
A pipeline for assembling low copy nuclear markers
from plant genome skimming data for phylogenetic
use (#75553)

1

First submission

Guidance from your Editor

Please submit by 17 Aug 2022 for the benefit of the authors  (and your $200 publishing discount) .

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Author notes
Have you read the author notes on the guidance page?

Raw data check
Review the raw data.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files
from the materials page.

11 Figure file(s)
3 Table file(s)

https://peerj.com/submissions/75553/reviews/1175424/guidance/
https://peerj.com/submissions/75553/reviews/1175424/materials/


For assistance email peer.review@peerj.com
Structure and
Criteria

2

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review
When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.
Intro & background to show context.
Literature well referenced & relevant.
Structure conforms to PeerJ standards,
discipline norm, or improved for clarity.
Figures are relevant, high quality, well
labelled & described.
Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of
the journal.
Research question well defined, relevant
& meaningful. It is stated how the
research fills an identified knowledge gap.
Rigorous investigation performed to a
high technical & ethical standard.
Methods described with sufficient detail &
information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.
All underlying data have been provided;
they are robust, statistically sound, &
controlled.

Conclusions are well stated, linked to
original research question & limited to
supporting results.

mailto:peer.review@peerj.com
https://peerj.com/submissions/75553/reviews/1175424/
https://peerj.com/submissions/75553/reviews/1175424/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/


Standout
reviewing tips

3

The best reviewers use these techniques

Tip Example

Support criticisms with
evidence from the text or from
other sources

Smith et al (J of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Give specific suggestions on
how to improve the manuscript

Your introduction needs more detail. I suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

Comment on language and
grammar issues

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 – the current phrasing makes
comprehension difficult. I suggest you have a colleague
who is proficient in English and familiar with the subject
matter review your manuscript, or contact a professional
editing service.

Organize by importance of the
issues, and number your points

1. Your most important issue
2. The next most important item
3. …
4. The least important points

Please provide constructive
criticism, and avoid personal
opinions

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

Comment on strengths (as well
as weaknesses) of the
manuscript

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as I have noted above) which should be
improved upon before Acceptance.



A pipeline for assembling low copy nuclear markers from plant
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Background. Genome skimming is an early and still popular method in plant phylogenomics that do not
include a genomic reduction step, relying on random shallow sequencing of total genomic DNA. From
these data the plastome is usually readily assembled and constitutes the bulk of phylogenetic
information generated in these studies. Despite a few attempts to use genome skims to recover low copy
nuclear loci for direct phylogenetic use, such endeavor remains largely neglected. Causes might include
the trade-oû between libraries with few reads and species with large genomes, but also might relate to
the lack of pipelines for data assembling.

Methods. A pipeline and its companion R package designed to automate the recovery of low copy
nuclear markers from genome skimming libraries are presented. Additionally, a series of analyses aiming
to evaluate the impact of key assembling parameters, reference selection and missing data are
presented.

Results. A substantial amount of putative low copy nuclear loci was assembled and proved useful to
base phylogenetic inference across the libraries tested (4 to 11 times more data than previously
assembled plastomes from the same libraries).

Discussion. Critical aspects of assembling low copy nuclear markers from genome skims include the
minimum coverage and depth of a sequence to be used. More stringent values of these parameters
reduces the amount of assembled data and increases the relative amount of missing data, which in turn
can compromise phylogenetic inference, but relaxing the same parameters might increase sequence
error. These issues are discussed in the text, and parameter tuning through multiple comparisons
tracking their eûects on support and congruence is highly recommended when using this pipeline. The
pipeline presented here might stimulate the use of genome skims to recover nuclear loci for direct
phylogenetic use, increasing the power of genome skimming data to resolve phylogenetic relationships,
while reducing the amount of sequenced DNA that is commonly wasted.
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17 Abstract

18 Background. Genome skimming is an early and still popular method in plant phylogenomics 

19 that do not include a genomic reduction step, relying on random shallow sequencing of total 

20 genomic DNA. From these data the plastome is usually readily assembled and constitutes the 

21 bulk of phylogenetic information generated in these studies. Despite a few attempts to use 

22 genome skims to recover low copy nuclear loci for direct phylogenetic use, such endeavor 

23 remains largely neglected. Causes might include the trade-off between libraries with few reads 

24 and species with large genomes, but also might relate to the lack of pipelines for data 

25 assembling. 

26 Methods. A pipeline and its companion R package designed to automate the recovery of low 

27 copy nuclear markers from genome skimming libraries are presented. Additionally, a series of 

28 analyses aiming to evaluate the impact of key assembling parameters, reference selection and 

29 missing data are presented. 

30 Results. A substantial amount of putative low copy nuclear loci was assembled and proved 

31 useful to base phylogenetic inference across the libraries tested (4 to 11 times more data than 

32 previously assembled plastomes from the same libraries). 

33 Discussion. Critical aspects of assembling low copy nuclear markers from genome skims include 

34 the minimum coverage and depth of a sequence to be used. More stringent values of these 

35 parameters reduces the amount of assembled data and increases the relative amount of missing 

36 data, which in turn can compromise phylogenetic inference, but relaxing the same parameters 

37 might increase sequence error. These issues are discussed in the text, and parameter tuning 

38 through multiple comparisons tracking their effects on support and congruence is highly 
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39 recommended when using this pipeline. The pipeline presented here might stimulate the use of 

40 genome skims to recover nuclear loci for direct phylogenetic use, increasing the power of 

41 genome skimming data to resolve phylogenetic relationships, while reducing the amount of 

42 sequenced DNA that is commonly wasted.

43

44 Introduction

45 High-throughput sequencing technologies (HTS) have revolutionized the field of phylogenetics, 

46 evolutionary biology, systematics and related areas due to the much higher amount of DNA 

47 sequences they can provide to base inferences on relationships among lineages. Phylogenetic 

48 data require a constant trade-off between amount of DNA sequenced (total base pairs, number of 

49 loci, coverage and depth) and breadth (number of taxa) of data generated (Dodsworth et al., 

50 2019). For plant phylogenies, HTS are usually associated with methods to reduce genomic 

51 complexity prior sequencing, given the huge variation of genome sizes, difficulties in genome 

52 assembly, and the cost per high-quality genome sequence (Dodsworth et al., 2019). Popular 

53 strategies to reduce genome complexity include RAD-seq (Eaton et al., 2017), RNA-seq (One 

54 Thousand Plant Transcriptomes Initiative, 2019), target enrichment (Johnson et al., 2019) and 

55 HYB-seq (Weitemier et al., 2014). Genome skimming is an early and still popular approach in 

56 plant phylogenomics that do not include a genomic reduction step (Straub et al., 2012; 

57 Dodsworth et al., 2019). 

58 Genome skimming relies on random shallow sequencing of total genomic DNA (gDNA) 

59 that results in reliable deep sequencing of the high-copy fraction of the genome: plastome 

60 (cpDNA), mitogenome (mtDNA), and repetitive elements (Straub et al., 2012). Despite its 

61 simplicity, the method became popular in systematics related studies because did not require 

62 previous genomic knowledge of the interest group, has a lower cost, and its assembled data 

63 constitute an expanded set of molecular markers historically used to build Sanger-based plant 

64 phylogenies. The plastome is usually readily assembled from genome skims and constitutes the 

65 bulk of phylogenetic information generated in these studies. The mitochondrial genome is less 

66 utilized in plant systematics, due to the highly conserved nature of its coding loci, coupled with 

67 highly divergent noncoding regions and ubiquitous rearrangements (Straub et al., 2012), but a 

68 sample of genes can usually be recovered and used (Henriquez et al., 2014; Li et al., 2019). 

69 Among the repetitive nuclear element in genome skims, the ribosomal DNA (rDNA) is also 

70 readily assembled and constitutes the major source of nuclear information explored (Weitemier 

71 et al., 2014; Fonseca & Lohmann 2020). Quantification of other repetitive elements (e.g., 

72 transposable elements) can be used to build phylogenies with specific methodology (Dodsworth 

73 et al., 2015), but have been seldom employed. 

74 Sanger-base plant phylogenies across distinct taxonomic ranks have traditionally been 

75 based on plastid and ribosomal markers (Zimmer & Zen 2013; Davis et al., 2014). Thus, one 

76 advantage of genome skimming is that the output can be used as backbone data and integrated 

77 with the huge amount of Sanger-based data available for an expanded taxonomic breadth. On the 

78 other hand, a major drawback is that both cpDNA and rDNA have known issues related to 
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79 phylogenetic inference, especially when used as the only source of information. Plastids are 

80 usually maternally inherited and therefore not comprehensive in tracking the relationships in 

81 many plant lineages that include cases of speciation involving hybridization and polyploidy 

82 (Zimmer & Wen, 2013). The same issue might apply for rDNA, due to different copies being 

83 homogenized by concerted evolution. More importantly, the abundant gene tree data available 

84 now confirmed theoretical expectations of high amount of gene tree discordance and the need of 

85 using wider sampling of unlinked loci for decisive species tree inference (Degnan & Rosenberg, 

86 2009). 

87 Genome skimming has been suggested to provide limited recovery of low copy 

88 orthologous nuclear regions for sequence alignment (Dodsworth et al., 2019). Its main use has 

89 been restricted to characterize conserved nuclear loci for primer or probe design for candidate 

90 low copy nuclear markers (Straub et al., 2012; Reginato et al., 2016a). Despite some attempts to 

91 use low copy nuclear markers from genome skims to base phylogenetic inference (Besnard et al., 

92 2014; Besnard et al., 2018; Olofsson et al., 2019; Vargas et al., 2019), this avenue is still largely 

93 neglected. Two major factors might have hampered the use of genome skims to generate low 

94 copy nuclear data: lack of genomic information for the group of interest and shallow sequencing. 

95 Despite the few low copy loci used in Sanger-based phylogenies (Zhang et al., 2012), until very 

96 recently most non-model organisms completely lacked information on nuclear genes. Massive 

97 efforts to generate taxonomically comprehensive transcriptome data (e.g., onekp.org), full 

98 genomes (Chen et al., 2019), and associated bioinformatics tools have allowed lineage-specific 

99 low copy nuclear markers identification and reference design across non-model angiosperms 

100 (Duarte et al., 2010; Chamala et al.; 2015, Johnson et al., 2016; Johnson et al., 2019). Thus, these 

101 same data and tools can now be used to build references for low copy nuclear loci fishing in 

102 genome skims. The second challenge relates to the putative insufficient depth of low copy 

103 nuclear markers in genome skims. The concept of sequencing depth (i.e., number of times each 

104 base is sequenced) is central to the utilization of NGS data (Straub et al., 2012). In genome 

105 skims, the sequencing depth of the plastid and mitochondrial genomes will reflect their 

106 proportion in sequences obtained from total genomic DNA, and they will show a relatively 

107 deeper sequencing than parts of the genome that are present in single copy (Straub et al., 2012). 

108 However, the relationship between total amount of DNA sequenced and genome size is highly 

109 variable across libraries as well as lineages, within and across different studies. Furthermore, a 

110 small fraction of plant species have their genome sizes estimated (Pellicer et al., 2020), and the 

111 cpDNA can vary substantially between species and/or of total extracted DNA (Dodsworth et al., 

112 2019). Therefore, information on how shallow is the low copy part of the nuclear genome is 

113 often lacking in genome skimming studies. A practical implication is that after skimming the 

114 plastome and the few other regions traditionally used, the remaining and overwhelming amount 

115 of DNA sequenced is usually put to waste. 

116 In this paper, a pipeline and its companion R package designed to automate the recovery 

117 of low copy nuclear markers from genome skimming libraries are presented. The pipeline 

118 includes steps to map reads to references, then generate consensus sequences, and single loci and 
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119 concatenated alignments for phylogenetic use. The R package includes functions for alignment 

120 filtering and basic sequence statistics. Using an empirical data set we explore the effect of 

121 reference selection and key parameters settings in this pipeline. Giving the low depth, coverage 

122 and high amount of missing data that will likely be associated with attempts to harvest low single 

123 copy markers from genome skimming data a series of analyses were designed to evaluate the 

124 impact of such characteristics in the phylogenetic outcomes. To further validate this approach 

125 two published phylogenetic data sets (one low copy gene � Sanger sequencing, and one target 

126 enrichment - high throughput sequencing) were assembled through this pipeline and analyzed.

127

128 Materials & Methods

129 Pipeline overview

130 The pipeline was written in bash and a flow chart illustrating its key steps is available in 

131 Fig. 1. In order to use the pipeline, the user is required to provide filtered reads and a reference 

132 file in fasta format (including markers to be assembled). The pipeline performs an automated 

133 reference-based assembly process for one or several libraries, including four key steps: mapping 

134 (-m), SNPs calling (-s), consensus generation (-c), and alignment generation (-a). 

135 The companion R package skimmingLociR includes functions to perform post-filtering 

136 steps and generate basic alignment descriptors. The mapping step uses the software bwa (Li & 

137 Durbin 2009) and options from this program available in the pipeline to be modified relates to 

138 matching score, and mismatch and gap penalties (-A, -B, -O). This step generates files in bam 

139 format that are used in the next step. The SNP calling step is performed with vcftools (Danecek 

140 et al., 2011), and functions from samtools (Li et al., 2009) and bcftools (Li, 2011) are used in 

141 intermediary steps. This step generates files in VCF format and depth statistiscs (plots and 

142 summaries). Sequence consensus generation based on the VCF files is performed with seqtk 

143 (https://github.com/lh3/seqtk), and vcfutils.pl (Li et al., 2009) is used in intermediate steps. 

144 Consensus sequences are generated in fasta format, and coverage statistics are also provided 

145 (plots and summaries). The last step in the pipeline is the alignment generation, intermediate 

146 steps are performed with internal function of skimmingLociR package and alignment with mafft 

147 (Katoh & Standley, 2013).The companion R package skimmingLociR includes functions for 

148 alignment post-filtering and handling, such as wrappers to generate basic alignment descriptors 

149 (alignStats), extract SNPs from an alignment (extractSNPs), concatenate lists of alignments 

150 (fastConc), trim and fill alignment edges (fillAlignments and trimAlignments), and filter loci 

151 (filterLoci). Most of these functions call internally several functions from the R package ape 

152 (Paradis & Schliep, 2019). The pipeline, the companion R package, and help files are available at 

153 https://github.com/mreginato/skimmingLoci. Control files with commands and parameters used 

154 in the assemblies, intermediate data files, and script used in this study are also available in the 

155 same github address.

156 Genome skimming data

157 Genome skimming libraries used across all assemblies are the same used to generate full 

158 plastome sequences of Melastomataceae (Reginato et al., 2016b). Sampling included 16 species 
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159 across major clades in the family. Genome size is unknown for these species and for the genera 

160 they belong. Voucher information and details about DNA extraction and sequencing are 

161 available in the original publication. Libraries included paired-reads with length of 100 base 

162 pairs. Prior to all assemblies reads were quality trimmed at 0.05 probability and filtered by length 

163 (< 50 bp removed) in Geneious 7.1 (Biomatters Ltd., Auckland, New Zealand). All assemblies 

164 presented in this paper included the same 16 quality filtered libraries. 

165 References comparison

166  To evaluate the effect of reference selection in the pipeline output three different 

167 reference sets were assembled with the same assembling parameters (�d 2 �C 0.1 �T). 

168 References included filtered transcripts (transcripts), filtered transcripts with guessed and 

169 masked introns (transcripts GMI) and full genes including exons and introns (full). Two 

170 Melastomataceae transcriptomes (Tetrazygia biflora (Cogn.) Urb. and Medinilla magnifica 

171 Lindl.) were downloaded from the onekp.org database (Leebens-Mack et al., 2019) and used to 

172 build the reference sets. Putative low copy nuclear markers within the sequenced transcriptomes 

173 were identified with the MarkerMiner pipeline (Chamala et al., 2015). Parameters were left as 

174 default and the minimum transcript length was set to 400. The pipeline identified 949 transcripts 

175 of putative low copy genes which were kept and further processed. In order to recover the full 

176 sequence of the 949 candidate genes (i.e., including introns) the Melastomataceae transcripts 

177 were imported into Geneious 7.1 (Biomatters Ltd., Auckland, New Zealand) and a series of 

178 mapping and de novo assemblies were conducted. This process included a mapping step of all 

179 reads to the references (949 transcripts), save the mapped reads, perform a de novo assembly 

180 using the saved reads, and mapping the resulting contigs back to the original references. This 

181 process was repeated several times until no progress was detected. Both mapping and de novo 

182 assembly were performed with Geneious algorithms. Mapping was performed with the high 

183 sensitivity settings with the �maximum gap size� option set to 1000, de novo was performed with 

184 default options. A total of 683 genes were fully recovered in this process and constitute the full 

185 reference set (full; 1,905,815 bp). The same 683 genes were identified among the output of 

186 MarkerMiner and were selected to build the transcripts reference set (transcripts; 985,008 bp). 

187 Additionally, for each of the two reference sets assemblies two different post-filtering 

188 programs were used to remove putative poorly aligned sites within the individual loci 

189 alignments. Moderate filtering was performed with Gblocks v.0.91b (Castresana, 2000) using the 

190 following parameters: b1= 70%; b2=70%; b3=100%; b4=10; b5= �all�. A second stronger 

191 filtering scheme was achieved with Aliscore.pl v.2.0 (Misof & Misof, 2009), where the options 

192 ��N �r �i� were enabled. Thus, six assemblies were compared in this step: transcripts (with no-

193 filtering, with moderate filtering, and strong filtering), and full genes (with no-filtering, with 

194 moderate filtering, and strong filtering).

195 Unless otherwise stated, all analyses and plots were generated in R 3.4.0 (R Core Team, 

196 2020). Assemblies� comparison included the following metrics for individual loci in each 

197 assembly: length of the sequence; coverage (median); depth (median), number of variable sites, 

198 number of parsimony informative sites (PIS), and missing data percent. Metrics tabulated for the 
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199 concatenated alignment of all loci included the median bootstrap support value in its 

200 phylogenetic tree and the RF distance (Robinson & Foulds, 1981) of the concatenated tree to the 

201 full plastome tree published in Reginato et al., (2016b). Tree distance was calculated with the R 

202 package phangorn (Schliep, 2011). Concatenate tree inference was performed with Maximum 

203 Likelihood in RAxML v.8.2.4 (Stamatakis, 2014). The GTR+G model was employed and 

204 support was estimated through 100 bootstrap replicates. 

205 Additionally, to evaluate the impact of read number across libraries in the pipeline 

206 output, correlations were performed between total number of reads and: total base pairs 

207 assembled, median depth across individual loci, and median coverage across individual loci. 

208 Pearson's product-moment correlation was implemented with the cor.test function of the R 

209 package stats (R Core Team, 2020). For these analyses the �full� reference set was used 

210 (parameters �d 2 �C 0.1) with no post-filtering. 

211 Key parameters comparison

212 To evaluate the effect of key parameters selection (mininum depth and mininum 

213 coverage), a comparison of assemblies with the same reference set (full genes) was performed. A 

214 total of eight assemblies were generate. In four assemblies, minimum depth (�d) was kept at 2 

215 and the minimum coverage (�C) was set to 0.1, 0.3, 0.5, and 0.7; while in the other four 

216 assemblies the minimum coverage (�C) was kept at 0.1 and the minimum depth (�d) was set to 

217 2, 3, 4, and 5. Assemblies� comparison included the same metrics tabulated for the previous 

218 comparison of different reference sets. No alignment post-filtering was applied in these 

219 assemblies.

220 Depth, coverage, missing data and outliers

221 Giving the low depth, coverage and high amount of missing data that will likely be 

222 associated with studies using this pipeline, a series of analyses were designed to evaluate their 

223 impact in the phylogenetic outcomes. For the following analyses the assembly using the full 

224 reference set with the following parameters was used: �d 2 �C 0.1 �T. No alignment post-

225 filtering was applied in this assembly. In order to identify the impact of alignment completeness 

226 (missing data percent and median coverage), as well as other characteristics of individual loci 

227 that might influence phylogenetic inference (such as number of base pairs), correlations between 

228 these metrics and mean gene tree bootstrap support across all individual loci were determined. 

229 First, pairwise Pearson's product-moment correlation between all predictors were conducted as 

230 previously described, including number of variable sites, total number of aligned base pairs, PIS, 

231 missing data percentage, median coverage, median coverage standard deviation and median 

232 depth. Representative uncorrelated variables were selected for the next analysis, where redundant 

233 variables with Pearson�s r > 0.7 were not considered. The effect of the uncorrelated predictors 

234 (total number of aligned base pairs, missing data percentage, coverage standard deviation, and 

235 median depth) on mean bootstrap support across all gene trees was then assessed through 

236 multiple linear regression implemented in R. Metrics other than ratios were log transformed prior 

237 to all analyses. 
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238 Additionally, the total number of base pairs, median depth, mean coverage, missing data 

239 percentage, mean bootstrap, and quartet distance to the concatenate tree between putative outlier 

240 loci and the remaining loci were compared and significance assessed with Wilcoxon tests 

241 implemented in R. P-values were adjusted with the p.adjust function using Holm�s method 

242 (Holm, 1979). Outlier loci were identified with a treespace analysis. Gene trees for each locus 

243 were estimated in RAxML (as previously described) and a distance matrix (quartet distance) 

244 including all gene trees pairs was constructed using the R package Quartet 1.1 (Smith, 2019). 

245 Since different loci might include different samples, when necessary unmatched terminals were 

246 dropped in each pair under calculation. The distance matrix was then subjected to a Principal 

247 Coordinates Analysis with the R package ade4 (Dray & Duffor, 2007). Outlier loci were 

248 identified with the Mahalanobis distance (p-value < 0.05) based on the first three axes 

249 implemented with mahalanobisQC from the R package ClassDiscovery (Coombes, 2019). 

250 Species tree

251 In order to evaluate whether alternative phylogenies might also relate to the inference 

252 method a species tree analyses was performed for comparison with the concatenate ML tree. 

253 Species tree was inferred using Astral v 5.6.3 (Zhang et al., 2018), with default options and 

254 support was estimated with gene bootstrapping (--gene-only option). Species tree inference was 

255 based on the 683 gene trees estimated with RAxML (as previously described) from the assembly 

256 using the full reference set (�d 2 �C 0.1 �T, no alignment post-filtering). 

257 2.7 Assembly of published data sets

258 To further validate this pipeline a single low copy loci, the nuclear gene that encodes the 

259 chloroplast-expressed glutamine synthetase (ncpGS), for which a sanger-based phylogeny is 

260 available (Ionta et al., 2007) and a target enrichment data set (Angiosperm353 probe set) for the 

261 Myrtales (Maurin et al., 2021) were assembled. Both data sets were included because they share 

262 species in common with the skimming libraries analyzed here (Rhexia virginica L. for the 

263 ncpGS, and nine species for the target enrichment). The target enrichment data set (Myrtales) 

264 was downloaded from http://sftp.kew.org/pub/paftol/, where only Melastomataceae plus its sister 

265 clade (CAP) were kept. The longest sequence per individual alignment was selected and used as 

266 reference in the assembly pipeline (totaling 344 loci). Both data sets were assembled with a 

267 minimum depth of 2 and a minimum coverage of 0.1. The resulting assembled sequences were 

268 then re-aligned with the original published data sets. Sequences were aligned with MAFFT v.7 

269 using the FFT-NS-i strategy (Katoh & Standley, 2013). The ML trees were estimated with 

270 RAxML as previously described. For the target enrichment assembly, the number of loci and 

271 coverage for each sample assembled with skimmigLoci was compared with the observed in the 

272 published data set. Comparisons (skimmingLoci assembly vs. published samples) were 

273 performed with Wilcoxon rank sum test in R.

274

275 Results

276 The 16 libraries analyzed throughout this paper have a total number of reads ranging from ca. 4 

277 to 22M reads. The number of recovered loci, total base pairs, median depth and median coverage 
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278 for the full assembly (�d 2 �C 0.1, no alignment post-filtering) are presented in Table 1. Only in 

279 one library all loci were at least partially recovered (M. dodecandra). On average, 618 loci (ca. 

280 90% of target loci) with around 1,000,000 base pairs (ca. 57% of target base pairs) were 

281 recovered across the libraries. Individual loci median depth was usually low across libraries 

282 (median = 2, s.d.= 1.36), while the median coverage was 0.39 (s.d.=0.21), indicating that in most 

283 cases loci were only partially recovered. A moderate correlation was observed between the total 

284 number of reads and median depth (r = 0.65, p-value = 0.007); as well as between the total 

285 number of reads and mean coverage (r = 0.50, p-value = 0.047), indicating that libraries with 

286 higher number of reads tend to yield more assembled data (plots available in Supplementary Fig. 

287 S1). Nonetheless, the correlation between number of reads and total base pairs recovered was 

288 lower (r = 0.30, p-value = 0.254). While there is an overall trend, some samples had a relatively 

289 greater yield (B. schlimii), while a few showed a relatively lower output (R. bracteata; Table 1; 

290 Fig. S1). 

291 Assemblies with distinct references

292 Reference selection and alignment post-filtering strategy impact was evaluated through 

293 comparisons of two different reference sets (transcripts and full), each one with three aligned 

294 base pairs post-filtering schemes (no-filtering, moderate filtering, and strong filtering). Summary 

295 statistics of each of these six assemblies are presented in Table 2. The relative total number of 

296 aligned base pairs recovered was higher in the transcripts (90%) than in the full reference set 

297 (80%), indicating that the reference including only more conserved base pairs (exons) had a 

298 relatively higher yield. On the other hand, the full reference set (with the highest number of 

299 target base pairs) also resulted in the higher number of total base pairs, percent of missing data 

300 and mean bootstrap support in the concatenated tree, suggesting that more data is preferable for a 

301 higher bootstrap support, despite potential increase in missing data.

302 Alignment post-filtering decreased mean bootstrap support in the concatenate tree of the 

303 transcripts reference set (Table 2). The full reference set comparisons had similar mean bootstrap 

304 values, with moderate alignment post-filtering slightly increasing mean bootstrap support, while 

305 strong filtering resulted in a small decrease (Table 2). While the mean bootstrap support did not 

306 change strongly across filtering schemes, the resulting length of the alignment was highly 

307 affected. For instance, strong filtering in the full reference left only 25% of the original data set. 

308 The same trend is observed for the other reference set, indicating that amount of data excluded 

309 by post-filtering strategies was large, but mean bootstrap support was not highly affected. 

310 Despite the variation in total number of reads, missing data, and bootstrap support across 

311 the three different schemes within the same reference set, the recovered topologies were 

312 relatively stable across comparisons. Transcripts assemblies resulted in the same topology across 

313 all different filtering schemes. A topology similar to the recovered in the transcripts assemblies 

314 was also recovered for the strong filtering scheme of the full reference assembly, with one 

315 distinction involving the relationship of M. pulchra. The other two filtering schemes of the full 

316 reference set had yet an additional distinct relationship involving B. schlimii. The recovered 
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317 phylogenies with support information of the six assemblies are available in Supplementary Fig. 

318 S2.

319 Assemblies with distinct key parameters

320 Key parameters selection, including the minimum depth to keep a base call in the 

321 consensus sequence (�d) and the minimum coverage of a sequence to be included in the final 

322 locus alignment (�C), were evaluated through comparisons of eight assemblies where these 

323 parameters were set to vary. Making both parameters more conservative resulted in a similar 

324 pattern (Fig. 2A, C, Table 3). The number of recovered loci, total aligned base pairs, variable 

325 sites, and PIS have consistently decreased with more stringent settings, while the relative percent 

326 of missing data was increased (Table 3). In the more conservative minimum coverage setting (�d 

327 2 �C 0.7), on average, only 19% of the target loci and 28% of target base pairs were partially 

328 recovered, and all sequences of three libraries were totally removed (i.e., resulting in 13 out of 16 

329 samples in the concatenate alignment). Mean bootstrap support in the concatenate tree deviated 

330 from the general pattern observed in the other metrics. In both parameters comparisons, the 

331 bootstrap support had an initial increase followed by an abrupt decrease (Fig. 2B, D). These 

332 results indicate that small changes in these parameters have a high impact in the assembly 

333 outcome. Additionally, parameter tuning through assembly tests with different settings might 

334 increase desired features in the phylogenetic outcome (e.g., higher bootstrap support).

335 Concatenate tree topologies across the eight assemblies were reasonably similar, despite 

336 greater variation in bootstrap support (Figs. S3 and S4). These analyses included only the 13 

337 libraries in common across all comparisons, where changes in both parameters resulted in the 

338 same pattern of phylogenetic conflict. For both minimum depth and minimum coverage, the 

339 concatenate trees presented the same discordant relationships previously observed in the 

340 reference sets comparisons (involving the position of B. schlimii, the position of M. pulchra and 

341 the relationship of R. bracteata and N. aquatica). 

342 Depth, coverage, missing data and outliers

343 A group of seven descriptors, with emphasis on alignment completeness and 

344 informativeness, were selected to evaluate their impact on mean bootstrap support across 

345 individual loci gene trees. Pairwise correlations revealed that some descriptors were strongly 

346 correlated and formed five groups (Fig. S5). The first group is related to informativeness and 

347 included the total number of base pairs, number of variable sites and number of PIS, while the 

348 second group related to alignment completeness included missing data percent and mean 

349 coverage (Fig. S5). Median depth and the coverage standard deviation were not strongly 

350 correlated with any other descriptor (Fig. S5). Then, the effect of the selected uncorrelated 

351 descriptors on mean bootstrap support was evaluated with multiple linear regressions. The 

352 resulting model had an adjusted R2 of 0.37 (p-value < 2.2e-16) and the relative importance of 

353 predictors were: total number of base pairs = 93.3%; Median depth = 4.6%; Coverage standard 

354 deviation = 1.8%; and missing data percent = 0.3%. This result indicates that most of the 

355 variation explained by the predictors is related to the length of the alignment (informativeness), 
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356 and missing data (alignment completeness) has very low predictive power on bootstrap support 

357 across gene trees (plots of individual predictors on Figs. 3H�K).

358 In order to further compare alignment completeness and informativeness impact on gene 

359 trees, a treespace analysis was performed and putative outlier loci identified. A total of 63 out of 

360 683 (ca. 9%) loci were flagged as outliers (Fig. 3A). The distribution of the descriptors in the 

361 outlier loci and in the remaining ones is shown in Figs. 3B�G. The total number of base pairs, 

362 median depth, and mean bootstrap support were significantly lower in the outlier loci when 

363 compared to the remaining ones, while the opposite was verified for the quartet distance to the 

364 concatenate tree (p-value < 0.05). Missing data percent and mean coverage did not show 

365 significant difference between the two groups (Figs. 3B-G).

366 Species tree

367 The species tree inferred with Astral presented high gene bootstrap support along most 

368 nodes (Fig. 4). Exceptions include moderate support for the placement of N. aquatica, and low 

369 support for M. pulchra. The overall topology is similar to the one observed in the concatenate 

370 ML tree (Fig. 4), with the exception of the uncertain relationships abovementioned and the 

371 relationship of B. schlimii. These conflicts are the same incongruences observed in the reference 

372 set and key parameters comparisons, indicating that to some extent the conflict observed across 

373 the comparisons with different reference sets and key parameters might be related to gene tree 

374 conflict.

375 Assembly of published data sets

376 Assembly of the ncpGS locus of Rhexia virginica resulted a sequence with median depth 

377 of 3.3 and a coverage of 0.49. Alignment with the original data set included a total of 462 base 

378 pairs, 65 variable and 10 parsimony informative sites, and 8% of missing data (Fig. S6). Overall, 

379 the maximum likelihood tree showed low support across most nodes, but the genome skim 

380 terminal of R. virginica grouped with the Sanger-based terminal of the same species (Fig. S6). 

381 Assembly of the target enrichment data set (Myrtales, Angiospers353 prose set) included 

382 nine genome skimming samples and had a median depth of 2. Out of the 344 loci, genome 

383 skimming libraries recovered a mean of 318 loci (ranging from 144 to 336) vs. 323 (240 to 344) 

384 in the target enriched libraries. Mean coverage across genome skimming libraries was 0.53 

385 (ranging from 0.16 to 0.84), while target enriched samples had a median coverage of 0.52 (0.19 

386 to 0.87). No significant difference was observed when compared both the number of loci and 

387 mean coverage between genome skimming libraries with target enriched ones (number of loci p-

388 value=0.23; mean coverage p-value=0.60). The maximum likelihood tree including the published 

389 terminals along with the skimmingLoci assemblies is available in Fig. 5. Most genome skimming 

390 libraries were recovered as sister to the same species of target enrichment samples (Fig. 5), the 

391 only exception was the Eriocnema fulva library that was recovered near, but not sister to the 

392 other sample of this species, but with no support. Eriocnema fulva was among the three libraries 

393 with the lowest number of loci and mean coverage (the other two were Triolena amazonica and 

394 Salpinga maranoniensis; Fig. 5).

395
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396 Discussion

397 Despite a few attempts to use genome skims to recover low copy nuclear loci for direct 

398 phylogenetic use (Besnard et al., 2014; Besnard et al., 2018; Olofsson et al., 2019; Vargas et al., 

399 2019), such endeavor remains largely neglected. Causes might include shallow depth of the low 

400 copy part of the genome due to libraries with few reads, species with large genomes, and 

401 especially, the trade-off between these two, but also might be related to the lack of pipelines for 

402 data assembling. Pipelines commonly used with genome skimming data focus on the recovery of 

403 the plastome sequence (Dierckxsens et al., 2017; McKain & Wilson, 2017), the major source of 

404 phylogenetic information generated in genome skimming studies. Nonetheless, the nuclear 

405 genome harbors significant information relating to variation within and among plant species, and 

406 it is decisive for a more effective identification of multiple genome donors in lineages with a 

407 historical of hybridization and allopolyploid (Zimmer & Wen, 2013). Furthermore, the necessity 

408 of multiple gene trees for more accurate species tree inference is now widely acknowledged. As 

409 a result, approaches such as HYB-seq, that aims at the repetitive component of the genome as 

410 well as target a portion of the low copy part, are becoming increasingly popular (Dodsworth et 

411 al., 2019). 

412 Early simulations of plant total genomic sequencing have demonstrated that even at the 

413 lowest values of sequencing depth, reads originating from single-copy nuclear loci were still 

414 detected (Straub et al., 2012 ). This expectation was confirmed here with an empirical data set, 

415 where a substantial amount of putative low copy nuclear DNA was assembled and proved useful 

416 to base phylogenetic inference across the libraries tested. Depending on the settings and 

417 reference set used, total loci number partially recovered varied from 47 to 100% of the total 683 

418 target loci, ranging from 537,866 to 1,532,601 aligned base pairs (Tables 2 and 3). Plastome data 

419 previously assembled with the same libraries rendered an alignment of 140,649 base pairs 

420 (Reginato et al., 2016b), ca. 4 to 11 times less data depending on the assembly generated. The 

421 approach presented here was further validated for a single locus (ncpGS) for which a Sanger-

422 based phylogeny was available (Ionta et al., 2007), where the library assembled through this 

423 pipeline clustered with the Sanger-based terminal of the same species. The same was observed 

424 with the assembly of the target enrichment data set (Myrtales, Angiosperms353 probe set), where 

425 all but one library, clustered with the same species of the original data set. The only exception 

426 (E. fulva) was among the libraries that yielded the smallest amount of assembled data. 

427 Genome skimming was conceived as a gDNA shallow sequencing method (Straub et al., 

428 2012). As a result, it is expected that most loci of the low copy part of the genome will not be 

429 fully covered, neither will present high depth. When dealing with deep sequenced regions in 

430 genome skims (such as the plastome), it is common practice to use de novo methodologies 

431 (Dierckxsens et al., 2017; McKain & Wilson 2017). However, similar strategies will likely be 

432 inefficient for the low copy component, giving its fragmented nature and lower depth. Thus, 

433 mapping methods are an efficient alternative, but they require a reference to anchor the reads 

434 during the procedure. In addition to reference selection, other critical aspects of assembling low 

435 copy nuclear markers from genome skims include key parameters (minimum coverage and depth 
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436 of a sequence to be used), as well as alignment completeness. The latter is a result of the lack of 

437 coverage and/or depth across loci in different libraries, and its level might be directly linked to 

438 parameter values applied during assembly. More stringent values of minimum depth and 

439 coverage reduces the amount of assembled data and increases the relative amount of missing data 

440 (Table 3), which in turn can compromise phylogenetic inference. These issues are discussed in 

441 the sections that follow.

442 Reference selection 

443 Transcriptomes are now the major source of information to reference building for either 

444 probe development or harvesting loci in genome skims for most angiosperm lineages that still 

445 lack a close relative with a fully sequenced genome (Chamala et al., 2015). A limitation of this 

446 approach is that it only includes coding regions, sometimes with limited phylogenetic 

447 information at shallow inferences. This issue is alleviated by the fact that intronic and intergenic 

448 regions flanking target exons (splash zone) are usually also recovered (Johnson et al., 2016). 

449 Here, the amount of data generated and phylogenetic support were compared between one 

450 reference set including only coding regions (transcripts) and the same loci also including introns 

451 (full). As expected, the full reference set (with the highest number of target base pairs) resulted 

452 in the higher number of total base pairs and mean bootstrap support in the concatenated tree, 

453 suggesting that more data is preferable for a higher bootstrap support even if the amount of 

454 missing data is increased (Table 2). These results highlight that attempting to use genome 

455 skimming data along with transcriptome data to build references including intronic regions is 

456 highly recommended. 

457 The relative total number of aligned base pairs recovered was higher in the CDS only 

458 reference set (90%) than in the full reference set (80%), indicating that the references including 

459 only more conserved base pairs (exons) had a relatively higher yield, but not too disparate. This 

460 is expected given that mapping success (or hybridization success in target enrichments libraries) 

461 will correlate with similarity to the references (Johnson et al., 2019). Nonetheless, the amount of 

462 data recovered in the full reference set was still satisfactory, despite an estimated MRCA age of 

463 ca. of 45 My (37�55 95% HPD) for the lineages analyzed (Reginato et al., 2020). 

464 Manually curation of individual loci aligment is no longer an option in phylogenomic 

465 studies dealing with hundreds or thousands of loci, and several tools have been developed to 

466 automatically curate alignments by removing part of them (Ranwez & Chantret, 2020). The 

467 debate as to whether it is better or not to filter sequence alignments prior to phylogeny inferences 

468 is still open, and a major concern is that some filtering processes may tend to remove too much 

469 of the phylogenetic signal along with phylogenetic noise (Ranwez & Chantret, 2020). Here, two 

470 filtering schemes (moderate and strong) were compared to a scenario with no filtering. Results 

471 indicated a great variation in total number of reads left and missing data across the three different 

472 schemes, but the recovered topologies and mean bootstrap support were relatively stable across 

473 comparisons. Judging the effectiveness of the filtering methods on real data is challenging, but 

474 patterns of discordance can help (Mai & Mirabab, 2018). Thus, in the particular case of the 

475 libraries compared in this study, alignment post-filtering effect was not significantly positive, 

PeerJ reviewing PDF | (2022:07:75553:0:0:NEW 13 Jul 2022)

Manuscript to be reviewed



476 since in most cases it rendered similar topologies and support, and if anything, it decreased 

477 bootstrap support in the strongest filtering scheme. On the other hand, alignment post-filtering 

478 seems to have had a positive effect for the whole plastome alignment of the same libraries 

479 (Reginato et al., 2016b). Thus, accessing the impact of post-filtering strategies on phylogenomic 

480 data sets is still recommended, especially, because misaligned regions impacting a single 

481 sequence may have little impact on topology, but might compromise branch length estimations 

482 (Ranwez & Chantret, 2020). 

483 Key parameters: depth and coverage 

484 Translating the raw sequencing data into the final sequences in reference-based 

485 assemblies requires two essential steps: read mapping and genotype inference to generate a 

486 consensus sequence (Liu et al., 2012). At one hand, low depth sequencing always introduces 

487 considerable uncertainty into the results and makes base calling more prone to error (Liu et al., 

488 2012). Thus, relaxing the minimum depth value for a base call tend to increase the amount of 

489 error. On the other hand, making such parameter more stringent will greatly reduce the amount 

490 of assembled data (Table 3 and Fig. 2), potentially hindering the use of this approach. Minimum 

491 coverage value will have a slightly different effect. Making this parameter more stringent will 

492 also greatly reduce the amount of data generated (Table 3 and Fig. 2), but changing it in the 

493 opposite direction will allow some shorter sequences within individual loci alignment, impacting 

494 gene tree inference. Here, the effect of varying both parameters were evaluated regarding the 

495 amount of data assembled and the resulting bootstrap support and showed a similar pattern. As 

496 expected, it was found that total amount of assembled data have consistently decreased with 

497 more stringent settings, while the relative percent of missing data was increased (Table 3). 

498 Nonetheless, a different pattern was found for bootstrap support. In both parameters 

499 comparisons, the bootstrap support had an initial increase followed by an abrupt decrease (Fig. 

500 2). In this case, the higher amount of assembled data under the most relaxed settings did not 

501 resulted in higher bootstrap support, in contrast to what was found in the reference set 

502 comparison. Lower support might be associated with higher error rate under relaxed settings, as 

503 well as to an increased presence of short sequences with low information. On the other hand, 

504 making the parameters too stringent greatly reduces the amount of assembled data (Fig. 2), 

505 limiting inference power as evidenced by the lower bootstrap support. Therefore, parameter 

506 tuning through multiple comparisons tracking their effects (e.g., support) is highly 

507 recommended. Despite great variation in bootstrap support across the eight assemblies 

508 compared, concatenate tree topologies were reasonably similar (Figs. S3 and S4). Discordant 

509 relationships were the same found in the reference sets comparison, indicating that the putative 

510 higher error associated with relaxed depth values had little impact in the inferred relationships.

511 Alignment completeness, informativeness and outliers

512  Alignment completeness is a heavily debated issue in phylogenetic inference (Wiens, 

513 2003 and references therein). Missing data is usually assumed to be a compromising feature in 

514 phylogenetic inference, and some phylogenomic strategies are particularly prone to it (Eaton et 

515 al., 2017). Here, we found levels of total missing data reaching over 60% in one of the 
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516 assemblies (Table 3), but comparisons with distinct references and key parameters indicate that 

517 total missing data amount was not a decisive feature impacting on bootstrap support in the 

518 concatenate analyses. To further explore the effect of missing data, alignment completeness and 

519 informativeness were compared across individual loci alignments and their gene trees (Figs. 3H�

520 K). Multiple linear regression model indicated that bootstrap support across gene trees is highly 

521 affected by alignment length (number of total base pairs), with a relative importance of 93.3%, 

522 while the relative importance of missing data was negligible (0.03%). This result corroborates 

523 the other comparisons (references and key parameters), indicating that more data is preferable 

524 despite a compromise in alignment completeness. Also, it is in agreement with the expectation 

525 that longer genes will be superior for phylogenetic reconstruction (Walker et al., 2019). 

526 Alignment completeness and informativeness was further compared between putative 

527 outlier loci (ca. 9% of assembled loci) and the remaining (Fig. 3). Outlier loci showed lower 

528 values of total number base pairs, median depth, mean bootstrap, and concordance with the 

529 concatenate tree. Missing data percent and mean coverage did not show significant difference 

530 between the two groups (Fig. 3). These results are in agreement with previous comparisons, but 

531 they also suggest that descriptors such as alignment length, mean bootstrap support and median 

532 depth should be preferred over missing data and mean coverage for individual loci filtering. 

533 Simulations have demonstrated that reduced phylogenetic accuracy associated with 

534 incomplete alignments is caused by taxa bearing too few complete characters rather than too 

535 many missing data cells (Wiens, 2003). The libraries analyzed here presented a high variation of 

536 assembled data (Table 1), and under some stringent parameters no data was assembled for some 

537 libraries (Table 3). A moderate correlation was observed between the total number of reads and 

538 median depth (r = 0.65, p-value = 0.007), indicating that libraries with higher number of reads 

539 tend to yield more assembled data (Fig. S1). Some samples deviated from this general pattern, 

540 but the lack of information of genome sizes for the species analyzed precludes further 

541 conclusions. Regardless of the underlying causes, one important step to be considered is 

542 removing libraries with a low yield of assembled data. Such effect was not evaluated here, but 

543 has been proved to be effective elsewhere (Gates et al., 2018). 

544 Gene tree discordance

545 Although largely congruent, some discordant relationships were recovered throughout the 

546 concatenate trees of the different comparisons presented here (Figs. S2, S3 and S4). 

547 Incongruence across comparison involved the same group of terminals: B. schilimii, M. pulchra, 

548 R. bracteata and N. aquatica. Interestingly, the same terminals also show discordant positioning 

549 or low support in the ML and Astral analyses of the same assembly (Fig. 4). Therefore, 

550 topologies discrepancies between comparisons including different references or key parameters 

551 values might be related to gene tree discordance. In fact, topological discordance is greater to the 

552 plastome tree (Reginato et al., 2016b), than among the different scenarios presented here. 

553 Increasing taxonomic breadth is necessary to further improve phylogenomic relationships in this 

554 large clade of plants. 

555
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556 Conclusions

557 The availability of tools and genomic data to design probes to target the low copy of genome, as 

558 well as attempts to generate universal probe sets for angiosperms (Johnson et al., 2018), are a 

559 recent achievement. How informative a given reference set is for a particular clade and whether 

560 to use a universal probe set or more clade-specific probes are important questions to make with 

561 budget and phylogenetic implications. One important aspect of the approach presented here is 

562 that genome skims could be used to bridge different published data sets (e.g., Sanger-based, 

563 RAD-seq, target enrichment with different probe sets, etc�) on a super-matrix approach. Also, 

564 as previously suggested (Vargas et al., 2019), another putative use is to test different probe sets 

565 in silico with genome skims, in order to make an informed decision to maximize phylogenetic 

566 resolution in future studies.

567 The plastid genome has so far been the most important source of data for plant 

568 phylogenetics in the era of comparative DNA sequencing (Davis et al., 2014). Nonetheless, 

569 within the green plant species tree there is a �cloud� of gene trees, of which the plastid genes 

570 comprise only a small fraction (Davis et al., 2014). The pipeline presented here might stimulate 

571 the use of genome skims to recover nuclear loci for direct phylogenetic use, increasing the power 

572 of genome skimming data to resolve phylogenetic relationships, while reducing the amount of 

573 sequenced DNA that is usually ignored. The effectiveness of such approach will likely depend 

574 on the relationship of number of reads and genome size in the libraries at hand.

575
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Figure 1
Flowchart illustrating key steps and software used in the skimmingLoci pipeline, as well
as in downstream and upstream major steps.
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Figure 2
Key parameters comparisons, including the minimum depth to keep a base call in the
consensus sequence (3d parameter) and the minimum coverage of a sequence to be
included in the ûnal locus alignment (3C parameter).

A. Minimum coverage vs. aligned base pairs (bp), variable sites (Variable), parsimony
informative sites (PIS), and missing data (Missing). B. Minimum coverage (-C) vs. number of
loci (Loci n), mean bootstrap support (Bootstrap mean) and percent of missing data (Missing
data %). C. Minimum depth (-d) vs. aligned base pairs (bp), variable sites (Variable),
parsimony informative sites (PIS), and missing data (Missing). D. Minimum depth (-d) vs.
number of loci (Loci n), mean bootstrap support (Bootstrap mean) and percent of missing
data (Missing data %).
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Figure 3
Treespace and comparative descriptors of outlier loci and the remaining ones.

A. Treespace analysis indicating putative outlier loci identiûed (63 out of 683 loci were
ûagged as outliers). B-G. Descriptors distribution comparison between outlier loci and in the
remaining ones (violin plots). B. Total base pairs. C. Median depth. D. Mean coverage. E.
Missing data. F. Mean bootstrap. G. Distance (RF) to the concatenate tree. H-K. Biplots of
selected descriptors vs. mean bootstrap support. H. Total base pairs. I. Missing data percent.
J. Coverage standard deviation. K. Median depth. In all plots outliers are shown in gray and
the remaining loci in black.
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Figure 4
The species tree inferred with Astral (A) and the maximum likelihood tree of the
concatenate alignment (B). Both trees from the <Full= assembly (d 2, -C 0.1).

Support values are depicted following the legend (A. Gene bootstrap; B. Bootstrap).
Terminals with distinct phylogenetic positioning in bold face.
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Figure 5
The maximum likelihood tree of the target enrichment data set (Myrtales,
Angiospersm343 probe set) including the published terminals along with the
skimmingLoci assemblies (in red).

The total number of loci and median coverage for each terminal are plotted on the right side.
Bootstrap support is depicted at the nodes following the legend.
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Table 1(on next page)

Summary characteristics of the 16 libraries assembled using the <full= reference set
(parameters 3d 2 3C 0.1).

Reads: total number of reads in each library. Loci (n): number of recovered loci. Total (bp):
total based pairs recovered. Coverage (median, s.d.): median and standard deviation
coverage across individual loci. Depth (median, s.d.): median and standard deviation depth
across individual loci.
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Species Reads Loci (n) Total (bp)
Coverage 

(median, s.d.)
Depth

(median, s.d.)

Allomaieta villosa (Gleason) Lozano 22,583,550 682 1,486,675 0.72 (0.14) 5 (10.28)

Bertolonia acuminata Gardner 18,820,316 682 1,433,836 0.61 (0.13) 3 (6.04)

Blakea schlimii (Naudin) Triana 6,272,448 682 1,473,735 0.6 (0.16) 3 (5.37)

Eriocnema fulva Naudin 2,369,052 614 953,093 0.2 (0.09) 1 (1.92)

Graffenrieda moritziana Triana 18,255,622 683 1,646,960 0.74 (0.13) 5 (16.22)

Henriettea barkeri (Urb. & Ekman) Alain 3,904,930 621 993,742 0.25 (0.11) 1 (4.76)

Merianthera pulchra Kuhlm. 7,262,788 571 792,362 0.23 (0.14) 1 (3.11)

Miconia dodecandra Cogn. 14,915,062 683 1,820,433 0.76 (0.11) 4 (11.04)

Nepsera aquatica (Aubl.) Naudin 14,750,648 682 1,034,413 0.47 (0.17) 3 (16.74)

Opisthocentra clidemioides Hook. f. 6,985,796 676 1,159,469 0.39 (0.13) 2 (3.52)

Pterogastra divaricata (Bonpl.) Naudin 8,998,186 659 874,845 0.34 (0.15) 2 (6.66)

Rhexia virginica L. 12,157,014 674 967,659 0.38 (0.15) 2 (17.31)

Rhynchanthera bracteata Triana 22,213,604 528 596,533 0.21 (0.11) 2 (10.62)

Salpinga maranoniensis Wurdack 14,197,808 478 699,934 0.19 (0.11) 1 (15.92)

Tibouchina longifolia (Vahl) Baill. 9,425,454 682 994,943 0.42 (0.16) 3 (7.2)

Triolena amazonica (Pilg.) Wurdack 6,664,094 286 508,254 0.14 (0.07) 1 (3.86)

1

PeerJ reviewing PDF | (2022:07:75553:0:0:NEW 13 Jul 2022)

Manuscript to be reviewed



Table 2(on next page)

Summary statistics of each of the six assemblies analyzed, with distinct references
(<full= and <transcripts=) and three diûerent levels of alignment post-ûltering (<none=,
<moderate=, and <strong=).

Loci (n) = number of loci. Aligned (bp) = total number of aligned base pairs. Variable = total
number of variable sites. PIS = total number of parsimony informative sites. Missing data (%)
= Total percent of missing data. Bootstrap (mean) = mean boostrap in the concatenated
phylogeny.
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ReR������ / Rf����f�� Loci (n) Aligned 

(bp)

Variable PIS Missing data 

(%)

Bootstrap 

(mean)

Full / none 683 1,532,601 472,022 121,647 49.6 95.5

Full / moderate 682 1,313,414 413,152 108,389 47.8 96.5

Full / strong 683 377,028 117,781 38,952 30 95

Transcripts / none 683 885,828 242,192 75,228 44.9 95.9

Transcripts / moderate 676 690,926 194,921 63,410 40.9 93.8

Transcripts / strong 683 298,568 85,957 29,075 31.4 92.9

1

2
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Table 3(on next page)

Summary statistics of each of the eight assemblies analyzed, with distinct values of key
parameters including the minimum depth to keep a base call in the consensus
sequence (3d) and the minimum coverage of a sequence to be included in the ûnal
locus ali

Loci (m, r) = mean and range number of recovered loci (at least partially) across all
terminals. Terminals = Number of terminals in the concatenated alignment. Bootstrap
(mean) = mean boostrap in the concatenated phylogeny (including the same 13 terminals).
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Key 

parameters

L��	 (m( r) T
��	
��� Aligned (bp) Variable 

sites

PIS Missing 

data (%)

Bootstrap 

(mean)

�d 2 �C 0.7 120 [�� 3133 13 540764 118386 16592 63.3 66.9

�d 2 �C 0.5 268 [�� 6383 15 1064863 261671 48638 56.2 84

�d 2 �C 0.3 423 [��� 6823 16 1442185 411563 93974 46.1 97.3

�d 2 �C 0.1 618 [�������3 16 1494809 449182
11049

5
41.1 94.4

�d 3 �C 0.1 490 [��� 6833 16 1257452 332727 69297 50.6 99.1

�d 4 �C 0.1 382 [�� 6723 16 932497 217549 37358 58 95.5

�d 5 �C 0.1 287 [�� 5863 16 537866 115958 17078 62.3 87.3

1
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