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ABSTRACT
Purpose. Plant secondary metabolites are used to treat various human diseases. How-
ever, it is difficult to produce a large number of specific metabolites, which largely limits
their medicinal applications. Many methods, such as drought and nutrient application,
have been used to induce the biosynthetic production of secondarymetabolites. Among
these secondary metabolite-inducing methods, mechanical wounding maintains the
composition of secondary metabolites with little potential risk. However, the effects of
mechanical stress have not been fully investigated, and thus this method remains widely
unused.
Methods. In this study, we used metabolomics to investigate the metabolites produced
in the upper and lower leaves of Catharanthus roseus in response to mechanical
wounding.
Results. In the upper leaves, 13 different secondary metabolites (three terpenoid indole
alkaloids and 10 phenolic compounds) were screened using an orthogonal partial least
squares discriminant analysis (OPLS-DA) score plot. The mechanical wounding of
different plant parts affected the production of secondary metabolites. Specifically,
when lower leaves weremechanically wounded, the upper leaves became a strong source
of resources. Conversely, when upper leaves were injured, the upper leaves themselves
became a resource sink. Changes in the source-sink relationship reflected a new balance
between resource tradeoff and the upregulation or downregulation of certainmetabolic
pathways.
Conclusion. Our findings suggest that mechanical wounding to specific plant parts
is a novel approach to increase the biosynthetic production of specific secondary
metabolites. These results indicate the need for a reevaluation of production practices
for secondary metabolites from select commercial plants.
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INTRODUCTION
Plant secondary metabolites represent important evolutionary adaptations and play an
essential role in the response to environmental stress (Liu & Hao, 2018). These metabolites
are also widely used to treat human diseases (Bills & Gloer, 2016). Most secondary
metabolites can scavenge reactive oxygen species (ROS) and are anti-inflammatory,
antibacterial, and antiviral (Lian et al., 2021). Among these metabolites, phenolic
compounds (PCs) have particularly great medicinal value. Quercetin, for instance, plays
an important antitumor role by reducing the drug resistance of tumor cells and inducing
the apoptosis of tumor cells (Hashemzaei et al., 2017). Naringin inhibits the apoptosis of
vascular endothelial cells and promotes intraosseous angiogenesis (Shangguan et al., 2017).
Plasma-conjugatedmetabolites of orally administeredwater-dispersible hesperetin improve
vasodilation in endothelial cells (Zhang et al., 2020). Other secondary metabolites such as
terpenoid indole alkaloids (TIAs) have also been widely used in medicine. Catharanthus
roseus (L.) G. Don (C. roseus) is an important medicinal plant in the investigation of
TIAs. Vinblastine, an efficient inhibitor of microtubule polymerization, has been used to
treat human neoplasms (Lee et al., 2016). Another TIA serpentine can effectively block the
transmission of adrenergic nerve impulses, resulting in vasodilation, lower blood pressure,
and a slower heart rate (Mukherjee et al., 2019). It has also been indicated that secondary
metabolites can reduce blood fat, delay senility, and improve immunity (Mukherjee et al.,
2019).

The synthesis of many secondary metabolites is regulated under stress conditions such as
UV-B, wounding, drought, metal toxicity, and nutrient deprivation (Takshak and Agrawal,
2019; Blum, 2017; Erika, Jorge & Daniel, 2018). Mechanical wounding from rain, hail, wind,
and herbivores are the most common types of damage that plants face. This can lead to
nutrient loss in the damaged tissues, which increases the risk of pathogenic invasions.
However, this crisis also results in the massive accumulation of secondary metabolites (Sun
et al., 2020). Mechanical wounding is an ideal way to induce the production of secondary
metabolites because it reduces the risk of other stresses that pollute secondary metabolites.
Nevertheless, the changes involved in secondary metabolites under mechanical wounding
stress have been rarely reported (Ibanez et al., 2019).

Metabolomics is a powerful approach used for discovering considerably different
metabolites and a useful tool for pinpointing endpoint metabolic effects from external
stimuli. It has been widely used for exploring the contents of metabolites, identifying key
metabolites, and deciphering central metabolic pathways in plants (Jiang et al., 2019; Li et
al., 2016). For example, GC-MS technology has been adopted to compare the medicinal
activities of different tissues of Zingiber mioga and Zinger roscoe, suggesting that various
structural parts of plants have different dietary usages (Soo et al., 2015). Wang et al. (2016)
discovered that polyphenol accumulation and stress resistance preparation in cacao
seed (Theobroma cacao) ripening occurred via the interplay of primary and secondary
metabolites at the system level. C. roseus, originating from the coast of the Mediterranean,
India, and tropical areas inAmerica, has been extensively studied for its highly economic and
pharmaceutical value (Liu et al., 2017; Moon, Mistry & Kim, 2017). The main metabolite
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TIAs of C. roseus are widely used to treat human diseases. It is considered a remarkable
manufacturer of secondary metabolites, and more than 130 kinds of TIAs from the plant
have already been described (Pham et al., 2020). Its biosynthesis pathway starts from the
coupling of tryptamine and secologanin, then strictosidine is formed by strictosidine
synthase (Pham et al., 2020). In the next steps, tabersonine and vindoline are synthesized
separately by strictosidine β-glucosidase and deacetylvindoline acetyl CoA acetyltransferase
(Singh et al., 2020). Finally, vindoline couples with catharanthine to form valuable
vinblastine catalyzed by Peroxidase 1 (Singh et al., 2020). Many of these TIAs are natural
anticancer agents, including loganin, catharanthine, serpentine, vindoline, vinblastine,
and vincristine. Vinblastine is an efficient inhibitor of microtubule polymerization that is
used to treat certain cancers such as Hodgkin’s disease, malignant lymphoma, and a wide
variety of other human neoplasms (Mondal et al, 2019). In this study, metabolomics was
used to investigate different responses to wounding and the time specificity of secondary
metabolites in upper leaves. Our research provides basic data for the response of secondary
metabolites to mechanical wounding.

MATERIALS & METHODS
Plant materials and treatment
C. roseus seeds were sown in pots and grown in a climate chamber (S10H, Conviron,
Winnipeg, Canada) with 14 h light (28 ◦C, irradiation of 450 µmol m−2 s−1) and 10 h dark
(25 ◦C, without irradiation) regime at a humidity of 60%. C. roseus seeds were cultivated
with hydroponics and irrigated with 1/2 strength Hoagland’s solution (pH 5.9−6.0). After
80 d, when seven to eight true leaves had developed, plants were randomly assigned to three
groups with four plants in each group. They were subjected to either a sham procedure
(the control group, CK), mechanical wounding in the upper leaf (the wounded upper leaf
group, WUL), or mechanical wounding in the lower leaf (the wounded lower leaf group,
WLL). Mechanical wounding was completed with the trim of 1/2 leaves. Different parts
of C. roseus (upper leaf, middle leaf, lower leaf, stem, and root) were collected (Fig. 1).
According to the experimental results, the detected parts of plants for the next stage of
the experiment were obtained. Each group were detected at 0 h, 1 h, 3 h, and 5 h after
wounding. Experiments were conducted for four replicates.

Metabolite profiling
C. roseus samples were analyzed as previously described (Chen et al., 2017). Briefly, 60 ± 5
mg of plant tissue was gathered, mixed with 360 µL cold methanol and 40 µL 0.3 mg/mL
2-chlorophenylalanine, homogenized (Tissuelyser-192, Shanghai, China), and sonicated
for 30 min, then 10,000 g for 10 min at 4 ◦C. For ultrasonication, 200 µL chloroform and
400 µL water were added to the sample. Samples were methoxyaminated and silylated after
dying. After derivatization, samples were analyzed on the GC-MS (Agilent Corporation,
Santa Clara, CA, USA). A nonpolar DB-5 capillary column was used for separation. The
temperature program was 50−125 ◦C for 8 min, raised to 125−170 ◦C for 15 min, raised
to 170−210 ◦C for 4 min, raised to 210−270 ◦C for 10 min, raised to 270−305 ◦C for 5
min, and maintained at 305 ◦C for 5 min. Injection and ion source temperatures were set

Chen et al. (2023), PeerJ, DOI 10.7717/peerj.14539 3/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.14539


Figure 1 Leaf, stem, and root anatomy of Catharanthus roseus.
Full-size DOI: 10.7717/peerj.14539/fig-1

at 260 ◦C and 230 ◦C, respectively. Electron impact ionization (−70 eV) proceeded at full
scan mode (m/z 30 −600). The acquisition speed was 20 spectra/s, and mass spectrum
(MS) data were analyzed by Chroma TOF software. The data set was normalized using the
sum intensities of the peaks in each sample.

For the analyses of secondary metabolites, 1.0 g fresh tissues were mixed with 20 mL
analytical grade absolute methanol and exposed to low-frequency ultrasonication (250 W,
40 kHz) for 40 min. After centrifugation at 7,104 g for 10 min, alkaloids were determined
using HPLC-MS (Ultra-performance LC, Waters, Milford, MA, USA; MS, AB SCIEX,
Framingham, MA, USA) with ACQUITY UPLC BEH C18 Column (1.7 µm, 2.1 mm
×50 mm). TIA content was measured based on the previously described method (Chen
et al., 2017). Chromatographic analysis was performed on ACQUITY UPLC BEH C18
Column (1.7 µm, 2.1 mm × 50 mm). The standard solvent system was CH3CN/H2O
and 0.05 mol/L ammonium acetate. Retention times were 3.49 min (serpentine), 2.91 min
(tabersonine), 3.37 min (vindoline), 3.32 min (vinblastine), 2.81 min (catharanthine),
and 0.76 min (loganin). Injection volume was 10 mL and flow rate was one mL/min.
After 20 mL methanol extraction, targeted analysis of phenolic metabolites (PCs) was
performed using a Waters ACQUITY UPLC system (Waters, Milford, MA, USA) coupled
to a quadrupole time-of-flight (QTOF) mass spectrometer (XEVO G2 QTOF, Waters,
Milford, MA, USA). The optimized chromatographic conditions were: A%, 0.05% formic
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Figure 2 Q values of secondary metabolites in upper leaf, middle leaf, lower leaf, stem, root of Catha-
ranthus roseus.

Full-size DOI: 10.7717/peerj.14539/fig-2

acid water; B%, 0.05% formic acid acetonitrile; 120–1,200m/z; positive ion scanningmode;
and leucine enkephalin.

Statistical analysis
Normalized data were imported into SIMCA-P software (version 13.0, http://www.umetrics.
com/simca). A supervised orthogonal partial least squares discriminant analysis (OPLS-
DA) was used to identify differential metabolites among the CK, WUL, and WLL groups.
Metabolites with both multivariate and univariate statistical significances (VIP >1.0
and p-value <0.05) were extracted by OPLS-DA analysis. Differential metabolites were
annotated using the KEGG database (http://www.kegg.jp/kegg/pathway.html) and MBRole
2.0 (http://csbg.cnb.csic.es/mbrole2/). The score of principal component ‘‘Q’’ (Q) was
calculated using SPSS software (version 21.0; Chicago, IL, USA). Histograms and pathway
maps were generated using GraphPad Prism (version 6.0; GraphPad Software Inc., La Jolla,
CA, USA) and Visor (Microsoft, Redmond, WA, USA).

RESULTS
Screening of plant detection tissues
After screening, we calculated theQ values of secondary metabolites TIAs and PCs sampled
from different parts of C. roseus. Stems and roots had robustly lower Q values than leaves.
Upper, middle, and lower leaves also showed differentQ values with upper leaves obtaining
the most intense responses (Fig. 2). Therefore, upper leaves of C. roseus were collected for
subsequent metabolomics experiments.
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Figure 3 Changes primary metabolites. (A) OPLS-DA score plot of primary metabolisms. (B) Rela-
tive content of TCA component. (C) Relative content of sugar. (D) Relative content of lipid. CK, control
group; WUL group, wounded upper leaf group; WLL group, wounded lower leaf group; WUL group-wul,
wounded part in wounded upper leaf group; WUL group-uwul, unwounded part in wounded upper leaf
group.

Full-size DOI: 10.7717/peerj.14539/fig-3

Primary metabolites
To compare the metabolic variations across the CK,WUL, andWLL groups, OPLS-DA was
applied. The CK, WUL, and WLL groups were separated by PC1 (38.1%) and PC2 (9.9%)
(Fig. 3A). Eleven significantly differentmetabolites (glucosamine, galactose, xyolopyranose,
tagatose, fructofuranose, gentiobiose, fructose, galactitol, octadecanoic acid, hexadecanoic
acid, and succinate) were screened from a total of 133 compounds by VIP >1 and a p-value
<0.05 criteria (Table 1). These metabolites presented substantial differences in energy
supply between the control and wounded groups. Our results suggest that TCA members
and sugars significantly increased with mechanical wounding (Figs. 3B and 3C). On the
other hand, lipid content was not robustly altered (Fig. 3D). These findings also indicate
that TCA members and sugars were in great demand by plants under stress.

Metabolic fingerprint of TIAs and PCs
The dynamic changes of secondary metabolites in the upper leaves of the control and
wounded groups at 0 h, 1 h, 3 h, and 5 h after mechanical wounding were further
investigated in detail. TIAs and PCs were separated from the control and wounded groups
by OPLS-DA analysis (Fig. 4). The WUL and WLL groups were separated by 21.6% of
PC2 in TIAs and 21.7% of PC1 in PCs (Fig. 4). Three different TIAs (vinblastine, loganin,
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Table 1 List of significantly different metabolites.

Significantly different
metabolites

VIP p-value

sugar glucosamine 1.85 *

galactose 1.49 **

xylopyranose 1.17 *

tagatose 1.16 **

fructofuranose 1.06 **

gentiobiose 1.06 *

fructose 1.04 *

galactitol 1.02 **

lipid octadecanoic acid 1.21 *

hexadecanoic acid 1.08 *

TCA component succinate 1.02 **

Notes.
VIP, variable importance in the projection.
*p-value <0.05.
**p-value <0.01.
Data are summarized from three biological replicates.

Table 2 The significantly different TIAs.

Significantly different
metabolites

VIP p-value

vinblastine 1.48 *

loganine 1.24 *

spertine 1.10 **

Notes.
VIP, variable importance in the projection.
*p-value <0.05.
**p-value <0.01.
Data are summarized from three biological replicates.

and serpentine) and 10 different PCs (hesperetin, petunidin, daidzenin, chlorogenic acid,
syringic acid, hesperidin, naringin, 3-4-hydroxybenzoic acid, and apigenin) were obtained
using VIP values (VIP >1) and p-values (p-value <0.05) (Tables 2 and 3). The abundance
of these 13 different secondary metabolites was significantly altered at different time points
(Fig. 5). The metabolic fingerprint showed that mechanical wounding changed metabolic
direction in a tissue-specific and time-dependent manner. Synthetic raw materials and
energy from shikimic acid flowed into alkaloid and phenol metabolism, respectively
(Fig. 5). Upstream precursor metabolites such as loganin, for instance, responded at 1
h with the most intense response in wounded leaves. Vinblastine, a downstream final
product, was substantially reduced in the wounded group. Conversely, serpentine showed
a continuously increasing trend, especially in the WLL group.

The PC results showed that the relative contents of chlorogenic acid, petunidin,
and daidzein remarkably decreased, suggesting that the synthesis of PCs was affected
by mechanical wounding. Myricetin, apigenin, hesperidin, and hesperetin responded
to mechanical wounding in the WLL group 3 h after wounding, indicating that these

Chen et al. (2023), PeerJ, DOI 10.7717/peerj.14539 7/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.14539


Figure 4 OPLS-DA score plot of secondary metabolites. (A) OPLS-DA score plot of TIAs. (B) OPLS-
DA score plot of PCs. CK, control group; WUL group, wounded upper leaf group; WLL group, wounded
lower leaf group.

Full-size DOI: 10.7717/peerj.14539/fig-4

metabolites might participate in common defense reactions. In the WUL group, C6C3C6-
structure PCs naringin and hesperidin responded rapidly to wounding. C6C1-structure
PCs exhibited a different response to mechanical wounding. 3–4-hydroxybenzoic acid
expression elevated hundreds of times at 1 h after wounding and continued to increase
at later time points. By comparison, the activation of syringic acid was the opposite in
wounded and unwounded leaves in the WUL group, indicating that syringic acid works
differently.

DISCUSSION
Secondary metabolites not only play a key role in protecting plants against stress but are
also integral in natural medicine (Rumzum et al., 2020). Many secondary metabolites that
are used in healthcare are often in short supply (Bills & Gloer, 2016). Mechanical wounding
can stimulate secondary metabolite accumulation and reduce potential hazards from other
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Table 3 List of significantly different PCs.

Significantly different
metabolites

VIP p-value

hesperetin 1.81 **

petunidin 1.54 *

daidzein 1.50 *

myricetin 1.37 **

chlorogenic acid 1.32 **

syringic acid 1.28 *

hesperidin 1.17 *

naringin 1.16 **

3-4-hydroxybenzoic acid 1.15 *

apigenin 1.02 *

Notes.
VIP, variable importance in the projection.
*p-value <0.05.
**p-value <0.01.
Data are summarized from three biological replicates.

Figure 5 The network of altered metabolites after mechanical stress.WUL group-wul, wounded part
of wounded upper leaf group; WUL group-uwul, unwounded part of wounded upper leaf group; WLL
group-ul, the upper leaf of wounded lower leaf group.

Full-size DOI: 10.7717/peerj.14539/fig-5
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interference factors (Savatin et al., 2014). The types of secondary metabolites, as well as
their abundance, can be affected by the specific part of plant leaf (i.e., upper or lower)
and the location of the mechanical wound. In this study, we employed high throughput
methods to explore the response mechanisms of the various parts of C. roseus.

Primary metabolites of leaves responded to the mechanical wound. After mechanical
wounding, 11 significantly different metabolites, including sugars, lipids, and TCA
components, were screened from a total of 133 identified compounds. Among them,
some metabolites demonstrated a clear link between mechanical stress and remodeling
of the central metabolism. They increased the basic demands of the upper leaves in the
wounded group. The function of sugars in this process was mainly to provide substrates for
energy production and biosynthesis of secondary metabolites to increase plant resistance.
It could also be used as a carbon intermediate in the metabolic cycle.

Besides primary metabolites, the contents of secondary metabolites TIAs, and PCs were
also determined. TIAs and PCs are two branches of secondary metabolites that respond
to mechanical stress according to their coordination or competition in trade-offs and
distribution. In our study, three significantly different metabolites were obtained from the
TIA pathway within the different leaf position treatments. Relative to the control group, the
content of loganin and serpentine significantly increased following mechanical treatment.
Serpentinewas generally distributed in the root ofC. roseusbut largely accumulated in upper
leaves after mechanical stress. The loganin-serpentine pathway was found to be stimulated
by mechanical wounding, indicating that mechanical stress can improve the yield of some
TIAs. Serpentine can combine with norepinephrine to reduce blood pressure (Francisco et
al., 2013). Loganin is widely used in clinical medicine as an anticancer drug (Chen et al.,
2022). Interestingly, the content of vinblastine also significantly change. They are the end
product of the TIAs metabolic pathway. Vinblastine could effectively treat cancer. It was
found could management of advanced angiosarcoma by the synergistic combination of
Propranolol based metronomic chemotherapy (Pasquier et al., 2016). It is meaningful to
affect the content of vinblastine by regulating TIAsmetabolism. Ten PCs showed differential
responses to mechanical wounding. These metabolites were classified as flavonoids that
are usually associated with plant defense. In our study, 3,4-hydroxybenzoic acid, syringic
acid, apigenin, and myricetin were significantly accumulated after mechanical treatment.
Among these, 3,4-hydroxybenzoic acid was markedly responsive to the mechanical stress
at 5 h across all treatment groups. 3,4-hydroxybenzoic acid belongs to C6C1-structure
metabolites, and plays an important role in protecting nerves (Ju et al., 2015). Syringic acid
with C6C3-structure metabolites can achieve sedative or anesthetic effects through central
inhibition (Ogut, Armagan & Gül, 2022), and was massively accumulated after stimulation
in the WUL treatment group. Our results showed that PCs with C6C3C6-structures were
actively distributed and responded to mechanical stress. Apigenin and myricetin with
C6C3C6-structure metabolites also have important medical value and were stimulated
in the WLL group for 1 h and 3 h, respectively. Apigenin can inhibit the activity of
carcinogens (Pang et al., 2021). Myricetin has a hypoglycemic effect (Negri et al., 2022).
When accumulated, these metabolites will benefit plant defense.
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After mechanical wounding, plants invest their resources tomaximize their fitness (Impa
et al., 2019). As shown here, to handle mechanical wounding, the metabolites of C. roseus
were relocated in leaves and a new balance was established (Fig. 5). We propose that this
relocation is the result of a source–sink relationship and is not correlated to organ biomass.
In the WUL group, wounded upper leaves become a stronger sink relative to upper leaves
and required more of an investment from the source. This would cause more response
metabolites to be produced. Our results has shown that more sugars, TIAs, and parts of PCs
were significantly accumulated in wounded upper leaves in the WUL group. By contrast,
in the WLL group, upper leaves become a source and provided support for wounded
lower leaves. However, the upper leaves were not fully mature and could not produce
more comprehensive response metabolites. This led to more TCA compounds and fewer
secondary metabolites being produced. The source–sink model provides a mechanism to
regulate the resource distribution and effectively alter plant response patterns. This change
directly led to a significant increase in the WLL group and a slow response to mechanical
pressure. Therefore, more secondary metabolites were obtained without external influence.

CONCLUSION
Changes in the source–sink relationship indicate that local responses in upper leaves
have different effects among the CK, WUL, and WLL groups. Upper leaves of C. roseus
in the WUL group required more substrates and energy to stimulate the production
of secondary metabolites for defense. Conversely, in the WLL group, most secondary
metabolites in the upper leaves were transported to the damaged region. These different
response strategies resulted in discrepant synthetic pathways and secondary metabolite
accumulation. Therefore, an observed increase in TIAs and/or PCs in response to stress
may encourage a reevaluation of the commercial plant production practice to increase
the yield of specific secondary metabolites for their usage in healthcare. In our study,
the synthesis of TIAs stays at the upstream product and the content of our expected end
products was low. In the future, we will pay more attention to the method of producing
TIA end products.
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