), regardless of the crop (Fig.
4C).

According to the principal component analysis (Fig. 5), no difference was found between
treatments since there was a similar individual distribution in the ordination. The VPD was
the most important variable for the C and water flux in all crops and managements (Table
S4). In this sense, the GPP was explained by the ET (R 2

=−0.23 for Np) in turn explained
by the SWC (R 2

= 0.37 and 0.13 for Np andWh, respectively). Reco was explained by Tair
(R 2
= 0.54 and 0.55 for Np and Wh, respectively, Fig. S3).
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Table 1 Soil properties of nopal (Np) and wheat (Wh) crops subjected to conventional (CM) or sustainable (SM)management in the Chihuahuan desert.

Post-tillage Post-harvesting

Pre-tillage Nopal Wheat Nopal Wheat

CM
(30 cm deep)

SM
(manual)

CM
(30 cm deep)

SM
(10 cm deep)

CM SM CM SM

Organic matter
(%)

4.45 (0.35) 9.38*** (0.38) 6.33*** (0.40) 8.23 (0.34) 7.61 (0.28) 4.49 (0.09) 4.45 (0.24) 4.74*** (0.1) 6.9*** (0.34)

Organic carbon
(%)

3.19 (0.1) 7.19*** (0.06) 5.36*** (0.06) 6.19* (0.06) 5.19* (0.06) 3.21 (0.07) 3.23 (0.05) 3.65 (0.1) 3.95 (0.17)

Bulk density
(g cm −3)

1.07 (0.01) 0.94*** (0.01) 1.02*** (0.01) 0.95* (0.01) 0.99* (0.001) 1.14 (0.01) 1.15 (0.02) 0.95*** (0.001) 0.99*** (0.001)

pH 8.01 (0.1) 8.16 (0.11) 7.97 (0.06) 8.39* (0.03) 8.23* (0.05) 8.49 (0.03) 8.51 (0.05) 8.27** (0.04) 8.56** (0.08)
Electric conductivity
(mS cm −1)

274.24 (16.78) 190.04 (14.21) 184.1 (18.30) 316.23* (17.83) 384.04* (23.14) 268.03 (19.24) 346.24 (71.43) 439.82 (18.41) 521.6 (33.7)

Available N
(ppm)

1800 (0.1) 2200 (10) 2300 (10) 2100 (10) 2300 (10) 1800 (10) 1900 (10) 1800** (10) 2100** (10)

Available P
(ppm)

4.46 (0.24) 4.68 (0.20) 4.46 (0.17) 5.10 (0.14) 4.96 (0.17) 2.21 (0.40) 2.23 (0.32) 1.22** (0.23) 2.78** (0.44)

Notes.
Data represent means (standard error) (n = 12). Asterisks indicate significant differences between managements for a given crop according to Tukey’s post hoc comparison (significance level
∗∗∗0.001,∗∗0.01,∗0.05). See Table S3.
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Table 2 Wheat yield and nutrient content under conventional (CM) or sustainable (SM)management
in the Chihuahuan desert.

CM SM

Plant morphologic characteristics Total biomass (g) 102.23* (3.78) 82.56* (8.74)
Straw lenght (cm) 93.16 (7.34) 102.58 (2.42)
Root lenght (cm) 17.41*** (1.39) 26.08*** (1.37)

Nutrients content N (ppm) 9800*** (10) 6700*** (70)
P (ppm) 600*** (10) 400*** (10)
K (ppm) 16,100*** (20) 10,400*** (10)
Fe (ppm) 149.01*** (5.07) 456.5*** (102.1)

Notes.
Data represent means (standard error) (n = 12 for yield and lengths and n = 3 for nutrients content). Asterisks indicate
significant differences between managements for a given crop according to Tukey’s post hoc comparison (significance level
∗∗∗0.001,∗∗0.01,∗0.05). See Table S4.

Figure 3 Effect of agricultural management on gross primary productivity (GPP), Evapotranspiration
(ET), ecosystem (Reco), and soil respiration (Rsoil) of nopal (Np) and wheat (Wh) crops subjected to
conventional (CM in gray bars) or sustainable (SM in white bars).Data represent means±standard er-
ror (n = 636 for GPP, ET and Reco; n = 240 for Rsoil). Asterisks indicate significant differences between
managements for a given crop according to Tukey’s post-hoc comparison (significance level∗∗∗0.001, ∗∗

0.01,∗0.05). See Table S1.
Full-size DOI: 10.7717/peerj.14542/fig-3

DISCUSSION
Agricultural management effect on soil characteristics and crop yield
The increase in soil organic matter (SOM) recorded in the plots post-tillage compared to
the pre-tillage is due to the vegetation clearing, were fragments, both aerial and roots, were
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Figure 4 (A) Total gross primary productivity (GPP), (B) evapotranspiration (ET), and (C) water use
efficiency (WUE) of nopal (Np) and wheat (Wh) crops subjected to conventional (CM in grey bars) or
sustainable (SM in white bars) management in the Chihuahuan desert.

Full-size DOI: 10.7717/peerj.14542/fig-4
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Figure 5 Principal component analysis for nopal (Np) and wheat (Wh) crops subjected to conven-
tional (CM) or sustainable (SM)management in the Chihuahuan desert.GPP, gross primary productiv-
ity; Reco, ecosystem respiration, SWC, soil water content, VPD, vapor pressure deficit, Tair, air tempera-
ture. Daily mean data, n= 636. See Table S2.

Full-size DOI: 10.7717/peerj.14542/fig-5

incorporated into the soil (Ramesh et al., 2019). Deeper tillage in the upper layer (0–30 cm)
applied in the CM plots, regardless of the crop, results in a higher increase in SOM (4.4%
more) than in the SM reduced tillage in the top layer (0–10 cm), which increases only 2.5%
of SOM. This increase is explained by the mixing process that exposes the deeper SOM,
potentially promoting its loss as CO2 by decomposition in the middle and long term (Post
& Kwon, 2000; Haddaway et al., 2017). In fact, after harvest, the SOM content is reduced
in all plots due to natural decomposition processes, with a higher loss in CM plots (4.2%),
compared to SM plots (1.3% of SOM loss). The SM-Wh presented the lower loss of SOM,
with less than a 1% difference between post-tillage and post-harvesting determinations.
The SOM pattern also reflects the input of compost in the SM management, and the crop
plant material input, which is higher in the case of the Wh.

Furthermore, SOC, as part of the SOM composition (Jackson et al., 2017), has similar
behavior. It has been consistently observed that the reduction of tillage intensity increases
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the SOC concentration (Liu et al., 2003; Singh et al., 2014;Haddaway et al., 2017). Reduced
tillage potentially produces benefits that result from soil C accumulation in the surface soil,
such as improved infiltration, water-holding capacity, nutrient cycling, soil biodiversity,
and erosion reduction (Busari et al., 2015; Haddaway et al., 2017). Likewise, in this study,
tillage influenced bulk density, soils with SM have higher bulk density than CM ones, as
reported in other agricultural studies (McVay et al., 2006; Jat et al., 2018).

Irrigation and fertilization tend to increase the pH and the electrical conductivity in
agricultural fields (Zhao et al., 2007; Darvishi, Manshouri & Farahani, 2010); in this study,
we observed such changes except in the CM-Wh. Specifically, the soil pH decreases in the
CM-Whpost-harvesting can be associated with the fertilizer applied, since urea releases H+,
resulting in slight soil acidification (Hao & Chang, 2003; Tian & Niu, 2015). The significant
increase in electrical conductivity in soil from SM, regardless of the crop, is explained by
the compost application, which by presenting Na+ and Mg+ salts, increases soil salinity
(Artiola et al., 2019); however, it is still lower than the critical level of 4 dS m−1 (Jat et al.,
2018). The control of these variables is of utmost agricultural importance because these
control the bioavailability of nutrients such as N, P, and K, affecting also microbial activity
(Heiniger, McBride & Clay, 2003; Xue et al., 2018).

Available N and P content in the soil showed increases after tillage, indicating the
incorporation of fertilizers (i.e., urea for CM and compost for SM) and a decrease
after harvesting due to its incorporation and metabolization by the plant and soil
microorganisms. However, the nutrient reduction was higher in CM than SM plots,
and higher for Wh than Np. The last can be explained by the inherent slow metabolism of
the Np, with lower nutrient requirements (Consoli, Inglese & Inglese, 2013). Furthermore,
the application of compost as fertilizer in the SM results in a higher increase of soil N with
lower loss in the soil, and lower incorporation by the crop, specifically the wheat, negatively
impacting the crop yield.

Wheat nutrient uptakewas higher in theCMcrop than in the SMcrop, resulting in higher
biomass production and yield. The poor wheat nutrient uptake by the SMmanagement can
be attributed to the tillage that affected the root growth of thismanagement (Muñoz Romero
et al., 2010), which did not penetrate deep enough for better development (Mašková &
Herben, 2018), and to the application of N in a less available form (compost). The lower
N availability reduced biomass production (Litke, Gaile & Ruža, 2018). Furthermore, N
allows proper uptake of the remaining micronutrients, thus causing a higher nutrient
deficit in the crop (Cakmak, Pfeiffer & McClafferty, 2010;Hamnér et al., 2017; Singh, 2019).
The crop yield was similar to previously reported for this crop during winter growth
(Curtin et al., 2000; Bista et al., 2017). The differences in production between crops are
associated with the slow development that Np presented during growth, compared to
other regions, due to the low temperatures and the limited irrigation provided (López
Collado et al., 2013). Contrary to the reported nopal production in other semi-arid areas,
the cladode growth in our case did not reach the minimum size to be cultivated (Liguori et
al., 2013; López Collado et al., 2013; Snyman, 2013). Despite the advantages offered by the
Crassulacean Acid Metabolism species in terms of productivity and resistance to drought
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over conventional semi-arid crops C3 and C4, the low yield we obtained did not allow us
to perform a comparison (Owen et al., 2016).

Agricultural management effect on carbon and water flux
Management practices in agriculture modify the dynamic in the C, N, and water fluxes
(Davis et al., 2010; Fisher et al., 2017; Camarotto et al., 2018; Mirzaei et al., 2021; Mirzaei &
Caballero Calvo, 2022), specifically, sustainable management has the potential to reduce
the C flux from the soil to the atmosphere. This is especially relevant considering that
arid zones’ current and future C sink capacity will strongly depend on water availability
(Hovenden, Newton & Wills, 2014). Winter wheat crops managed with a reduced tillage
decrease the ecosystem respiration (Reco) (Bista et al., 2017) compared to conventional
tillage. Our study found no significant differences between managements in both daily
mean carbon uptake (GPP) and release (Reco and Rsoil) for the Wh crop, although a
tendency of this decrease in Rsoil and increase in GPP was detected. The lack of differences
can be explained by the length of the study since the application of the SM practices had
more impact in the long term (Busari et al., 2015; Haddaway et al., 2017). However, in the
case of Np, SM significantly reduced the Reco while significantly increased the GPP in
comparison with CM. Furthermore, the total carbon uptake (GPP) was larger than the
release (Reco) on the SM plots regardless of the crop, whereas the CM plots behave as net
C source, as has been previously described for different crops (Curtin et al., 2000; Vote,
Hall & Charlton, 2015; Bista et al., 2017; Heimsch et al., 2021).

Furthermore, the differences in crops metabolism resulted in lower C uptake by Np.
While the wheat (T. aestivum) has a C3 metabolism, the CO2 fixation rate via Rubisco
is higher than the Malate route used in the CAM of the nopal (O. ficus) (Bhagwat, 2005;
Snyman, 2013). These differences in metabolisms also produce significant differences in
crop water use. While the Wh C3 metabolism does not have photosynthetic adaptations
to reduce photorespiration, the CAM metabolism of the Np prevents photorespiration
during the day, thus increasing WUE (Consoli, Inglese & Inglese, 2013; Liguori et al., 2013;
Owen et al., 2016). As a result, the Wh crops exhibit a higher ET than Np. As we first
hypothesized, the historical physiological adaptations presented by the native Np result in
a CAM metabolism that allow it to have lower water requirements and ET and, therefore,
a higher WUE than Wh (Borland et al., 2009; Guillen-Cruz et al., 2021).

On the other hand, the management also influenced the total WUE, the SM (i.e.,
minimum tillage, compost) for both Np (drip-irrigated) and Wh (micro-aspersion), in
which the SWC was reduced (by 3% and 7% than the CM), over time the SWC present a
more stable behavior, showing that SM improved theWUE of crops by reducing ET (Zheng
et al., 2018), being especially noticeable in Wh.

CONCLUSIONS
Differences in the management of wheat and nopal changed the soil quality and the carbon
and water fluxes. Although the use of C by nopal was lower due to metabolic differences
with wheat, the management effect on the C and water cycles was remarkable. Sustainable
management (i.e., reduced tillage and organic fertilization) showed more efficient water
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use in incorporating C into the plant, also showing higher soil water retention and a lower
loss by evapotranspiration in comparison with conventional management (i.e., regular 30
cm tillage and urea fertilization). Sustainable practices enhance and maintain soil quality
(change in organic matter and nutrient content). However, it results in a lesser nutrients
plant uptake, so fertilization must be fine tuned to ensure proper plant nutrition within
the range of sustainable possibilities.
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