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ABSTRACT
Background. Accurately estimating the true richness of a target community is still a
statistical challenge, particularly in highly diverse communities. Due to sampling limita-
tions or limited resources, undetected species are present inmany surveys and observed
richness is an underestimate of true richness. In the literature, methods for estimating
the undetected richness of a sample are generally divided into two categories: parametric
and nonparametric estimators. Imposing no assumptions on species detection rates,
nonparametricmethods demonstrate robust statistical performance and arewidely used
in ecological studies. However, nonparametric estimators may seriously underestimate
richness when species composition has a high degree of heterogeneity. Parametric
approaches, which reduce the number of parameters by assuming that species-specific
detection probabilities follow a given statistical distribution, use traditional statistical
inference to calculate species richness estimates. When species detection rates meet the
model assumption, the parametric approach could supply a nearly unbiased estimator.
However, the infeasibility and inefficiency of solving maximum likelihood functions
limit the application of parametric methods in ecological studies when the model
assumption is violated, or the collected data is sparse.
Method. To overcome these estimating challenges associated with parametric methods,
an estimator employing the moment estimation method instead of the maximum
likelihood estimation method is proposed to estimate parameters based on a Gamma-
Poisson mixture model. Drawing on the concept of the Good-Turing frequency
formula, the proposed estimator only uses the number of singletons, doubletons, and
tripletons in a sample for undetected richness estimation.
Results. The statistical behavior of the new estimator was evaluated by using real
and simulated data sets from various species abundance models. Simulation results
indicated that the new estimator reduces the bias presented in traditional nonparametric
estimators, presents more robust statistical behavior compared to other parametric
estimators, and provides confidence intervals with better coverage among the discussed
estimators, especially in assemblages with high species composition heterogeneity.
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INTRODUCTION
Species richness is the most commonly used diversity index and a key metric in ecological
research. Due to the rapid expansion of the human population and the disturbance induced
by human activities that increasingly eliminates ecological habitats, an increasing number
of species become extinct before even being discovered (Costello, May & Stork, 2013).
Assessment and long-term monitoring of species diversity in a target area has become an
urgent task for conservation biologists.

To collect and identify all species in a target area, researchers need to conduct a census
of all species in the area. However, generating species inventories of a target area requires
enormous investigation efforts and is often impractical due to resource limitations.
Therefore, most biodiversity studies are based on the sampled data from the target area
or assemblage. However, since species sampling data represent only a partial collection
of the entire assemblage, it is hard to detect all species of the assemblage, especially when
the sample size is small. Because the true number of species in an area equates to the
number of species observed in the sample plus the number of species not appearing in the
sample, using the recorded number of species in the sample as an estimator will lead to
underestimating the true richness of the target area or assemblage.

In general, the number of undetected species in a sample depends on sampling effort and
sample completeness (Hortal, Borges & Gaspar, 2006). Accurate estimation of the species
richness in an area is still a statistical challenge, especially in a highly heterogeneous
assemblage (Bunge, Willis & Walsh, 2014). Researchers in different disciplines have
developed methods for estimating the number of species according to different sampling
schemes or model assumptions (Bunge & Fitzpatrick, 1993; Chao & Chiu, 2012; Colwell &
Coddington, 1994; Gotelli & Colwell, 2011; Lanumteang & Böhning, 2011; Norris & Pollock,
1998). The proposed estimators are generally classified as nonparametric or parametric.
As nonparametric richness estimators do not impose model assumptions on species
detection probability, they are more robust and more frequently used by ecologists or
conservationists. Among the nonparametric approaches, the Chao1 lower bound estimator
(Chao, 1984) and jackknife estimator (Burnham & Overton, 1978; Burnham & Overton,
1979) are the most commonly used methods. Based on the concept that rare species in a
sample contain most of the information about undetected species, these nonparametric
estimation methods use the number of species observed only once or twice in the sample to
estimate the number of undetected species. However, the nonparametric species estimators
often considerably underestimate the true number of species, particularly when the sample
size is small or when the assemblage has a high degree of heterogeneity (Chao, 2005).
Conversely, parametric methods treat the species detection rate as a random variable
following a specific probability distribution. Under this assumption, estimating the number
of species becomes amatter of estimating the parameters of the probability distribution, and
traditional statistical inference approaches may be applied. Generally, a computationally
expensive, iterative numerical algorithm is required to solve this parameter estimation
problem by using the maximum likelihood method. When the distribution of the true
species detection probability is similar to the hypothetical distribution, a parametric
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richness estimator provides a more accurate estimate. However, when the community is
highly heterogeneous and the sample size is not sufficiently large, the parametric estimator
frequently fails to converge or requires additional computing time, especially when the
sampled data are sparse. Therefore, parametric methods are less frequently adopted to
assess species diversity in ecological studies.

This study proposes a parametric estimation method in which the species detection
probability is assumed to be a random variable following a probability distribution.
In addition, the Good-Turing frequency formula (Good & Toulmin, 1956; Good, 1953)
reveals that the rare species in a sample contain most of the information concerning
undetected species. In this case, the moment method is used to estimate the parameters of
the distribution instead of employing the time-consuming maximum likelihood method.
Consequently, the proposed method overcomes the problems of statistical divergence and
time-consuming parameter calculations encountered in applying the maximum likelihood
method. Furthermore, similar to the nonparametric approach, the proposed richness
estimator estimates the number of undetected species on the basis of only the sample’s rare
species data (i.e., the number of singletons, doubletons, and tripletons). Thus, fieldwork
may be substantially reduced because researchers are only required to record the number
of rare species, not the exact individual number of abundant species in the field.

In the following section, the hypothetical model of species composition and the
theoretical framework of the proposed estimation method are detailed. Subsequently,
in the simulation analysis section, the statistical performances (e.g., bias, the estimated
standard error (s.e.), and the coverage rate on a 95% confidence interval) of the proposed
estimator are analyzed in various common species composition models. Across different
real data sets, the proposed approach is analyzed and compared with commonly used
estimators. In the final section, the findings of this research are discussed.

MATERIALS & METHODS
For individual-based abundance data, the sampling unit is an individual and one individual
is randomly sampled and identified at a time. Assume there are S species in the target area
or assemblage, which is an unknown parameter. Let Xi be the number of individuals of the
i th species observed in the sample. When the assemblage is sampled for a fixed period of
time, Xi follows the Poisson model with discovery rate λi,i= 1,2,...,S. To simultaneously
reduce the number of unknown parameters and consider the heterogeneity of the species
detection rate, let λi be a random variable following a specific distribution. In ecological
studies, a mixed Poisson model assumes that the count Xi follows a Poisson distribution
P(λi), where λ1,λ2,...,λS are independent and identically distributed random variables
from a probability density function g (λ) with a few parameters. Here, I presume g (λ)
is from a gamma distribution with two parameters (α,β), where α is a shape parameter
and β is a scale parameter. When α = 1, g (λ) is equal to the exponential distribution,
which corresponds to the well-known broken-stick model. When α tends to infinity,
g (λ) will converge to the uniform distribution, which is identical to a homogeneous
model in ecological studies. Therefore, the Poisson-Gamma model is a flexible model,
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and many estimators and richness estimators have been proposed based on this model
assumption (Sanathanan, 1972; Sanathanan, 1977; Chao & Bunge, 2002; Lanumteang &
Böhning, 2011).

On the basis of the Gamma-Poisson mixture model assumption, the marginal
distribution of the species count in the sample can be expressed as follows:

pk = P (Xi= k)=
∫
∞

0

λk

k!
e−λ

λα−1βα

0(α)
e−βλdλ=

0(α+k)
k!0(α)

(
β

β+1

)α( 1
β+1

)k

,

k= 0,1,2,.... (1)

Let the species frequency count fk denote the number of species observed exactly k times in
the sample; that is fk =

∑S
i=1I (Xi= k),k= 0,1,2,... , where I (A) is an indicator function.

I (A) is equal to 1 if event A occurs, and I (A) is equal to 0 otherwise. Thus, f0 is the
number of undetected species in the sample, and Sobs=

∑n
k=1fk is the observed richness in

the sample. In this case, the observed frequency count {fk : k ≥ 1} in the sample follows a
multinomial distribution with total sum Sobs and cell probabilities {

pk
1−p0
: k ≥ 1}. Therefore,

the likelihood function can be expressed as L(α,β)= Sobs!∏
k≥1fk !

∏
k≥1

(
pk

1−p0

)fk
. The maximum

likelihood estimator of α and β can then be obtained by using an iterative numerical
procedure (Sanathanan, 1972; Sanathanan, 1977). The mean detection probability of the

unobserved species can be obtained using p̂0=
(

β̂

β̂+1

)α̂
. Following the Horvitz-Thompson

theory, we have S= E
[∑S

i=1I (Xi>0)
1−p0

]
. Then, the ML estimator of richness can be obtained as

ŜMLE =
Sobs
1−p̂0

.
Chao & Bunge (2002) developed an alternative estimation method based on a Gamma–

Poisson mixture model. The researchers showed θ̂ = 1− f1
∑Sobs

i=1 X2
i

n converges to P (Xi≥ 2)
in probability, which is equivalent to the assertion that S× θ̂ converges to

∑
k≥2fk in

probability; they subsequently proposed another richness estimator expressed as:

ŜCB=
1
θ̂

∑
k≥2

fk . (2)

Compared with the traditional maximum likelihood estimator, ŜCB ispresented as
a closed formula which is instantaneous to compute. However, these two parametric
approaches are less commonly used in ecological studies because of the divergence problem
which can arise when sparsely sampled data is applied.

As indicated by the estimator formulas, the two parametric estimators use all observed
species data in the sample, including abundant and rare species, to estimate unseen richness.
However, the Good–Turing frequency formula indicates that observed rare species contain
most of the information about unobserved species. According to this concept, abundant
species in the sample mostly do not contain information about the undetected richness and
may generate nuisance statistics in estimations of undetected species richness, resulting
in high variance and instability. Therefore, abundant species in the sample usually are
excluded from richness estimation to obtain more robust estimators (Chao, 1984; Chao,
1987; Chao & Yang, 1993; Chao et al., 2000). Herein, a new richness estimator is derived
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that employs a simple moment approach to sampled rare species data. According to the
Gamma-Poisson mixture model, the expected species frequency count in the sample can
be expressed as follows:

E
[
fk
]
= S×pk = S

0(α+k)
k!0(α)

(
β

β+1

)α( 1
β+1

)k

.

The unseen richness as well as the numbers of singletons, doubletons, and tripletons
can be derived as follows:

E
[
f0
]
= S

(
β

β+1

)α
, (3a)

E
[
f1
]
= S

α

β+1

(
β

β+1

)α
, (3b)

E
[
f2
]
= S

α(α+1)
2(β+1)2

(
β

β+1

)α
, (3c)

E
[
f3
]
= S

α(α+1)(α+2)
6(β+1)3

(
β

β+1

)α
. (3d)

According to Eqs. (3a), (3b), (3c) and (3d), the following equalities can be obtained as:

E
[
f0
]

E
[
f1
] = β+1

α
, (4a)

E
[
f1
]

E
[
f2
] = 2(β+1)

α+1
, (4b)

E
[
f2
]

E
[
f3
] = 3(β+1)

α+2
. (4c)

According to Eqs. (4b) and (4c), the scale parameter α in the mixed Poisson model is
identical to the following:

α=
4E
[
f2
]2
−3E[f1]E[f3]

3E
[
f1
]
E
[
f3
]
−2E

[
f2
]2 .

Then, the estimator of α can be obtained by: α̂= 4f 22 −3f1f3
3f1f3−2f 22

. To ensure α̂ > 0, 3f1f3 should

be within the range of
(
2f 22 ,4f

2
2
)
. According to Eqs. (4a) and (4b), the expected unseen

richness can also be presented as follows:

E[f0] =
E
[
f1
]2

2E
[
f2
] (1+ 1

α

)
.

Since the Cauchy–Schwarz inequality could show E[f1]2
2E[f2] as a lower bound of E[f0] (Chao,

1984), it is implied that E[f1]2
2E[f2]

( 1
α

)
isthe bias of f 21

2f2
. Therefore, f 21

2f2

(
1+ 1

α̂

)
is an unbiased

estimator of undetected richness in the Gamma-Poisson mixture model. However, like
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all parametric estimators, this unbiased estimator is also unreliable when data is sparse.
To obtain a more stable estimator, this unbiased estimator is modified to propose a new
estimator. By the Cauchy–Schwarz inequality, the following inequality is held:

S∑
i=1

pi
(
1−pi

)n−1 S∑
i=1

p3i
(
1−pi

)n−3
≥

( S∑
i=1

p2i
(
1−pi

)n−2)2

,

which is approximately equal to the inequality 2E
[
f2
]2
≤ 3E[f1]E

[
f3
]
when sample size is

sufficiently large. The lower bound of E[f1]2
2E[f2]

1
α
can be obtained as:

E
[
f1
]2

2E
[
f2
] 1
α
=

E
[
f1
]2

2E
[
f2
] (3E

[
f1
]
E
[
f3
]
−2E

[
f2
]2

4E
[
f2
]2
−3E

[
f1
]
E
[
f3
]
)
≥

E
[
f1
]2

2E
[
f2
] (1− 2E

[
f2
]2

3E
[
f1
]
E
[
f3
]).

To obtain a more stable (less RMSE) estimator of unseen richness and ensure α̂ > 0, the
proposed richness estimator is as follows:

ŜGP = Sobs+ f̂0.Chao1

(
2−

(
2f 22
3f1f3

)−)
, (5)

where f̂0.Chao1=
{
f 21 /2f2 iff2 > 0
f1(f1−1)/2 iff2 = 0 and the expression (A)− equals max( 12 ,A) if A< 1 and

1 if A≥ 1. Here, f3 (or f1) is replaced by 1 when f3= 0 (or f1= 0) to ensure that Eq. (5) is
always well-defined. Since f 21 /(2f2) is the lower bound estimator of unseen richness (Chao,
1984), the newly proposed estimation method can be treated as a bias-corrected estimator
of Chao1 under the Gamma-Poisson mixture model. Furthermore, in Appendix S1A, it
is shown that the newly proposed estimator can also be directly derived by correcting
the bias of Chao1 based on the Good-Turing frequency formula without any model
assumptions. Notably, when the homogeneity of species composition is met, we have
2E
[
f2
]2
= 3E

[
f1
]
E
[
f3
]
and E

[
f1
]2
= 2E

[
f0
]
E
[
f2
]
. This implies that the proposed estimator

will be approximately identical to the Chao1 lower bound estimator and both are unbiased
estimators for a homogeneous model (proved in Appendix S2B).

Under the assumption of the Gamma-Poisson mixture model, the marginal distribution
of species count (Eq. (1)) is identical to a negative binomial distribution. Lanumteang &
Böhning (2011) reformulated the parameters by using the Taylor expansion and derived a
richness estimator expressed as:

ŜLB= Sobs+
f 21
2f2

3f1f3
2f 22

. (6)

Since 3E
[
f1
]
E
[
f3
]
≥ 2E

[
f2
]2 is held by the Cauchy–Schwarz inequality, ŜLB was

interpreted as a bias-corrected Chao1 estimator (Lanumteang & Böhning, 2011).
Here, ŜLB and ŜGP , both interpreted as bias-corrected Chao1 estimators, were derived

by using the moment method based on the assumption of the Gamma-Poisson mixture
model and using the numbers of singletons, doubletons, and tripletons species to estimate
the unseen richness in the sample. However, ŜLB and ŜGP have quite different formulaic
expressions due to differences in how they adjust to correct the negative bias of Chao1;
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their statistical performances are also quite different as will be presented in the following
simulation section.

Using an asymptotic approach, we can derive the estimators of variance of the
discussed richness estimators that use rare species frequency counts to estimate undetected
richness, based on the assumption that

(
f0,f1,...,fn

)
approximately follows a multinomial

distribution with total size S and cell probabilities (E[f0]S ,
E[f1]
S ,...,

E[fn]
S ) (Chao & Lee, 1992;

Chao & Yang, 1993). Consequently, we have the following:
v̂ar(Ŝ)≈

∑n
i=1
∑n

j=1
∂ Ŝ
∂fi

∂ Ŝ
∂fj
ĉov

(
fi,fj

)
, where ĉov

(
fi,fj

)
=

{
fi(1− fi/Ŝ) ifi= j
−fifj/Ŝ ifi 6= j .

To derive the 95% confidence interval (95% CI) of species richness and to ensure
that the lower bound of the 95% CI of species richness is larger than the observed
richness, assume Ŝ− Sobs follows a log-normal distribution (Chiu et al., 2014). Then
the 95% CI of species richness is obtained as [Sobs+ Ŝ−Sobs

R ,Sobs+ (Ŝ− Sobs)R], where

R= exp

{
1.96

[
log
(
1+ Var(Ŝ)

(Ŝ−Sobs)
2

)] 1
2
}
.

According to this derivation, the proposed richness estimator has the following
properties: (i) Instead of requiring all sample data as in existing parametric approaches, the
proposed estimator uses the number of singletons, doubletons, and tripletons to estimate
the unseen richness. (ii) Inefficiency and divergence problems encountered in solving
the maximum likelihood function of parameters through iterative calculation methods in
sparse data are avoided. (iii) The new estimator is asymptotically unbiased when sample
size n is sufficiently large. (iv) The proposed estimator provides a lower bound estimator
under the species composition assumption of the Gamma–Poissonmixturemodel, which is
a flexible ecological model that incorporates the broken-stick model and the homogeneous
model. (v) The newly proposed estimator can be directly derived by correcting the bias of
Chao1 based on the Good-Turing frequency formula without any model assumptions. (vi)
The new richness estimator can be interpreted as a bias-corrected Chao1 estimator and
stay unbiased when species detection probability is homogeneous.

Simulation study and results
We investigated the performance of the proposed estimator (ŜGP) and compared it with that
of the previously described estimators, namely two nonparametric approaches (the Chao1
lower bound estimator, denoted as ŜChao1, and the first-order jackknife estimator, denoted
as ŜJack1) and two parametric approaches (ŜCB and ŜLB) derived under the Gamma-Poisson
mixture model. Herein, other parametric approaches are excluded due to the divergence
problem in calculating the maximum likelihood estimation (MLE) of parameters which
makes it difficult to fairly compare with other estimators. The simulation study was
conducted using two assemblage settings: one of the settings involved calculating species
composition from seven models, and the other involved treating three data sets as the
entire assemblage.

Species composition generated from the theoretical abundance model
The simulation results were obtained from seven commonly used ecological species
abundance models. The number of species in each model was set to S= 1,000. The species
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detection probabilities or species relative abundances
(
p1,p2,...,pS

)
= (ca1,ca2,...,caS)

in each model are provided subsequently, where c is a normalizing constant such that∑S
i=1pi= 1. We also present the coefficient of variation (CV) of (p1,p2,...,pS) to indicate

the degree of heterogeneity of
(
p1,p2,...,pS

)
.

Model 1, homogeneous model (CV = 0): with pi= 1/S,i= 1,2,...,S. This model has
no heterogeneity among species detection probabilities.

Model 2, random uniform model (CV = 0.53): with pi= cai,i= 1,2,...,S, where
(a1,a2,...,aS) isa random sample from the uniform distribution.
Model 3, negative binomial model (CV = 0.74): with pi= cai,i= 1,2,...,S, where
(a1,a2,...,aS) isa random sample from the negative binomial distribution with a mean

of 98 and a variance of 4,900.
Model 4, broken-stick model (CV = 0.97): with pi = cai,i = 1,2,...,S, where

(a1,a2,...,aS) is a random sample from the exponential distribution with parameter
1. This model is commonly used in the literature and also equivalent to the Dirichlet
distribution.

Model 5, log-normalmodel (CV= 1.56): with pi= cai,i= 1,2,...,S, where (a1,a2,...,aS)
is a random sample from the log-normal distribution with parameters 0 and 1.

Model 6, Zipf–Mandelbrot model (CV = 1.88): with pi= c
i+10 ,i= 1,2,...,S.

Model 7, power decay model (CV = 4): with pi= c
i0.9 ,i= 1,2,...,S.

The CV values in these seven models ranged from 0 to 4 and covered the majority
of practical scenarios in real cases. Four different sample sizes were considered: 1,000,
2,000, 4,000 and 8,000. Therefore, a total of 28 model-size combinational scenarios were
produced. For each model and sample size, 1,000 simulated data sets were generated, and
the following estimators were used to derive estimations:
(i) The Chao1 estimator (Sobs+

f 21
2f2
): using the number of singletons and doubletons to

estimate the number of unseen species.
(ii) The first-order jackknife estimator (Sobs+ f1): using the number of singletons to

estimate the number of undetected species.
(iii) The parametric estimator proposed by Chao & Bunge (2002); see Eq. (2).
(iv) The parametric estimator proposed by Lanumteang & Böhning (2011); see Eq. (6).
(v) The newly proposed richness estimator; see Eq. (5).

For each estimator, the estimate and the corresponding estimated s.e. were averaged
over the 1,000 simulated data sets to derive the average estimate and the average estimated
s.e.. The sample s.e. and root-mean-square error (RMSE) over the 1,000 estimates were also
obtained. The percentage of data sets in which the 95% confidence intervals covered the
true value is presented in Tables 1–7. The average richness observed in the 1,000 samples
is also listed in the Tables.

Using data sets as true assemblages
Three large biological survey data sets were used as the true assemblages and separate data
sets were generated from these three assemblages. For each data set, the observed species
relative abundance was treated as the true species relative abundance, and a sample of size
n was generated through sampling with replacement. The average bias and RMSE obtained
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Table 1 Comparison of five richness estimators based on 1,000 simulation data sets under a homoge-
neous model with S = 1,000 and CV= 0. The five estimators are: the Chao1 estimator (Chao, 1984) de-
noted as ŜChao1, the first-order Jackknife estimator (Burnham & Overton, 1978) denoted as ŜJack1, the esti-
mator proposed by Chao & Bunge (2002) denoted as ŜCB, the estimator proposed by Lanumteang & Böhn-
ing (2011) denoted as ŜLB, and the newly proposed estimator denoted as ŜGP.

Size n
(Observed
richness)

Estimator Average
estimate

Bias Sample
s.e.

Average
estimated
s.e.

Sample
RMSE

95%CI
coverage
rate

ŜChao1 1,006.4 6.4 51.5 51.4 51.9 0.94a

ŜJack1 1,002.2 2.2a 24.2 27.2 24.3a 0.97
ŜCB 1,009 9 72.1 106.5 72.7 0.99
ŜLB 1,019.9 19.9 122.4 118 124.0 0.93

1,000
(633.0)

ŜGP 1,025.3 25.3 84.6 78.2 88.3 0.92
ŜChao1 1,000.5 0.5 22.8 21.9 22.8 0.94a

ŜJack1 1,134.9 134.9 20.5 19.7 136.4 0
ŜCB 1,000.2 0.2a 22 24.1 22a 0.96
ŜLB 1,007.8 7.8 41.7 39.5 42.4 0.93

2,000
(864.4)

ŜGP 1,006.4 6.4 32 30.4 32.6 0.93
ŜChao1 1,000.4 0.4a 6 6.3 6 0.94
ŜJack1 1,055 55 8.7 9.4 55.7 0
ŜCB 999.4 −0.6 5 5.3 5a 0.95a

ŜLB 1,001.6 1.6 9.5 9.7 9.6 0.95a

4,000
(981.8)

ŜGP 1,000.8 0.8 7.7 8.3 7.7 0.94
ŜChao1 1,000.2 0.2 0.8 0.8 0.8 0.94a

ŜJack1 1,002.4 2.4 1.7 1.6 2.9 0.86
ŜCB 999.9 −0.1a 0.6 0.6 0.6a 0.84
ŜLB 1,001.1 1.1 4.1 2.9 4.2 0.84

8,000
(999.7)

ŜGP 1,000.3 0.3 1.2 1.9 1.2 0.94a

Notes.
adenotes the smallest bias, smallest RMSE, and figure closest to 95% coverage.

using the 1,000 generated data sets as a function of sample size are illustrated in the figures
to evaluate the statistical behavior of the discussed richness estimators.

The first data set includes vascular plant species from the central portion of the Southern
Appalachian region (Miller & Wiegert, 1989). This data set has a total of 188 species with
1,008 individuals; the species frequency count is presented inTable 8, and the corresponding
degree of heterogeneity is presented (CV = 1.562). For each discussed estimator, the
patterns of bias and RMSE as a function of sample size (from 200 to 1,000) are displayed
in Figs. 1A and 1B.

The second data set comprises butterfly survey data collected fromMalaya (Fisher, Corbet
& Williams, 1943) and contains a total of 620 species with 9,031 individuals. The species
frequency count is presented in Table 8, and the corresponding degree of heterogeneity
is presented (CV = 1.435). The simulation settings were the same as those used in the
abundance models. The patterns for the average bias and average RMSE as a function of
sample size (from 500 to 6,000) are displayed in Figs. 1C and 1D.
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Table 2 Comparison of five richness estimators based on 1,000 simulation data sets under a random
uniformmodel with S= 1,000 and CV=0.56. See Table 1 for the notations of the estimators.

Size n
(Observed
richness)

Estimator Average
estimate

Bias Sample
s.e.

Average
estimated
s.e.

Sample
RMSE

95%CI
coverage
rate

ŜChao1 858.1 −141.9 44.1 43.2 148.6 0.2
ŜJack1 875.3 −124.7 23.6 24.2 126.9 0
ŜCB 905.6 −94.4 67.4 86.9 115.9 0.76
ŜLB 936.3 −63.7a 124 116.7 139.2 0.8

1,000
(572.3)

ŜGP 922.1 −77.9 83.8 80.9 114.4a 0.84a

ŜChao1 903.9 −96.1 25.4 24.2 99.4 0.1
ŜJack1 995.8 −4.2a 20 19.1 20.4a 0.93a

ŜCB 916.9 −83.1 25.9 27 87.1 0.17
ŜLB 956.7 −43.3 63.8 60.2 77.1 0.77

2,000
(762.7)

ŜGP 942.3 −57.7 44 43 72.2 0.87
ŜChao1 947.6 −52.4 15.7 14.5 54.7 0.19
ŜJack1 1,011.2 11.2a 14.8 13.5 18.5a 0.86
ŜCB 938.4 −61.6 12 11.4 62.8 0
ŜLB 977.3 −22.7 38.5 36.3 44.7 0.77

4,000
(886.1)

ŜGP 970.7 −29.3 25.3 24.3 38.7 0.89a

ŜChao1 975.7 −24.3 10.2 9.6 26.4 0.51
ŜJack1 1,006 6a 9.9 9.2 11.6a 0.88
ŜCB 965.3 −34.7 7 6.7 35.4 0
ŜLB 993.5 −6.5 28.2 26.4 28.9 0.79

8,000
(947.9)

ŜGP 987.5 −12.5 15.5 15.5 19.9 0.92a

Notes.
adenotes the smallest bias, the smallest RMSE, and figure closest to 95% coverage.

The third data set contains data on ground-dwelling invertebrate species collected
from northwest Tasmania (Bonham, Mesibov & Bashford, 2002) and has a total of 84
species with 2,050 individuals. The species frequency count is presented in Table 8, and
the corresponding degree of heterogeneity is presented (CV = 2.07). The patterns for
the average bias and average RMSE as a function of sample size (from 100 to 1,000) are
illustrated in Figs. 1E and 1F.

DISCUSSION
In general, a good estimator should be designed with functions such that their bias and
accuracy (quantified by RMSE), the twomost essential properties for an estimator, decrease
as the sample size increases. Furthermore, the coverage rate of the 95% confidence interval
should tend towards 0.95 as the sample size increases. Another required property of a
richness estimator is that the estimator should be nearly unbiased in the homogeneous
model. Since it is impossible to fit all ecological communities by using a single statistical
model, there is no existing uniformly unbiased richness estimator for all ecological
communities. Therefore, developing a more robust estimator is the most essential goal in
species richness estimation. Furthermore, based on theCauchy–Schwarz inequality, we have
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Table 3 Comparison of five richness estimators based on 1,000 simulation data sets under a negative
binomial model with S= 1,000 and CV = 0.74. See Table 1 for the notations of the estimators.

Size n
(Observed
richness)

Estimator Average
estimate

Bias Sample
s.e.

Average
estimated
s.e.

Sample
RMSE

95%CI
coverage
rate

ŜChao1 846.9 −153.1 47.2 45.9 160.1 0.19
ŜJack1 843 −157 23.9 24.2 158.8 0
ŜCB 1,016.4 16.4a 121.5 128.4 122.4 0.94a

ŜLB 966.6 −33.4 137.3 138.5 141.2 0.87

1,000
(554.8)

ŜGP 931.6 −68.4 89.9 89.8 113.0a 0.87
ŜChao1 916.7 −83.3 30.1 28.3 88.6 0.28
ŜJack1 996.1 −3.9a 21.9 20.4 22.2a 0.92a

ŜCB 984.8 −15.2 40.8 40 43.5 0.9
ŜLB 982 −18 78.5 73.6 80.5 0.87

2,000
(750.5)

ŜGP 966.2 −33.8 52.3 51.6 62.3 0.91
ŜChao1 961.5 −38.5 17.3 16.4 42.2 0.5
ŜJack1 1,035.8 35.8 15.8 14.9 39.1 0.31
ŜCB 966.2 −33.8 15.1 14.9 37.1 0.4
ŜLB 991.2 −8.8a 40.5 39 41.4 0.88

4,000
(890.8)

ŜGP 986.3 −13.7 28.2 27.9 31.4a 0.92a

ŜChao1 984.5 −15.5 9.7 9.1 18.3 0.72
ŜJack1 1,021.6 21.6 10 9.5 23.8 0.37
ŜCB 977.5 −22.5 7 6.8 23.6 0.12
ŜLB 997 −3a 23 21.3 23.2 0.86

8,000
(960.7)

ŜGP 993.8 −6.2 14.7 14.3 16.0a 0.93a

Notes.
adenotes the smallest bias, smallest RMSE, and figure closest to 95% coverage.

the inequality of undetected richness E
[
f0
]
≥ E

[
f1
]2
/2E[f2], which is the essential property

of undetected richness for all random samples, and the equation holds when the community
is homogeneous. Therefore, the richness estimator should be an approximately unbiased
estimator when species composition or species detection rate follows a homogeneous
model (i.e., the simplest model with only one parameter). That is why most commonly
used nonparametric robust richness estimators were derived on the basis of this framework
(Chao, 1984; Chao, 1987; Chao & Lee, 1992; Lee & Chao, 1994), and most parametric
assumed models also include the homogeneous model as a special case, despite the fact
that the homogeneous model is very rare in practice.

On the basis of these essential criteria, the following conclusions can be drawn according
to the simulation results. For all simulation cases, the observed richness in the sample
substantially underestimates the true richness, especially when the sample size is small or
the assemblage is highly heterogeneous (see Tables 1–7).

The jackknife estimator typically results in underestimation when the sample size is small
and overestimation when the sample size is large. Consequently, the jackknife estimator
is unbiased in a limited range of sample sizes (see Tables 1–7). Additionally, the jackknife
estimator does not meet the fundamental requirements that the bias, RMSE, and coverage
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Table 4 Comparison of five richness estimators based on 1,000 simulation data sets under a broken-
stick model with S= 1,000 and CV= 1.01. See Table 1 for the notations of the estimators.

Size n
(Observed
richness)

Estimator Average
estimate

Bias Sample
s.e.

Average
estimated
s.e.

Sample
RMSE

95%CI
coverage
rate

ŜChao1 755 -245 42.2 42.7 248.6 0
ŜJack1 750.1 −249.9 22.6 22.4 250.9 0
ŜCB 991.7 −8.3a 130.1 139.2 130.2a 0.92a

ŜLB 907.1 −92.9 143.6 145.6 170.9 0.77

1,000
(499.8)

ŜGP 861.7 −159.3 80.2 81.6 168.6 0.73
ŜChao1 832 −168 31.9 29.1 171 0.01
ŜJack1 887.5 −112.5 22.1 19.5 114.7 0
ŜCB 909.7 −90.3 44.4 43.2 100.6a 0.43
ŜLB 923.7 −76.3a 97.5 87.2 123.8 0.67

2,000
(666.5)

ŜGP 893.8 −114.2 56 53.3 120.1 0.77a

ŜChao1 901.1 −98.9 22.3 21 101.3 0.05
ŜJack1 959.4 −40.6 17.3 16 44.1a 0.31
ŜCB 906.3 −93.7 19.8 19.9 95.7 0.02
ŜLB 961 −39a 66.2 60.9 76.7 0.75

4,000
(799.6)

ŜGP 943.2 −56.8 37.8 37 68.2 0.79a

ŜChao1 948.1 −51.9 16.6 15.3 54.4 0.24
ŜJack1 989.6 −10.4a 13.9 12.5 17.4a 0.83
ŜCB 937.6 −62.4 12.5 12.1 63.6 0.01
ŜLB 985.1 −14.9 46.8 44.4 49 0.81

8,000
(889.7)

ŜGP 973.9 −26.1 26.9 25.9 37.5 0.87a

Notes.
adenotes the smallest bias, smallest RMSE, and figure closest to 95% coverage.

rates of the 95% confidence interval should perform better as the sample size increases.
In some simulation scenarios, compared to the other estimators, the jackknife estimator
has the lowest RMSE due to its lower variance; however, its bias and coverage rates do not
improve as the sample size increases. Although only the first-order jackknife was discussed
in the manuscript, the widely used second-order jackknife estimator has similar statistical
behaviors as the first-order jackknife estimator (see Chiu et al. (2014) for detail).

Since Chao1 was developed as a lower bound estimator of richness, it underestimates the
true richness in most models (see Tables 2–7), especially in those with high heterogeneity.
Nevertheless, Chao1 is nearly unbiased in the homogeneous model (Table 1), and its bias
and RMSE decrease as the sample size increases in all discussed models (shown in Tables
and Figures). Accordingly, the Chao1 estimator has the fundamental characteristics of a
valuable species richness estimator. However, the estimator’s coverage rate of the 95%
confidence interval derived by log-normal transformation (Chao, 1984) is generally much
lower than 0.95, particularly when the sample size is small or the species composition is
highly heterogeneous (Tables 3–7).

The Chao-Bunge parametric richness estimator (ŜCB) is unreliable in sparse samples,
resulting in overestimation and high variation when the sample size is small or in the
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Table 5 Comparison of five richness estimators based on 1,000 simulation data sets under a log-
normal model with S= 1,000 and CV= 1.35. See Table 1 for the notations of the estimators.

Size n
(Observed
richness)

Estimator Average
estimate

Bias Sample
s.e.

Average
estimated
s.e.

Sample
RMSE

95%CI
coverage
rate

ŜChao1 783.4 −216.6 51.6 50.6 222.7 0.07
ŜJack1 738.2 −261.8 23 23.5 262.8 0
ŜCB 1,896 896 1,285.1 1,429.3 1,565.6 1
ŜLB 982.8 −17.2a 192.2 187.6 192.8 0.85

1,000
(481.1)

ŜGP 907.3 −92.7 99.1 96.9 135.7a 0.87a

ŜChao1 874.5 −125.5 35.9 35.2 130.6 0.16
ŜJack1 913.9 −86.1 22.3 21.5 89 0.04
ŜCB 1,067.3 67.3 80 79.5 104.4 0.96a

ŜLB 991.4 −8.6a 114.6 109.4 114.8 0.9

2,000
(661.1)

ŜGP 951.9 −48.1 66.6 66.1 82.2a 0.91
ŜChao1 940.9 −59.1 24.4 23.1 64 0.44
ŜJack1 1,011.1 11.1 19 17.6 22a 0.89
ŜCB 973.7 −26.3 26.5 26.5 37.3 0.77
ŜLB 995.1 −4.9a 62.1 61.1 62.3 0.89

4,000
(818.2)

ŜGP 979.4 −20.6 41.7 41.2 46.5 0.92a

ŜChao1 978.9 −21.1 14.2 14 25.4 0.77
ŜJack1 1,034.2 34.2 13.4 12.8 36.7 0.22
ŜCB 976.9 −23.1 12 12.1 26 0.49
ŜLB 1,000.9 0.9a 32.8 33.2 32.8 0.91

8,000
(923.1)

ŜGP 995.2 −4.8 22.7 23.2 23.2a 0.94a

Notes.
adenotes the smallest bias, smallest RMSE, and figure closest to 95% coverage.

cases where assemblages have high heterogeneity (shown in Tables and Figures). When the
sample size is small, the Chao-Bunge estimator provides severely overestimated estimates in
some cases, causing an overall increase in the average estimate. However, the Chao-Bunge
estimator performs well when the sample size is large enough, which is consistent with
the conclusion that ‘‘a sufficiently high overlap fraction is required to produce a reliable
estimate of the species richness’’ (Chao & Bunge, 2002). Basically, it is an approximately
unbiased estimator when a homogeneous model is assumed, and the bias and RMSE
decrease as sample size increases.

The parametric estimator ŜLB has been shown to be an unbiased estimator in the
homogeneous model (Lanumteang & Böhning, 2011). Although the absolute value of
bias and RMSE decrease as sample size increases in all discussed models, the simulation
results present an inconsistent pattern in that ŜLB has negative bias in the models with
low heterogeneity (Tables 2–4) and positive bias in the highly heterogeneous models
(Tables 5–6). When the model assumption is met (i.e., a negative binomial distribution
or homogeneous model), ŜLB has good performance in terms of bias (Tables 1 and 7).
However, like the parametric estimator ŜCB, ŜLB usually presents an unstable estimate when
the sample size is small and the assemblage is highly heterogenous (Tables 5–6).
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Table 6 Comparison of five richness estimators based on 1,000 simulation data sets under a Zipf–
Mandelbrot model pi ∼ C/(i+ 10) with S = 1,000 and CV= 1.87. See Table 1 for the notations of the
estimators.

Size n
(Observed
richness)

Estimator Average
estimate

Bias Sample
s.e.

Average
estimated
s.e.

Sample
RMSE

95%CI
coverage
rate

ŜChao1 809.2 −190.8 65 63.8 201.6 0.3
ŜJack1 694.1 −305.9 23.8 24.5 306.8 0
ŜCB 6,701.4 5,701 42,271 14,418,927 42,612 0.99
ŜLB 1,123.1 123.1 291.8 281.3 316.4 0.96

1,000
(439.7)

ŜGP 953.6 −46.4a 121 121 129.5a 0.95a

ŜChao1 919.4 −80.6 46.1 45.3 92.8 0.64
ŜJack1 915.3 −84.7 24.2 23.9 88.1a 0.07
ŜCB 1,612.1 612.1 328.1 305.8 694.4 0.33
ŜLB 1,063.6 63.6 152.8 145.6 165.4 0.96a

2,000
(629.7)

ŜGP 997.2 −2.8a 89.1 88.1 89.1 0.93
ŜChao1 977.4 −22.6 28.5 26.9 36.3a 0.88
ŜJack1 1,059 59 21.1 19.8 62.7 0.16
ŜCB 1,089 89 45.1 44.7 99.7 0.51
ŜLB 1,020.8 20.8 68.8 64.2 71.8 0.94a

4,000
(817.1)

ŜGP 1,001.7 1.7a 49.5 47.2 49.5 0.93
ŜChao1 997.3 −2.7 12.3 12.3 12.5a 0.96
ŜJack1 1,070.9 70.9 12.9 13.1 72.1 0
ŜCB 1,007.5 7.5 11.3 12.1 13.6 0.94
ŜLB 1,006.0 6 23.6 23.5 24.3 0.95a

8,000
(946.5)

ŜGP 1,000.9 0.9a 18.3 18.6 18.3 0.95a

Notes.
adenotes the smallest bias, smallest RMSE, and figure closest to 95% coverage.

Compared to the Chao1 estimator, the bias, RMSE, and coverage rate of the 95%
confidence interval improve more for the newly proposed richness estimator as the
sample size increases (Tables 1–7). The proposed estimation method provides a nearly
unbiased estimator in the homogeneous model (see Table 1; also proved in Appendix
S2B) and a lower bound estimator in the other discussed models (Tables 2–7). The new
estimator presents a consistent pattern in all simulation cases in that the mean of the
estimate is always lower than the true richness and tends to the true richness as sample size
increases. Compared to the other two discussed parametric estimators (ŜCB and ŜLB), the
new parametric approach presents a more stable estimate especially at small sample sizes
(Tables 5–6). In most cases, the new estimator presents a higher variance, lower bias and
a more accurate 95% confidence interval than the other two discussed non-parametric
estimators (ŜChao1 and ŜJack1). When the survey data are treated as true assemblages, the
simulation results are consistent with those in the seven hypothetical models, and the new
estimator has less bias and lower RMSE in most cases compared to the other discussed
estimators (Fig. 1).

It is worth noting that although ŜLB and ŜGP both are derived based on the Gamma-
Poisson mixture model assumption by the moment estimating method and use the
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Table 7 Comparison of five richness estimators based on 1,000 simulation data sets under a power de-
cay model pi∼ 1/i0.9 with S= 1,000 and CV= 4. See Table 1 for the notations of the estimators.

Size n
(Observed
richness)

Estimator Average
estimate

Bias Sample
s.e.

Average
estimated
s.e.

Sample
RMSE

95%CI
coverage
rate

ŜChao1 786 −214 75.5 72.1 226.9 0.31
ŜJack1 629.2 −370.8 23.6 24.5 371.6 0
ŜCB 2,127.4 1,127 13,983 261,663.4 14,014 0.8
ŜLB 1,171.9 171.9 381.1 351.9 417.7 0.94a

1,000
(388.5)

ŜGP 944.3 −55.7a 139.8 134.8 150.3a 0.94a

ŜChao1 900.3 −99.7 52.2 51.4 112.5 0.58
ŜJack1 861.9 −138.1 24.7 24.7 140.3 0
ŜCB 2,529.5 1,529 2,294.9 3,729.1 2,756 1
ŜLB 1,074.8 74.8 178.3 175.1 193.2 0.95a

2,000
(574.1)

ŜGP 996.7 −3.3a 102.6 101.8 102.7a 0.9
ŜChao1 971.2 −28.8 31.9 31.8 42.9a 0.86
ŜJack1 1,039.9 39.9 22 21.5 45.5 0.52
ŜCB 1,159.2 159.2 68.6 68.4 173.3 0.29
ŜLB 1,030.5 30.5 79.6 80.5 85.2 0.96a

4,000
(771.6)

ŜGP 1,002.7 2.7a 56.3 58 56.4 0.9
ŜChao1 994.2 −5.8 15.2 15.2 16.3a 0.95a

ŜJack1 1,080.5 80.5 14.6 14.9 81.8 0
ŜCB 1,015.3 15.3 15.3 16.2 21.6 0.89
ŜLB 1,005.3 5.3 30.7 29.4 31.1 0.95a

8,000
(923.1)

ŜGP 1,000.6 0.6a 23.6 23.1 23.6 0.93

Notes.
adenotes the smallest bias, smallest RMSE, and figure closest to 95% coverage.

Table 8 Three real datasets are used as true assemblages for simulation study, that including vascular plant species in the southern Appalachi-
ans (Miller &Wiegert, 1989), butterfly survey data in theMalayan (Fisher, Corbet &Williams, 1943), and ground-dwelling invertebrate species
collected from northwest Tasmania (Bonham, Mesibov & Bashford, 2002). The first 15 frequency counts fk are shown in the table for each data
set.

Vascular plant species frequency counts
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥15
fk 61 35 18 12 15 4 8 4 5 5 1 2 1 2 15

Butterfly species frequency counts
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥15
fk 118 74 44 24 29 22 20 19 20 15 12 14 6 12 191

Ground-dwelling invertebrate species frequency counts
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥15
fk 15 8 5 3 5 5 3 3 4 2 3 1 3 1 24

number of singletons, doubletons, and tripletons to estimate undetected richness, the
newly proposed estimator provides a lower but more stable estimate (i.e., lower RMSE)
especially at small sample size in highly heterogeneous assemblages (Tables 5–6), and
provides a more accurate 95% confidence interval in most simulation models.
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Figure 1 (A–F) Show the bias and RMSE of five discussed estimators as the function of sample size.
Full-size DOI: 10.7717/peerj.14540/fig-1

Chiu (2023), PeerJ, DOI 10.7717/peerj.14540 16/20

https://peerj.com
https://doi.org/10.7717/peerj.14540/fig-1
http://dx.doi.org/10.7717/peerj.14540


On the basis of the asymptotic approach, the estimated s.e.s for the discussed estimators
perform well in most simulation scenarios, except for the estimate for the Chao–Bunge
estimator in small sample sizes.

CONCLUSIONS
In the literature, a plethora of approaches have been proposed for estimating total
species richness in a target area. These approaches are classified as parametric or
nonparametric estimators. Parametric estimators employ distribution assumptions on
species compositions, and computationally expensive calculation procedures are required
to solve the likelihood functions. Moreover, parametric estimators frequently fail to
achieve convergence during iterative numerical procedures or result in high variance at
small sample sizes. Therefore, parametric estimators are not suitable for small sample
sizes and are less frequently employed in ecological studies. Conversely, nonparametric
estimators with simple closed formulas and no assumptions on species composition are
more robust in most simulation cases and are thus widely used in ecological studies.
However, nonparametric estimators substantially underestimate total species richness
when the sample size is small or when the species composition has a high degree of
heterogeneity, resulting in a low coverage rate of the 95% confidence interval.

Accordingly, a new species richness estimator was proposed in this study based on the
Gamma-Poissonmixturemodel that takes the species detection rate as a random variable to
reduce the number of parameters. According to the concept of the Good–Turing frequency
formula, rare species in a sample contain most of the information about undetected
species. In contrast to the traditional maximum likelihood approach, the new estimator
uses a simple moment method to estimate unseen richness based on observed rare species.
The newly proposed estimator can also be directly derived by correcting the bias of
Chao1 based on the Good-Turing frequency formula without any model assumptions.
Similar to nonparametric approaches, the proposed estimator uses only the numbers of
singletons, doubletons, and tripletons to estimate the number of undetected species in the
sample. Compared with other widely used estimators, simulation results reveal that the
proposed estimator has less bias and a lower RMSE in highly heterogenous assemblages.
The asymptotic-approach-based estimator of the proposed estimator’s variance performs
well in all simulation scenarios.

Overall, the newly proposed estimator uses a simplified formula and is thus more
computationally efficient than other parametric approaches. In addition, the newly
proposed estimator retains the flexibility of stochastic models and eliminates the divergence
problem encountered in other parametric estimators. However, even though the newly
proposed estimator performed well in the seven artificial models and three real data sets,
it must be applied to more real data sets in the future to further demonstrate its value.
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