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ABSTRACT
Meteorological station measurements are an important source of information for
understanding the weather and its association with risk, and are vital in quantifying
climate change. However, such data tend to lack spatial coverage and are often plagued
with flaws such as erroneous outliers and missing values. Alternative meteorological
data exist in the form of climate model output that have better spatial coverage, at
the expense of bias. We propose a probabilistic framework to integrate temperature
measurements with climate model (reanalysis) data, in a way that allows for biases and
erroneous outliers, while enabling prediction at any spatial resolution. The approach
is Bayesian which facilitates uncertainty quantification and simulation based inference,
as illustrated by application to two countries from the Middle East and North Africa
region, an important climate change hotspot. We demonstrate the use of the model in:
identifying outliers, imputing missing values, non-linear bias correction, downscaling
and aggregation to any given spatial configuration.

Subjects Statistics, Environmental Impacts, Spatial and Geographic Information Science
Keywords Penalised splines, Bayesian models, Outliers, Statistical downscaling, Bias correction,
Spatial extrapolation, Data blending

INTRODUCTION
Climate change is one of the most serious global issues today, and much scientific effort
is invested into trend analysis and understanding the impact of weather on different
aspects of human life. On average, temperature across the globe has been increasing
and is projected to keep doing so under various scenarios. Temperature is therefore a
key indicator of climate change, so it is important to understand its association with
various risks. For instance, there are studies attempting to link extreme temperature with
human mortality and morbidity (Lubczyńska, Christophi & Lelieveld, 2015), impact models
aiming to understand the dynamics of infectious diseases as a function of temperature
(amongst other things) (Erguler et al., 2022), research on the effects of temperature on crop
yield (Matiu, Ankerst & Menzel, 2017; Constantinidou et al., 2016) and many more such
examples.

The main challenge for such scientific endeavours is finding temperature data at a
required spatial and temporal resolution. Temperature (and othermeteorological variables)
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are conventionally measured using weather stations, which typically lack spatial coverage.
In epidemiological studies for instance, it might be difficult to relate mortality data at city
level with temperature measurements from a single weather station at the city’s airport.
Another example is the need to compare gridded temperature data from a climate model
with corresponding historical temperature measured at point locations (Kostopoulou et
al., 2009) or obtained from gridded datasets (Kotlarski et al., 2014). Climate model output
is often used to drive impact models and therefore it is of great importance that they
are evaluated in order to avoid passing climate model uncertainty further to the impact
model (Constantinidou, Zittis & Hadjinicolaou, 2019; Stéfanon et al., 2015). Yet another
example is construction, for example of a nuclear power station at a specific spatial
location, where building regulation necessitates information on extreme temperature at
that exact location. Many more such examples exist, the point here being that temperature
data are rarely available at the required location and spatial resolution.

In situ weather observations are probably the closest we have to the ‘‘ground truth’’;
however, such observations are often plagued with errors such as non-physical outliers
and missing values, particularly for historical time series going back many decades, where
data may be recorded manually and later digitized. The two most utilised alternative
data sources for temperature, are (a) remote sensing (e.g., satellite) and (b) reanalysis
products. Both of these are gridded (e.g., 10 km ×10 km spatial resolution) and thus have
better spatial coverage but do not provide information over specific locations (e.g., at the
coordinates associated with a weather station). Moreover, both of these alternatives are
biased, since they can be described as proxy rather than direct measurements. For instance,
satellites measure ground temperature rather than air temperature at 2 m which is what
is usually of interest to humans, and cannot measure temperature accurately on cloudy
days (Hooker, Duveiller & Cescatti, 2018). Reanalysis data on the other hand have complete
spatial and temporal coverage but they are the output of physical (climate) models and are
therefore not actual measurements. Rather, they are data-informed model predictions and
are possibly biased (Rhodes, Shaffrey & Gray, 2015).

Nevertheless, we argue that the wide availability of reanalysis products and the fact that
such data respect physical mechanisms, means that they contain useful information and
can be used in conjunction with in situ data for a robust estimate of temperature at any
spatial resolution. In this article we propose a Bayesian hierarchical modelling approach to
integrate in situ temperature measurements and reanalysis data, and demonstrate how this
can be used to achieve the goal of obtaining temperature estimates at any required spatial
resolution. Specifically, we look for an approach that:
1. allows for erroneous outliers in the in situ temperature data;
2. automatically integrates gridded reanalysis data and point in situ measurements

(change-of-support problem);
3. has adequate flexibility to capture biases between reanalysis and station data;
4. can be used to correct and impute missing values in station observations;
5. fully quantifies the associated uncertainty.
Challenge 1 is important so that erroneous outliers do not influence the statistical

properties (particularly the extremes) of any predictions. Challenge 2 is typically an issue
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when combining data of different resolutions and what is required is a single robust
estimate. The form of any biases between climate model output and observations are not a-
priori known, so flexibility in challenge 3 is key. Observational weather data are invariably
plagued with missing values and outliers, so an approach that can automatically deal
with challenge 4 can increase the value of weather data. Lastly, the sometimes overlooked
challenge 5 is crucial for appreciating the weight of evidence behind estimates—particularly
when predicting outside the range space of the data (e.g., when downscaling).

The following section provides further background and relates the work to the
literature, while the ‘‘Data and related challenges’’ section describes the data and their
associated challenges. The ‘‘Data and related challenges’’ section lays out the modelling
framework, The ‘‘Model implementation’’ section describes its implementation and
‘‘Results’’ demonstrates application to temperature data from Cyprus and Morocco. The
final section summarises and presents a discussion.

BACKGROUND
The probabilistic modelling framework presented here aims to capture the association
of temperature measurements with a gridded reanalysis data set, in a way that allows
prediction of temperature at any given location and also time point within the range of
the reanalysis data. The approach is therefore akin to the idea of bias correction of climate
model data, but also to the idea of statistical downscaling of climate data, as well as the
concept of stochastic weather generators. The distinction between these approaches is
often blurred and there are many methods that can thus be classified as hybrid. In fact, the
terms ‘‘bias correction’’ and ‘‘statistical downscaling’’ are used in different ways in different
communities (Maraun, 2013). Our approach simultaneously performs bias correction and
downscaling but can also be used as a stochastic weather generator, while also correcting
for outliers in temperature records. The method can thus be classified as a hybrid, but
nevertheless an effort is made next to place the work in the wider literature.

Bias correction methods are ubiquitous in climate science where the idea is
to correct desired statistical properties of climate model data with those from
observations (Christensen et al., 2008). Methods that assume linear bias are the simplest
category and are favoured for their simplicity and computational efficiency. However,
more sophisticated methods that focus on the whole probability distribution are the
most promising due to their accuracy. Examples include regression approaches (Durai &
Bhradwaj, 2014), copula-based methods (Lazoglou, Gräler, & Anagnostopoulou, 2019) and
quantile mapping (Maraun, 2013). In bias correction, there is an implicit assumption that
the observational data used to correct the climate output data are accurate. In general
however this is not the case, where for instance flawed outliers may influence estimation
of extremes thus limiting utility of bias correction (Maity et al., 2019)). Here, we explicitly
allow for the presence of erroneous outliers in the station measurements in addition to
using a flexible way of capturing the bias using penalised splines. In essence, our method
can be classified as a non-linear regression approach to bias-correction, although we do so
in a way that separates linear and non-linear terms, for more robust spatial extrapolation.
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Statistical (as opposed to dynamical) downscaling (Maraun &Widmann, 2018) is a
technique for increasing the spatial resolution of climate model data, say from a 10 km
×10 km spatial grid to a 1 km ×1 km grid. Conventionally this involves quantifying the
relationship between climate model data at a coarse resolution with higher resolution
gridded observational data (such as reanalysis e.g., Hernanz et al. (2022)), although more
recent methods (e.g., Huth, 2002) also include in situ observations. A related method to
downscaling is the concept of spatial interpolation/extrapolation of weather observations,
on the basis of meaningful predictive information (i.e., systematic local effects such as
elevation and distance from the sea). For instance, Camera et al. (2014) have produced
a gridded precipitation data set by quantifying the relationship of weather station data
with topographical information. Another example is Lompar et al. (2019) who, like here,
use ERA5 reanalysis to impute missing temperature measurements in time series. Our
approach can be seen as a combination of statistical downscaling and interpolation, where
the spatial interpolation is of the relationship between the temperature observations and
the climate model data, while also allowing for inclusion of local covariates either additively
or by extending the spatial interpolation to include additional dimensions. However, here
we have the added requirement that erroneous outliers in the observations are allowed for
in addition to requiring the model predictions to be put at any spatial configuration. The
latter is achieved by interpreting the predictions as simulations from a random field, which
can be integrated over any spatial unit (Poole & Raftery, 2000).

Stochastic weather generators are typically probabilistic modelling tools with which
existing weather data sets can be expanded temporally and spatially. Such generators have
been utilised by the water industry for instance to quantify flood/drought risk (Dawkins et
al., 2022; Stoner & Economou, 2020) as well as the reinsurance sector for estimating natural
hazard risk (Youngman & Economou, 2017). The approach presented here can be viewed
as a stochastic weather generator, with the added benefit of filtering erroneous outliers so
that probabilistic simulations of temperature are not unduly affected.

Lastly, the model we present can also be seen as method with which one can identify
outliers in temperature records with the help of the physically constrained reanalysis
data. Outlier detection is a well established field in data science (Hawkins, 1980; Barnett
& Lewis, 1994; Hodge & Austin, 2004; Jobe & Pokojovy, 2015) and also more specifically
in temperature modelling (Ma, Gu &Wang, 2017; Sun et al., 2015; Li & Jung, 2021). In
this work, outliers are identified simultaneously with modelling the data and thus can be
classified as a ‘‘Type 2’’ outlier-detection method (Hodge & Austin, 2004). The novelty of
the method is the use of a discrete mixture distribution to identify outliers in conjunction
with a Bayesian hierarchical model for modelling the temperature data, and penalised
splines to characterise the association with the reanalysis data.

The novelty of our approach lies in the combination of the challenges it aims to tackle:
bias-correction, spatial aggregation and downscaling, outlier detection/correction and
stochastic simulation. In this sense, the approach is unique and not easily comparable. The
mathematical complexity is kept as simple as possible in order to emphasize interpretability
and out-of-sample performance, so the individual aspects of our modelling framework are
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probably simpler than the state-of-the-art. For instance, bias correction here is based on
non-linear regression which may not be as flexible as some copula methods.

DATA AND RELATED CHALLENGES
One of the main motivations behind this work is the study of temperature and its impacts
in the Middle East and North Africa (MENA) region, for instance in understanding the
association between maximum temperature and mortality in the region. We focus on two
countries in this region, namely Cyprus and Morocco, in order to assess its applicability to
different geographical regions and sizes.

In situ data
Daily measurements of maximum temperature (Tmax) at 2 m height were obtained from
the Global Surface Summary of the Day (GSOD) which is derived from The Integrated
Surface Hourly dataset (GSOD, 2022). There are 17 weather stations in Cyprus shown in
Fig. 1 and 40 stations in Morocco (Fig. S5). For brevity we mostly focus on the Cyprus data,
although we show some results relating to Morocco later on. Table 1 shows the temporal
span of the data for each station, the elevation in meters and the proportion of missing
values. Note that the stations are basically scattered around the coastline with little inland
coverage particularly in terms of elevation (the middle and midwest of Cyprus where we
have no data, have mountains reaching up to 2,000 m while the highest station in our data
set is 217 m).

Figure 2 shows the time series of Tmax for the 17 stations, where missing values are
clearly an issue both in terms of temporal span, but also in-between the sampling periods.
The same table is provided for Morocco in the supplementary material. If we look at
specific time snaps, for instance at station 16 between 1978 and 1982 shown in Fig. 3A, we
can see that spurious outliers are apparent. Such outliers also appear in the Morocco time
series (Fig. S6).

Reanalysis data
The data utilised here is the European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis v5 or ERA5-Land (Muñoz Sabater, 2021; Muñoz Sabater et al.,
2021). The ERA5-Land dataset has gridded hourly temperature at 2m height available
from 1st January 1950 to 31st December 2020 at a 0.1◦ latitude× 0.1◦ longitude resolution
(approximately 11×11 km). The reanalysis data set combinesmodel data with observations
from across the world and it is produced using 4D-Var data assimilation and model
forecasts in CY41R2 of the ECMWF Integrated Forecast System (IFS). The maximum of
the hourly temperature values in a given day was used as an estimate of the daily Tmax
from ERA5-Land.

The ERA5-Land grid configuration over Cyprus is given in Fig. 1 which shows the mean
daily Tmax in each grid cell over 1950–2020. Due to the coarseness of the grid, not all
stations correspond to an ERA5-Land cell (e.g., stations 11 and 12). To match each station
with an appropriate ERA5-Land grid cell, we associate a distance-weighted average of the
ERA5-Land Tmax for the 10 nearest-neighbour cells of each station. For the remainder
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Figure 1 Location of the 17 stations in Cyprus in black. The grid shows ERA-Land grid cells over
Cyprus illustrating mean daily Tmax over the period 1950–2020 in each grid cell.

Full-size DOI: 10.7717/peerj.14519/fig-1

Table 1 Cyprus the weather station information. The elevation is in meters and the fifth column is the proportion of missing values for each sta-
tion.

Station Station Elevation Temporal Proportion Proportion
Number Name span missing outliers

1 GUZELYURT 52.000 23/03/05–31/12/20 0.090 0.000
2 LEFKE 129.000 21/07/08–06/12/20 0.010 0.001
3 AKDENIZ 89.000 21/07/08–31/12/20 0.020 0.000
4 YESILIRMAK 20.000 01/07/09–31/12/20 0.030 0.000
5 GIRNE 10.000 23/03/05–31/12/20 0.050 0.000
6 LEFKOSA 131.000 04/07/05–31/12/20 0.040 0.001
7 ISKELE 39.000 21/07/08–31/12/20 0.020 0.003
8 GAZIMAGUSA 0.000 23/03/05–31/12/20 0.080 0.002
9 DIPKARPAZ 136.000 01/07/09–31/12/20 0.090 0.005
10 YENIERENKOY 123.000 21/07/08–31/12/20 0.030 0.001
11 PAFOS INTERNATIONAL 12.490 01/01/50–31/12/20 0.110 0.001
12 AKROTIRI 23.160 03/01/60–31/12/20 0.080 0.001
13 NICOSIA AIRFIELD 216.700 01/01/50–19/07/74 0.170 0.002
14 NICOSIA ATHALASSA 161.000 01/01/90–03/11/20 0.460 0.001
15 ERCAN 91.000 24/09/93–31/12/20 0.150 0.010
16 LARNACA 2.430 14/01/77–31/12/20 0.000 0.001
17 AYIOS NICOLAOS 37.000 15/12/54–29/09/77 0.220 0.002

of the article, including the exploratory analysis that follows, the ERA5-Land values that
are used are actually 10-cell weighted averages. This also alleviates the choice of a single
‘‘representative’’ grid cell for each station.
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Figure 2 Time series of daily Tmax for each station in Cyprus. The x-axis tick marks are in decades.
Full-size DOI: 10.7717/peerj.14519/fig-2

Figure 4A shows scatterplots of Tmax from four selected Cyprus stations plotted against
the corresponding ERA5-Land Tmax. The plots were selected as a summary of the overall
picture: a strong and approximately linear relationship. However, the slope of the apparent
linear relationship varies, while some stations like 2 (Lefke) and 11 (Pafos) also exhibit
non-linearity. Exploratory analysis (not shown) indicates that such non-linearities do not
appear to be systematic e.g., they are not a function of coordinates or elevation or proximity
to the coast. On the other hand, approximating the relationship with a linear (regression)
fit indicates that stations in close proximity to each other exhibit a similar structure, as
shown in Fig. S1 of the online supplementary material (e.g., stations 1–4 and also 6, 13–15).
A qualitatively similar picture is also seen across the Morocco stations.

MODELLING FRAMEWORK
First, let ysj ,t denote Tmax measured by a weather station j = 1,...,J on day t and spatial
location sj (defined by the spatial coordinates of station j). Also let xsj ,t denote the
corresponding ERA5-Land weighted average of Tmax. To allow for erroneous outliers
we formulate a discrete mixture distribution which we define conditionally on a latent
Bernoulli variable zj,t so that:

ysj ,t |zj,t = 1∼N (µsj ,t ,σ
2
j ) (1)

ysj ,t |zj,t = 0∼Unif (Umin,Umax) (2)

zj,t ∼Bern(πj) (3)
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Figure 3 (A–B) Station 16 (Larnaca) timeseries for the period 1978–1982 andmodel predictions in
blue. A suspicious outlier seems present towards the end of 1980 and another one at the start of 1981.

Full-size DOI: 10.7717/peerj.14519/fig-3

so that (1−πj) is the proportion of outliers in station j, and t = 1,...,nj where nj is the
number of data points in station j. Conditional on zj,t , temperature is thus described by a
Normal distribution in away that each station is allowed its own variance σ 2

j (an assumption
supported by Fig. 2 where temperature variability is different across stations). The outliers
are conditionally modelled by a Uniform distribution since we have no knowledge of the
outlier-generating mechanism, and here we set Umin =−80◦C and Umax = 80◦C as the
boundaries. These values exceed ones that are physically plausible and also ones in both the
Cyprus and Morocco data. The idea is that if any given data point ysj ,t is too extreme with
respect to Eq. (1), then it is captured by Eq. (2), both of which in turn inform estimation
of Eq. (3). In trial runs we found little sensitivity (in outlier-detection) to the choice of the
bounds, as long as these are large enough with respect to the range space of the data.
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Figure 4 (A) Observed Tmax at four weather stations vs Tmax from ERA5-Land. Black lines depict the
45◦ line and grey lines relate to a LOESS fit. (B) Model estimates of the linear term f (sj)+ g (sj)xsj ,t in
blue and the linear plus non-linear termµsj ,t in red.

Full-size DOI: 10.7717/peerj.14519/fig-4

The mean µsj ,t is then modelled as a function of xsj ,t viz:

µsj ,t =α0+ f (sj)+g (sj)xsj ,t +hj(xsj ,t ) (4)

where f (·),g (·) and h(·) are smooth functions. The first three terms describe a spatially
varying linear relationship, where both intercept α0+ f (s) and slope g (s) vary smoothly
as functions of the coordinates. This is designed in order to reflect the findings of the
exploratory analyses, i.e., the apparent linear relationship with ERA5-Land being similar
in neighbouring locations. The last term hj is a station-specific function of the covariate
xsj ,t and its purpose is to capture non-linearity in the relationship. It is not a function of
space, rather it can be thought as a ‘random effect’ term aimed at capturing station-specific
behaviour.

The particular formulation of µsj ,t is based on the requirement for spatial interpolation
and extrapolation (downscaling). Given the spatial sparsity of weather stations compared to
the domain size, it is more robust to spatially downscale the linear part of the relationship.
The non-linear part is constructed in way that it can be integrated out when predicting at
unseen locations as shown later in ‘‘Results’’. The following subsection describes how the
smooth functions are constructed and then the rest of the model components are defined.
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Bayesian penalised splines
A smooth function of some covariate xi say, can be constructed using regression splines
via a linear combination of basis function (Wood, 2017) e.g.,

f (xi)=
K∑
k=1

βkbk(xi)=Xiβ (5)

where β={βk} are unknown coefficients (k= 1 conventionally aliased to an intercept) and
bk(·) are basis functions. Matrix Xi={bk(xi)} with dimension n×K (n being the number
of data points) is the model matrix. The value of K (conventionally the number of knots)
determines the flexibility of f (·). Regression models involving such smooth functions can
be estimated using penalised likelihood, where the penalty is in restricting the amount of
flexibility in f (·) in order to avoid overfitting (Wood, 2011). Specifically, the log-likelihood
to be maximised can be written as

`(β,θ;y)−λββ′Sββ (6)

where `(·) is the log-likelihood, θ are othermodel parameters and λβ is a penalty parameter.
Moreover, Sβ is a penalty matrix that relates to a quadratic penalty on β, and is basically a
function of the particular basis functions chosen, as well as any constraints on the function.
For instance, f (s) in equation Eq. (4) is centered on zero to identify the overall mean
intercept α0. The second term in Eq. (6) penalises the flexibility (wiggliness) of f (·) so the
penalty increases with λβ .

From a Bayesian perspective, the smoothness of f (·) can be viewed as a constraint on
the values of β, which one can express in the form of an appropriate prior distribution
(Wood, 2016;Wood, 2017). Specifically,

β∼N
(
0,�−1β = S−1β /λβ

)
. (7)

This prior is improper since the precisionmatrix�β = λβSβ is usually rank deficient (Wood,
2016). Instead, we can use the precision matrix �β = λ

(0)
β S(0)β +λβSβ where S(0)β relates

to the penalty of the null space of f (·) and λ(0)β is the corresponding penalty parameter.
This can be interpreted as separating the penalty matrix into penalised components Sβ
(e.g., wiggly behaviour) and unpenalised components S(0)β (e.g., intercept and linear terms)
(Pedersen et al., 2019; Wood, Scheipl & Faraway, 2013). This decomposition is exploited in
defining function hj(x) in Eq. (4), by not including the null space components. This way,
the sum g (s)x+hj(x) in Eq. (4) is a non-linear smooth function of x , decomposed into a
linear part plus a non-linear ‘‘deviation’’. Such penalty matrices and corresponding model
matrices are readily provided by the R function jagam (Wood, 2016) from the R package
mgcv.

Specification of the mean
Returning to the smooth functions f (·),g (·) and h(·) in Eq. (4), we choose thin-plate
splines (Wood, 2017) as the basis functions for all of them. This particular basis can be used
to define smooth functions of more that one variable whilst keeping the number of knots
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small. The slope term (dropping the station subscript j for clarity) is defined as:

g (s)= g (lons,lats)=X (g )β (8)

β= (β1,...,βNβ )∼N (0,�−1β ) (9)

�β =

2∑
i=1

λ
(i)
β S(i)β . (10)

where X (g ) is the associated model matrix corresponding to the thin-plate splines of the
coordinates. There are two penalty parameters, one for the null space and one for the wiggly
part of g (·). We set Nβ = J−1, i.e., the total number of stations minus one (the maximum
allowed givenwe only have J spatial locations), in order to a-priori givemaximum flexibility
should it be required.

The intercept term is defined in exactly the same way, except that we incorporate the
overall mean α0 in the vector of coefficients:

α= (α0,α1,...,αNα) (11)

f (s)= f (lons,lats)=X (f )α[−1] (12)

α[−1]∼N (0,�−1α ) (13)

�α =

2∑
i=1

λ(i)α S(i)α (14)

α0∼N (µα0,σ 2
α0
), (15)

where the [−1] superscript denotes a vector without its first element and Nα = J −1 as
before. We set µα0 = 0 and σ 2

α = 25 to express a no prior beliefs about the value of the
intercept but to also not allow it physically implausible values. (Recall that α0 is the overall
intercept when the value of ERA5-Land is zero, so it is reasonable to set the prior mean to
zero given Fig. 4.) Note also that the full prior for α is

α∼N

µα0 =
(
µα0
0

)
,�−1αf =

(
1/σ 2

α0
0

0 �α

)−1. (16)

Finally, the non-linear effect of the ERA5-Land covariate is defined as

hj(x)=X (h)
j γ j (17)
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γ j = (γ1,j,...,γNγ ,j)∼N (0,�−1γ ) (18)

�γ = λγ Sγ . (19)

whereX (h)
j is themodel matrix of ERA5-Land values corresponding to station j andNγ = 8,

since exploratory analysis indicates that the non-linearity is not severe. There is only one
penalty parameter as the function does not incorporate a linear term. Note also that while
each station j has its own function hj(x), they share a common penalty parameter λγ in
order to pool information across the stations in this respect. Interpreting the function
hj(x) as a ‘‘random effect’’, is also desirable in terms of being able to integrate it out when
predicting at unseen locations.

Outlier mechanism
The outliers are modelled by a Uniform distribution, where station-specific parameter πj
determines the proportion of non-outliers. We model πj hierarchically to further pool
information across stations in this respect. Specifically,

πj ∼Beta(απ ,βπ ), (20)

where we chose απ = 5 and βπ = 2 so that the mean and standard deviation of πj are 0.71
and 0.16. This way, more weight is given to values closer to 1, on the belief that most of the
data points are not outliers.

Conditional variance
Each station is given its own conditional variance, to allow for station-specific variability
about the mean (see Fig. 2). This is also done hierarchically:

σ 2
j ∼ InvGamma(ασ ,βσ ). (21)

so that again information is pooled across stations and one can integrate this parameter out
when predicting in unseen locations. This prior is chosen to enable conditional conjugacy
of σ 2

j with the Gaussian likelihood. The hyperparameter ασ is fixed to the value of 2, so
that βσ controls both the mean and variance of this distribution. Hyperparameter βσ is
given an Exp(0.1) prior with mean 10 and variance 100, to obtain a reasonably flat prior.
Given ασ and σ 2

j , βσ is conjugate Gamma.

Penalty parameters
Lastly, for all penalty parameters λ(i)α , λ(i)β and λγ the half-Cauchy distribution (Gelman
et al., 2013) with scale parameter 20 was chosen. Since larger values of λ imply more
penalisation and therefore more smoothing, this heavy tailed prior was chosen to allow
a wide range of values and therefore a wide range of wiggly behaviour of the smooth
functions.
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MODEL IMPLEMENTATION
The model is implemented using MCMC and in particular Gibbs sampling for all model
unknowns except for the penalty parameters. Some of the prior choices were made
specifically to enable conditional conjugacy to be exploited for computational efficiency.

Sampling the outliers
Let2 denote the list of all model unknowns and y denote the vector of all data points. The
full conditional for zj,t in Eq. (3) is

p(zj,t = 1|2,y)∝
πj
√
2πσj

exp
{
2σ−2j (ysj ,t −µsj ,t )

2
}

(22)

p(zj,t = 0|2,y)∝
1−πj

Umax−Umin
, (23)

where we can reconcile proportionality by dividing Eqs. (22) and (23) by their sum.

Sampling the outlier proportions
Conditional on samples of zj,t |2,y , the proportions πj are sampled from their full
conditional

πj |z,y,2∼Beta

(
απ+

∑
t

zj,t ,βπ+nj−
∑
t

zj,t

)
(24)

using the fact that the Beta distribution is the conjugate prior of the Bernoulli proportion
parameter (Fink, 1997).

Sampling the conditional variance
For the remainder of this section, we exploit conditional conjugacy when the likelihood is
Gaussian, and therefore all results are presented conditionally on zj,t = 1. Therefore, only
data points corresponding to zj,t = 1 contribute to the estimation of the non-outlier part
of the model i.e., (1). As such, when vector y and model matrices such as X (f ) are used,
they exclude indices or rows that correspond to zj,t = 0.

Given zj,t , the variances σ 2
j can be sampled from their full conditional (Fink, 1997):

σ 2
j |zj,y,2∼ InvGamma

(
ασ +nj/2,βσ +

∑
t

(
yj,t −µj,t

)2
/2

)
(25)

where nj and the sum exclude any data points flagged as outliers by zj,t |2,y .

Sampling the spline coefficients
For the coefficients, we use the following result. If θ∼N (Q−1b,Q−1) then θ∼NC(b,Q) is
the canonical parameterisation of themultivariate Normal. Now suppose that θ∼NC(b,Q)
(i.e., the prior) and also that y|θ∼N (θ,P−1) (i.e., the conditional likelihood). Then,

θ|y ∼NC(b+Py,Q+P). (26)

gives the full conditional for θ (Lemma 2.2 from Rue & Held (2005)).
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We begin with the coefficients α of the intercept term. Let W |z = y−X (g )β−X (h)γ

where γ = (γ1,...,γ J ) and X (h)
= (X (h)

1 ,...,X (h)
J ). Since ysj ,t |zj,t = 1 is Gaussian,

W |z,2∼N
(
X (f )α,6

)
(27)

where 6 = diag(σ 2
1 ,...,σ

2
J ) is a diagonal matrix such that each σ 2

j is repeated nj times.

Pre-multiplying Eq. (27) by (X ′(f )X (f ))−1X ′(f ) gives

(X ′(f )X (f ))−1X ′(f )W |α∼N
(
α,6(X ′(f )X (f ))−1

)
. (28)

The prior on α is also Normal (see Eq. (16)) so using equation (26) its full conditional is

α|W ,z,2∼NC

(
�αf µα0+X

′(f )6−1W ,X ′(f )6−1X (f )
+�αf

)
. (29)

In the sameway, we can sample the slope term coefficientsβ. LetA|z = y−X (f )α−X (h)γ .
Then,

A|z,2∼N
(
X (g )β,6

)
(30)

H⇒ (X ′(g )X (g ))−1X ′(g )A|β∼N
(
β,6(X ′(g )X (g ))−1

)
. (31)

so that the full conditional is

β|A,z,2∼NC

(
X ′(g )6−1A,X ′(g )6−1X (g )

+�β

)
. (32)

Finally, the station specific coefficients γ j are sampled similarly for each station j. Let

Bj |zj = yj−X
(f )
j α−X (g )

j β, where yj are the response values in station j and X (f )
j and X (g )

j
are the row-subsets corresponding to station j of X (f ) and X (g ) respectively. As before,

Bj |zj,2∼N
(
X (h)
j γ j,6j

)
(33)

where 6j = diag(σ 2
j ). Mirroring Eq. (29), equations Eqs. (26) and (18) give:

γ j |Bj,zj,2∼NC

((
1/σ 2

j

)
X ′(h)j Bj,

(
1/σ 2

j

)
X ′(h)j X (h)

j +�γ

)
. (34)

Sampling the hyperparameters
The hyperparameter βσ of the conditional variance σ 2

j is sampled from its full conditional:

βσ |σ
2,ασ ∼Gamma

c+ Jασ ,d+
J∑

j=1

1/σ 2
j

 (35)

where recall that J is the number of stations. All penalty parameters(λ(i)α , λ(i)β and λγ ) are
sampled using random walk Metropolis–Hastings (Gelman et al., 2013), with acceptance
rate tuned to be in the region [0.2,0.5].
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RESULTS
All code was written in R (R Core Team, 2022) to sample from the full conditional
distributions derived in the previous section. The Cyprus data consists of 135,471 data
points, so in total 135,681 unknowns were sampled (of course 135,471 of those are the zj,t
in equations Eqs. (22)–(23). The code takes less than 2 hours to sample 50 K samples on
an Intel i9-11900F processor.

All presented results are based on running three chains for 100 K iterations after a 50 K
burn-in. After thinning (to reduce autocorrelation), six K samples were obtained for each
model unknown. Convergence was assessed by looking at trace plots (e.g., of the deviance
shown in Fig. S2 of the online supplementary material), and by computing the multivariate
potential scale reduction factor (Gelman et al., 2013), which was 1.07 indicating acceptable
convergence.

Outliers
The first step of the analysis is to identify erroneous outliers using themodel. It is important
to do this before checking the model, since here the outliers are modelled by a Uniform
distribution. This reflects the fact that there is no knowledge about the outlier-generating
mechanism, but it also means that prediction of individual outliers will be poor (beyond
their inclusion within a prediction interval). To identify outliers, we use the posterior
distribution p(zj,t |y). MCMC samples of zj,t |y are used to compute the probability of a
non-outlier i.e., p(zj,t = 1|y), and here any data point yj,t for which p(zj,t = 1|y)< 0.5 is
identified as an outlier. More strict choices than 0.5 are possible of course, such as only
considering points as outliers if 1−p(zj,t = 1|y)> 0.9.

Figure 3B shows the outliers identified for the station 16 in red, illustrating that at least
intuitively the model is identifying the correct points as outliers. (A similar plot is given
in Fig. S6 for a station in Morocco.) The last column in Table 1 shows the posterior mean
of (1−πj) i.e., an estimate of the proportion of outliers in each station. The proportion of
outliers is overall quite small (and similar to Morocco, see Table S1) but it varies across
stations.

A basic sensitivity analysis was conducted to assess the ability of the model to capture
outliers. Specifically, 500 randomly chosen data points were artificially set as outliers (but
not ones that were identified as such by the model). These outliers were produced by
adding/subtracting (with probability 0.5) a random sample from a Unif (M −5,M +5)
distribution, where M =max(|ysj ,t −mean(ysj ,t )|). Here, M = 25 ◦C. This choice ensured
that the fictitious outliers are not too ‘‘obvious‘‘, but rather close to what may be considered
an extreme. In 10 trial runs, all 500 of these were correctly identified each time, providing
confidence to the outlier-identification mechanism.

Model checking
To assess the performance of the model, we used posterior predictive model checking
(Gelman et al., 2013). This involves obtaining samples from the posterior predictive
distribution (PPD) p(ỹsj ,t |y,z) of the response value ỹsj ,t at any station j and day t .
Conditioning on z implies that the predictions are only for data points not identified
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Figure 5 (A) Predicted vs observed Tmax values for station 11 (Pafos). (B) Ranked Tmax values for the
same station.

Full-size DOI: 10.7717/peerj.14519/fig-5

as outliers. The mean of samples from the PPD was used as the point estimate in Fig.
3, whereas the sample 2.5% and 97.5% quantiles were used to construct the associated
prediction intervals.

We check the model both in terms of predicting the individual Tmax values, but also in
terms of the overall distribution. Predictions were first compared with observations (for
any non-outliers), and Fig. 5A shows this for a specific station, indicating a good fit with the
exception of some under-estimation of the upper extremes. To assess whether the overall
distribution is captured appropriately, we compare order statistics. Observations are sorted
from smallest to largest, and compared with the corresponding ranked predictions in a plot
that can be interpreted as a Q-Q plot. Figure 5B shows this for the same selected station,
indicating an overall good fit albeit with some slight under-estimation of the extreme
lower tail. The station in Fig. 5 was specifically chosen as the one with the least optimal
model fit, while corresponding plots for the remainder of the stations are given in Figs.
S3 and S4 respectively. On the whole the model fits quite well, although for some stations
the predictions slightly underestimate the very high extremes. The overall distribution
is captured well across stations, with no systematic discrepancies. A qualitatively similar
picture is apparent for the Morocco stations (Figs. S7 and S8), for both the individual
predictions but also the overall distribution.

Since we use the model for extrapolation to unobserved locations, it is also important to
check the out-of-sample performance. For this reason we perform K-fold cross validation,
where each station is left out in turn and then its values predicted. Figure 6 shows the
associated predictions against observations for all 17 stations. Model performance is very
good for all stations, even stations 11 and 12 that are isolated compared to the rest. As a
summary, we define the posterior mean of the PPD for each data point as a point estimate,
and in Table 2 we compare (a) the overall mean, (b) the 5% and (c) the 95% quantile of
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Figure 6 Predicted vs observed Tmax values for the leave-one-station-out experiment.
Full-size DOI: 10.7717/peerj.14519/fig-6

daily Tmax for each station, against the corresponding point estimates. The table indicates
high accuracy in the predictions, with deviations generally smaller than 2 ◦C for the mean
and lower quantile. However, deviations increase for the upper quantile, reflecting the
in-sample results where high extremes are slightly underestimated.

Relationship with the reanalysis data
Figure 4B shows the estimates (posterior mean) of both the mean relationship Eq. (4)
and also just the linear part f (sj)+ g (sj)xsj ,t for the four chosen stations. The non-linear
behaviour qualitatively matches the exploratory analysis in Fig. 4A. The model can also be
used to impute missing values over the period 1950–2020 and Fig. 7 shows Tmax values for
a particular station in the period 1955–1975. This station is missing values in 1960–1963
and also 1969–1973 so the model was used to impute these, along with quantifying the
associated uncertainty.

Spatial extrapolation and aggregation
One of the aims of the framework is to allow for spatial extrapolation and aggregation
to various spatial configurations (e.g., grids). To predict from the model at an unknown
location, we must first integrate out the station-specific terms in the non-outliers part of
the mode i.e., equation Eq. (1). These are: the non-linear part of the mean hj(x) and the
conditional variance σ 2

j . Mathematically, we simulate from the PPD of the response at
location s:

p(ỹs,t |y)=
∫
σ 2
j ,γ j ,φ

p(ỹs,t |σ 2
j ,γ j,φ)p(σ

2
j |βσ )p(γ j |λγ )p(φ|y)dσ

2
j dγ jdφ (36)
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Table 2 Comparison of leave-one-out performance of the mean, 5% and 95% quantile in each station. ‘‘Pred’’ relates to model estimates while
‘‘Obs’’ refers to the corresponding statistics of the observations. ‘‘Diff’’ is the difference between Obs and Pred.

Station number Mean 2.5% quantile 97.5% quantile

Obs Pred Diff Obs Pred Diff Obs Pred Diff

1 25.50 23.30 2.20 13.30 12.20 1.10 38.00 34.00 4.00
2 23.40 23.50 −0.10 13.60 12.40 1.20 33.20 34.40 −1.20
3 24.80 23.90 0.90 13.40 12.40 1.00 37.50 35.00 2.50
4 23.40 21.80 1.60 12.80 11.50 1.30 33.60 31.90 1.70
5 24.70 26.80 −2.10 14.00 13.80 0.20 34.80 39.60 −4.80
6 27.20 24.80 2.40 12.90 13.00 −0.10 40.10 36.50 3.60
7 25.30 23.90 1.40 13.20 12.60 0.60 36.20 34.90 1.30
8 25.10 24.80 0.30 14.10 12.90 1.20 35.20 36.50 −1.30
9 23.20 21.90 1.30 11.70 11.90 −0.20 33.70 31.70 2.00
10 24.60 23.20 1.40 12.80 12.30 0.50 36.00 34.00 2.00
11 23.80 23.00 0.80 14.40 11.70 2.70 32.20 34.10 −1.90
12 24.00 24.10 −0.10 14.00 12.90 1.10 33.90 35.00 −1.10
13 25.00 26.10 −1.10 11.10 13.50 −2.40 37.80 38.40 −0.60
14 25.50 26.30 −0.80 11.20 13.70 −2.50 38.80 38.60 0.20
15 26.70 25.20 1.50 13.00 13.20 −0.20 39.60 37.00 2.60
16 25.10 26.60 −1.50 14.00 13.70 0.30 35.20 39.10 −3.90
17 25.40 24.20 1.20 13.00 12.70 0.30 36.10 35.40 0.70

Figure 7 Tmax time series (black) for station 11 (Pafos), with corresponding model predictions (blue).
Full-size DOI: 10.7717/peerj.14519/fig-7
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Figure 8 (A) ERA-Land Tmax values for the 11th of April 2013. (B) Model predictions for the same day
at 0.01◦ ×0.01◦ resolution. (C) Approximation of the integral of the predictions in (B) on the six dis-
tricts of Cyprus.

Full-size DOI: 10.7717/peerj.14519/fig-8

where φ denotes all parameters other than σ 2
j and γ j . Since hj(x) is a function of γ j , to

integrate it out we need to simulate new γ j ’s from Eq. (18), where we use the R function
jagam to set up the associated penalty matrix Sγ . Similarly we simulate ‘‘new’’ variances
σ 2
j for each unseen location using Eq. (25).
We illustrate this by predicting from the model at a grid of 0.01◦ ×0.01◦ (approximately

1 km×1 km) resolution. Figure 8B shows the posterior predictive mean of the predictions
for a particular day. Comparison with Fig. 8A, which shows the original ERA5-Land values
for the same day, illustrates how the model can be used to downscale the reanalysis data,
noting that the predictions from the model are also bias corrected (in a linear way). The
non-linearity and station-specific variance have been integrated out and now are part of
the prediction uncertainty. This uncertainty is quantified as the PPD standard deviation,
shown in Fig. 9A. The contributing factors to the magnitude of this uncertainty are: station
sparsity (i.e., more uncertainty when predicting in areas far from weather stations), the
conditional variance σ 2

j , and the integration of the non-linear part of the relationship with
ERA5-Land. Figure 9B shows the standard deviation of themean temperature Tmax i.e., Eq.
(4), which mirrors Fig. 9A indicating that the uncertainty due to the conditional variance
is relatively small and spatially uniform. To understand the effect of non-linearity on the
uncertainty, Fig. 9C shows the standard error of the mean, but without the non-linear term.
This is clearly higher in regions with little data and vice versa. However, this uncertainty is
small compared to when the non-linear terms is included, since the non-linear part adds
uncertainty in regions where where ERA5-Land values are more extreme e.g., the central
region with the highest temperature values (see Fig. 8B) that nonetheless contains four
stations. This indicates that the non-linear term hj(x) constitutes most of the prediction
uncertainty.

Since f (·), g (·) and hj(x) are functions of random coefficients (α, β and γ), we can
interpret the mean Eq. (4) and thus the predictions of the response as a random field.
We can then integrate this random field over spatial regions, such as the six districts that
make up the island of Cyprus (Fig. 8C). We can approximate this integral by simulating
predictions at a high resolution grid (such as 0.01◦×0.01◦) and then computing themean of
the simulations in each spatial unit. The higher the resolution, the better the approximation

Economou et al. (2023), PeerJ, DOI 10.7717/peerj.14519 19/26

https://peerj.com
https://doi.org/10.7717/peerj.14519/fig-8
http://dx.doi.org/10.7717/peerj.14519


Figure 9 (A) Standard deviation of the posterior predictive distribution for the 11th of April 2013. (B)
Standard deviation of the mean. (C) Standard deviation of the mean, excluding the non-linear term.

Full-size DOI: 10.7717/peerj.14519/fig-9

Figure 10 (A) Model predictions for the 26thMarch 2005 at 0.01◦ ×0.01◦ resolution for Morocco. (B)
Approximation of the integral of the predictions in (A), on a 0.44◦ ×0.44◦ resolution over Morocco. (C)
Regional climate model (WRF) output of Tmax for the same day.

Full-size DOI: 10.7717/peerj.14519/fig-10

although for Cyprus we found virtually no difference in the results for resolutions higher
than 0.01◦ ×0.01◦. Figure 8C shows this approximation for the specific day, illustrating the
ability of the model to predict at any spatial configuration. This also includes the ability
to ‘‘upscale’’ the reanalysis to coarser resolutions for evaluating climate models. Figure 10
shows this for Morocco, where model predictions on a 0.01◦ ×0.01◦ grid are upscaled to
0.44◦ ×0.44◦ grid, the same grid corresponding to the output of a regional climate model
(RCM) simulation. The RCM used to perform this simulation is the Weather Research and
Forecasting (WRF) model (Skamarock & Klemp, 2008) driven by ERA-Interim reanalysis
with a horizontal resolution of 0.44◦ (≈ 50 km) and 30 vertical levels, which was also used
and evaluated in (Constantinidou et al., 2020). The model output is shown in Fig. 10C.

SUMMARY AND DISCUSSION
We presented a probabilistic modelling framework to address certain requirements and
challenges related to the use of temperature data from weather stations. The approach
integrates climate model reanalysis data with in situ observations in a regression setting that
allows for non-linearity in the relationship between the two. A discretemixture formulation
is used to identify non-physical outliers in the temperature observations so that associated
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estimates can be used to ‘‘clean’’ the original data. It was demonstrated that the model can
be used to impute missing values and to also produce predictions at any spatial location.
The hierarchical nature of the framework allows for integration of station-specific effects
in the predictions and this was used to produce a high resolution temperature map over
Cyprus but also to integrate temperature measurements in contiguous spatial units.

The modelling framework was demonstratively flexible with very good in-sample
and out-of-sample performance. The model could potentially be further improved, for
instance to better capture particular aspects of the data such as extremes. One way might be
to increase the number of components in the discrete mixture, and have one for extremes
and one for non-extremes. Care needs to be taken however when the goal is to extrapolate.
Complex modelling structures are more difficult to extrapolate to unseen locations in
the covariate space, and is generally harder to constrain counter-intuitive behaviour. For
instance, initial attempts here included the spatial extrapolation of both the linear and
non-linear parts of the model and as a result predictions were in some cases nonsensical.
Imposing the constraint that only the linear part is extrapolated avoided this issue. Note also
how the uncertainty diagnosis in the results section indicated that most of the predictive
uncertainty came from the non-linear part of the model, implying that model complexity
translates to predictive out-of-sample uncertainty.

The change-of-support problem (i.e., integrating point location data with gridded data)
was dealt with by constructing a 10-neighbour weighted average of ERA5-Land for each
station. The choice is subjective, and some sensitivity analysis is required for this choice.We
found that for both Morocco and Cyprus, increasing the number of neighbours improves
predictions and provides more smooth looking spatial structure when downscaling.
However the improvement quickly plateaus and we found 10 to be an optimal choice.
Ideally however, this choice can be dealt with in the model and future research is aimed at
achieving this.

For a given station, the model uses both the information at stations and the reanalysis
data to identify outliers and so can be used as an approach with which one can homogenise
temperature records as well as impute missing values. By definition, it is impossible to
really assess the ability of the model to identify the erroneous outliers, since these are truly
unknown. Here we used intuition and physical understanding to judge this aspect of the
model, in addition to a basic simulation experiment.

The ability to produce temperature estimates at any spatial resolution as a function of
climate model output is an important aspect of the model. This opens up the possibility
of addressing climate change by utilising historical data and model projections of future
scenarios. This was not done as part of this article, whichmainly concentrated at illustrating
the framework, which in summary enables outlier detection, bias correction, downscaling
and interpolation of temperature data. The unique ability of the approach to perform
all these steps simultaneously in conjunction with quantifying uncertainty in a Bayesian
manner, offers robust predictions that can be thoroughly evaluated. Future plans also
include extension to ‘‘non-Gaussian’’ data such as precipitation and wind speed. Although
this may take away much of the desired conditional conjugacy, it may be promising to
consider Gaussian mixtures to preserve this while gaining non-symmetry.
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