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ABSTRACT
Dynamic modelling has considerably improved our understanding of complex
molecular mechanisms. Ordinary differential equations (ODEs) are the most detailed
and popular approach to modelling the dynamics of molecular systems. However,
their application in signalling networks, characterised by multi-state molecular
complexes, can be prohibitive. Contemporary modelling methods, such as rule-
based (RB) modelling, have addressed these issues. The advantages of RB modelling
over ODEs have been presented and discussed in numerous reviews. In this study, we
conduct a direct comparison of the time courses of a molecular system founded on
the same reaction network but encoded in the two frameworks. To make such a
comparison, a set of reactions that underlie an ODE model was manually encoded in
the Kappa language, one of the RB implementations. A comparison of the models
was performed at the level of model specification and dynamics, acquired through
model simulations. In line with previous reports, we confirm that the Kappa model
recapitulates the general dynamics of its ODE counterpart with minor differences.
These occur when molecules have multiple sites binding the same interactor.
Furthermore, activation of these molecules in the RB model is slower than in the
ODE one. As reported for other molecular systems, we find that, also for the DARPP-
32 reaction network, the RB representation offers a more expressive and flexible
syntax that facilitates access to fine details of the model, easing model reuse.
In parallel with these analyses, we report a refactored model of the DARPP-32
interaction network that can serve as a canvas for the development of more complex
dynamic models to study this important molecular system.
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INTRODUCTION
Computational dynamic modelling probe mechanistic and quantitative aspects of
molecular interactions, which can grant the development of mechanism-based therapies
with more predictive power on outcomes of therapeutic interventions (Xie et al., 2014).
Such interventions often target molecular signalling (Li & Mansmann, 2014; Jia, Piña-
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Crespo & Li, 2019; Volkow & Boyle, 2018), characterised as a complex system of coupled
interacting components, often proteins, forming networks that activity leads to
non-additive effects (Kitano, 2002). Defining molecular reactions as a set of coupled ODEs
has traditionally enabled dynamic modelling of molecular pathways (Sible & Tyson, 2007).
ODE-based modelling is a powerful and acclaimed formalism with a long tradition. It has
established standards, and various software tools that support and facilitate the
formulation and analysis of ODE models (Dräger et al., 2008; Hoops et al., 2006; Sible &
Tyson, 2007). However, the explicit enumeration of molecular species as variables required
by the equation-based formulation excludes the representation of molecules that assemble
into multivalent protein complexes; typically these have multiple functionally divergent
states, a common characteristic of molecules involved in cell signalling (Hlavacek et al.,
2003). Computational modelling methods effectively addressed these challenges of
expressivity, increasing complexity of the modelled systems. An example of such a method
is RB modelling, designed to model interacting proteins. Compared to the ODE-based
paradigm, which represents the molecular system as concentrations of molecular species
and focuses on their reaction kinetics, RB modelling is an agent-centred method in which
the distribution of molecular compositions can be studied along with their abundance
(Faeder et al., 2003; Blinov et al., 2004; Danos & Laneve, 2004).

Previous comparisons
The potential of the RB paradigm has been extensively discussed (Danos, 2007; Chylek
et al., 2013, 2014, 2015), exemplified (Danos, 2007) and used to answer novel biological
questions across signalling, regulatory and metabolic networks (Wilson-Kanamori et al.,
2015; Antunes, Roque & Simoes-de Souza, 2016; Di Camillo et al., 2016; Santibáñez,
Garrido & Martin, 2020; Chattaraj, Blinov & Loew, 2021; Nosbisch, Bear & Haugh, 2022,
see reviews for earlier models published before 2006—Hlavacek et al., 2006; and from 2007
to 2013—Chylek et al., 2014). These models are often based on chemical reaction networks
previously developed for ODEs. Though the RB paradigm was implemented to match the
concept of chemical reactions, rules are generators of reaction networks that may lead to
diverging results. As the modelling paradigm can affect the underlying model specification,
it would be informative to compare simulations of RB and ODE models defined by the
same reaction network, originally built to be solved with ODEs. RB and ODE models have
been compared on various aspects before. For instance, Blinov et al. (2006) compared
network-like model of epidermal growth factor receptor (EGFR) based on reactions first
defined in the ODE model of Kholodenko et al. (1999), with simplified pathway-like
structure. However, several assumptions underlying the original model were purposefully
modified what changed the underlying interaction network, such as the dissociation of
EGFR dimers when phosphorylated or bound to other molecules. In addition to
contrasting rules to reactions, another intensively studied aspect, finalised with positive
conclusions, was whether stochastic simulation can reveal new properties of a system
previously modelled as deterministic one (Vlysidis & Kaznessis, 2018; Hahl & Kremling,
2016; Bustos et al., 2018). As simplistic as it may sound, none of the comparisons
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mentioned were intended to painstakingly disassemble reaction using the rules of a
relatively medium-sized model and compare simulation results.

Objectives
This study compares the existing ODE model with the new RB model, where both are
based on the same definition of chemical reactions. We specifically ask: (1) how closely can
the dynamics of an ODE-based model be replicated with an RB one? (2) If differences
between the two are observed, what is the underlying cause? (3) If the dynamics are indeed
replicated, what advantages are there to using an RB model? We present the results of the
models’ comparison at the level of notation and model dynamics generated under different
conditions. The advantages and disadvantages of the two model representations are
discussed, alongside suggestions for future research. We hope that this small-scale attempt
may nevertheless bring value to the modelling community to better choose between the
two different approaches.

BACKGROUND
Dynamic computational modelling frameworks consist of model specification and
simulation methods. The model specification is a set of equations or instructions written in
a machine-interpretable language that define relationships between variables. Models are
run as numerical simulations using algorithms that calculate changes in the variables based
on the model’s formulation. By adopting a suitable level of abstraction and with the use of a
sufficiently expressive language, systems can be modelled such that experimentally-derived
evidence can be incorporated to improve the model’s quality. A formal approach to the
generation of models is desirable to (i) encode facts in an unambiguous and explicit
manner, (ii) facilitate the understanding of models, (iii) allow easy modification of models
to accommodate more than one hypothesis, (iv) aid interpretation of the underlying
biological phenomena, and (v) provide a standard approach to the integration of novel
data sources (Kitano, 2002). These features are especially important because model
generation often requires knowledge spanning multiple disciplines; the existence of formal
modelling frameworks enforces a common understanding of the explicit meaning of
model components.

In the first step of building a kinetic model, transitions from reactants into products are
defined as chemical reactions between molecules. Quantitative evaluation of model
behaviour over time has been commonly achieved by converting coupled chemical
reactions to a set of ODEs that are solved with numerical procedures (Wilkinson, 2006).
Each rate equation expresses the change of concentration of a single molecular species over
time, formulated with reaction rates that directly take part in the creation and elimination
of this species (Sible & Tyson, 2007; Klipp et al., 2005; Hlavacek et al., 2006). Each reaction
rate is weighted by a reaction-specific rate constant. Time courses obtained by solving ODE
models are continuous and deterministic, characterised by smooth and gradual change of
species concentrations over time (Wilkinson, 2009). Although this setup does not reflect
the actual characteristics of subcellular events driven by random collisions between
discrete molecules (Gillespie, 1976), this approach is correct as long as abundances of
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reactants are large enough to render random fluctuations as negligible (Chen et al., 2010).
If this condition is violated, the current development of machine coding formats for
biological models (e.g., SBML) allows deterministic solvers and stochastic simulators to be
applied to the same model specification (Gillespie, 1977;Hoops et al., 2006). A more critical
shortcoming of ODE-based models lies in the requirement for explicit enumeration of all
molecular species in signalling networks (Hlavacek et al., 2003; Danos, 2007). This
drawback precludes mechanistic modelling of systems with multi-state promiscuous
molecules that can adopt combinatorially complex states (Seshacharyulu et al., 2012; Chen
et al., 2016; Mayer, Blinov & Loew, 2009; Suderman & Deeds, 2013), where only a small
fraction can be represented with ODEs (Chylek et al., 2014). However, the development of
formal methods in computer science has expanded the number of observed properties of
biological systems that can be dynamically and quantitatively modelled (Bartocci & Lió,
2016) (reviewed inMachado et al., 2011; Tenazinha & Vinga, 2011; Bartocci & Lió, 2016; Ji
et al., 2017; Le Novère, 2015). As this study examines an alternative to ODEs, the focus lies
on non-spatial single-scale mechanistic methods. Of those that fit this characterisation
(Baeten, 2005; Ciocchetta & Hillston, 2008; Regev, Silverman & Shapiro, 2001; Guerriero,
Priami & Romanel, 2007; Dematté et al., 2010) we chose rule-based modelling (RBM) as a
suitable framework for representing systems with multistate combinatorial interactions.
Among two major RBM implementations (Stefan et al., 2014), the very first being
BioNetGen (BNG) (Faeder, Blinov & Hlavacek, 2009; Faeder et al., 2003; Blinov et al.,
2004), the Kappa framework (Danos & Laneve, 2004) was chosen for this comparison.
Although there are some notational differences between the two frameworks, the reactions
are coded as rules in virtually the same way (Suderman &Hlavacek, 2017). An earlier study
by Suderman & Deeds (2013) also showed equality of simulation results between both
frameworks.

RBM is based on a formal concept of graph rewriting, where molecules are abstracted as
structured graph objects referred to as agents with sites that express internal and binding
states, together constituting interface of an agent (Feret et al., 2009). Reactions are defined
as graph transformations encoded as rules, that are instructions for local and conditioned
transformations. The reaction conditions are encoded in the agent interfaces. Depending
on the completeness of these conditions, a rule can represent either a set of reactions that
match the pattern expressed in a rule, or an exact reaction instance with complete
information about the agents’ states (Feret et al., 2009). Thus, a rule can express an infinite
number of reactions with a small and finite number of generalised rules (Chylek et al.,
2013). During the system simulation agents formmixture ofmolecular species that contain
a complete description of their states and site occupancy, captured by snapshots that
provide information on molecular species and their quantities at specified time-points.
The trajectories resulting from the model simulation are obtained by declaring variables,
called observables. If declared with an incomplete pattern, an observable is the sum of the
trajectories of the many molecular species that fit the pattern. The Kappa language also
allows to induce perturbations during the simulation, for example by updating rate
constants or adding molecules. The Kappa simulator, KaSim (Danos, 2007; Krivine, Danos
& Benecke, 2009), is based on Gillespie’s Stochastic Simulation Algorithm (SSA) (Gillespie,
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1976, 1977) that produces individual stochastic trajectories of molecules (Gillespie, 1977;
Wilkinson, 2009), and whose performance is independent of the size of the reaction
network (Yang & Hlavacek, 2011). This RB formulation gives a sufficiently expressive
system to capture the principal mechanisms of signalling processes (e.g., biding,
dissociation, synthesis, degradation, and state change; Liu & Thiagarajan, 2012), providing
site-specific details of molecular interactions (e.g., affinities, dynamics of post-translational
modifications, domain availability, competitive binding, causality) and the structure of
interaction networks.

METHODS
To directly compare models’ simulations, we selected an ODE model available in a
machine-readable format that can be numerically simulated in non-obsolete software, thus
satisfying the reproducibility criterion. A model of the immediate interactors of dopamine-
and cAMP-regulated neuronal phosphoprotein with molecular weight 32 kDa (DARPP-
32) network by Fernandez et al. (2006) satisfies this requirement. The model was also
considered as a solid core for the construction of larger and more complex models in the
community interested in the modelling of dopamine (DA)-dependent synaptic plasticity
(Manninen et al., 2011). Finally, it is a study widely cited not only by modellers (Nair et al.,
2016; Nakano et al., 2010;Mattioni & Le Novère, 2013) but also by experimentalists (Bales
et al., 2011; Kim et al., 2015; Buesa et al., 2016). It should be noted that the stochastic
simulation for this particular system should not show any significant differences from the
ODE model, as the number of particle copies is sufficiently large. The reactions underlying
the ODE model of Fernandez et al. (2006) (“model B”) were encoded into the Kappa
language, version 3.5 (Feret & Krivine, 2012). Then, models were simulated in different
variants to obtain time courses of equivalent observables to compare (Fig. 1). First,
however, we briefly introduce the DARPP-32 interaction network.

Figure 1 Approach to comparison of ODE and RB modelling frameworks.
Full-size DOI: 10.7717/peerj.14516/fig-1
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DARPP-32 and its interaction network
DARPP-32, Protein Phosphatase 1 Regulatory Inhibitor subunit 1B isoform 1 (PPP1R1B)
(NCBI Resource Coordinators, 2016) is an important multistate and intrinsically disordered
protein (Marsh et al., 2010) regulating DA-dependent synaptic plasticity in medium spiny
projection neurons (MSPN), the predominant striatal cell type, where signalling cascades
are activated simultaneously by glutamatergic and dopaminergic stimuli (Beninger &
Gerdjikov, 2005). The malfunction of DARPP-32 relates to a number of neurological
disorders, e.g., Alzheimer’s disease (Cho et al., 2015), addiction (Philibin et al., 2011),
affective disorders (Kunii et al., 2014), and schizophrenia (Kunii et al., 2014; Wang et al.,
2015). Glutamatergic and dopaminergic signals are integrated by DARPP-32 which is
involved in a complex network of interactions regulated by its multiple phosphorylation
sites, of which four are known to have an impact on DARPP-32 itself (Yger & Girault,
2011): Threonine 34 (Thr34), Threonine 75 (Thr75), Serine 137 (Ser137), and Serine 102
(Ser102). The Threonine sites (Thr34, Thr75) have major regulatory roles in signal
processing. Whereas the Serine sites (Ser137, Ser102) reinforce Thr34 signal.

Fernandez et al. (2006) studied the integrative effect and sensitivities of DA- and
glutamate (Glu)-mediated signals on the DARPP-32 network (Fig. 2A). Their model
examined the particular effect of cyclic adenosine monophosphate (cAMP)-pulse followed
by Ca2þ spike trains showing that DARPP-32 is a robust integrator, far more complex than
a bistable switch between DA and Glu signals. The authors included two main pathways
that mediate these signals, cAMP–PKA–DARPP-32 phosphorylated at Threonine 34
(D34) and Ca2þ–PP2B–DARPP-32 phosphorylated at Threonine 75 (D75). Contrary to
the majority of previous models of the Glu and DA signal integration (Lindskog et al., 2006;
Gutierrez-Arenas, Eriksson & Kotaleski, 2014; Nair et al., 2016, 2014), DARPP-32 included
three phosphorylation sites: Thr34, Thr75 and Ser137. The authors performed two in silico
mutagenesis experiments modifying the role of Ser137. The first mutation inhibits site

Figure 2 Reaction diagrams showing (A) the DARPP-32 network included in the ODE model by
Fernandez et al. (2006) Nodes: DARPP-32 (cyan), second messengers (magenta), kinases/
phosphatases (white). Edges: inhibition reactions (blue), activation reactions (red); (B) the observables
with the greatest divergence between trajectories of the ODE and RB models. These observables are
connected in a chain of mutually dependent activation reactions triggered by the influx of calcium ions
(Ca2+). Full-size DOI: 10.7717/peerj.14516/fig-2
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phosphorylation by changing Serine to Alanine at the 137 position (Ser137Ala).
The second mutation leads to permanent phosphorylation of the Ser137 site (constSer137).

Model translation
As a single reaction can be written as a single rule, the translation could have been
accomplished in a one-to-one manner. However, to fully benefit from rule patterns,
multiple reactions can be condensed into fewer rules by removing irrelevant context, i.e.,
decontextualised. The context of a reaction in the RB model is defined as the information
about the agent’s binding sites, partners and internal states. Based on this definition of
reaction context, the following criteria guided decisions about condensing reactions into
rules. Given a set of reactions of the same type (forward, backward, or catalytic) between
the same reactants (agents), if the difference between reactions lies in agent states (internal
or binding) that do not change after the transition from reactants to products, and reaction
constants (rates) in all these reactions have the same values, then information about agent
states does not define reaction conditions; hence, it can be removed from the reaction
notation, i.e., a set of reactions become a rule pattern.

Among the least intuitive cases in encoding reactions into rules are complex substrate
activations of PKA and PP2B. PKA is activated by the binding of four cAMP molecules,
whereas PP2B activation requires four Ca2þ ions. In other words, multiple molecules of the
same type bind substrates on different sites that have to be uniquely named, which requires
explicit encoding of all possible binding combinations on four different sides (Danos,
Koeppl & Wilson-Kanamori, 2011), called hereafter as combinatorial binding. Translation
from deterministic to stochastic rate constants and molecular concentrations to
copy-numbers were performed in a standard way (Feret & Krivine, 2012; Sekar & Faeder,
2012). Lastly, the cAMP pulse and the Ca2þ spiking are reproduced by the addition of
molecular copy numbers and modification of rate constants during the simulation,
respectively.

Approach to comparison of models
The qualitative comparison of the results of two dynamic models required the simulation
of both models in a stochastic scheme and the alignment of the trajectory of the
corresponding observables under varying conditions to comprehensively compare the
frameworks (Fig. 1).

Selecting and pairing observables
The plots in the original publication show aggregated variables that are summed
trajectories of multiple molecular species. For instance, “D34” denotes DARPP-32
phosphorylated at Thr34, regardless of its state of binding or other phosphorylation sites.
The concept of aggregated variables corresponds to observables in RB modelling, and
therefore, we use the term observable hereafter to denote aggregated variables. Observables
of the ODE model were aggregated here based on their names matching partial strings
representing the observables of interest. To verify this approach, obtained observables of
the ODE model with this method were qualitatively compared with the six observables
plotted in the original publication. The choice of other observables follows these principles:
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(1) if an agent has internal states, the activated state is set as its observable form, e.g.,
“CK1u”; (2) if an agent is created and degraded over the simulation, its observable is set to
its least specific form, e.g., “PKA”; (3) if an agent is not created and degraded during the
simulation, i.e., its level remains constant throughout the simulation and has no internal
states, its observable is set to its bound form, e.g., “_CDK5” (see Table S1 for the complete
list of RB and ODE observables with definitions).

Model simulation
We simulate both models in the stochastic scheme but within different simulation
environments. The RB model was simulated with KaSim. The SBML format of the ODE
model was run with COPASI (version 4.20), a common simulation environment for
Systems Biology Markup Language (SBML)-formated models (Hoops et al., 2006), using
the deterministic solver (LSODA) and stochastic simulator (direct method Gillespie, 1977).
To match units of molecular abundances across all simulation setups, the results of the
SBML model were set to “particle numbers”, equivalent to copy numbers in the RBM
naming convention.

Model perturbations
To induce the first type of site-directed mutations, Ser137Ala and constSer137, we
modified rate constants during the simulation. In both cases, the alteration of the model
involved the inactivation of four reactions by zeroing their rate constants. In the RB model,
these reactions are represented by one rule, thus a change of a single constant induced each
mutagenesis.

We additionally tested the RB model with two different binding schemes, applicable
only to the RB model, and further called noncompetitive and competitive binding (Fig. 1).
In the noncompetitive binding, all interactors of DARPP-32 can bind simultaneously to
three different sites. The competitive binding assumes one interaction with DARPP-32 at a
time, which reflects the ODE model assumption.

RESULTS
Comparison of models was performed on two levels, model notation and simulation
results. The model notation was analysed by dividing the model into components and
comparing their sizes. We expect the set of reactions underlying the ODE model to be
represented with fewer rules since a single one can constitute a pattern representing several
reactions. The comparison of simulation results involved the alignment of equivalent time
courses obtained by model simulations. We performed the comparison of time courses
between three variants of each model: (1) base-line condition (wild-type) and two
site-directed mutations: (2) Ser137Ala and (3) constSer137. Finally, we compared two RB
model variants, representing: (1) DARPP-32 with a single binding site; and (2) DARPP-32
with three independent binding sites.
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Rule patterns reduce reaction number in a certain type of model
components
Table 1 juxtaposes the total counts of model components in each model. The RB model
represents 152 reactions with 132 rules, each parameterised by one of 62 unique rate
constants. This number is lower than the total number of rate constants used to
parameterise the ODE model (152). The final rule set is more than twice as large as the
unique number of rate constants, meaning that more than one rule is parameterised by the
same rate constant. The number of molecular species in the RB model, obtained with
snapshots capturing the state of the molecular mixture over simulation time (every
10,000th event), is 91 for the competitive RB model, and 137 for the non-competitive one.
In both cases, the sum of molecular species is higher than in the ODE model (75).
As expected, the number of rules corresponding to reactions is lower, and the number of
molecular species is much higher, confirming that expression patterns reduce the number
of rules needed to represent a reaction system. Nonetheless, the number of rules is only
slightly lower than the number of reactions (152 to 131). If we closely compare models by
parts representing more general molecular mechanisms, rule representation reduces the
reaction number in some components but extends it in others (Table 2). The reduction
occurred only in “DARPP-32 phosphorylation” and “PP2A activation by Ca2þ”
components, where combinations of states of DARPP-32 phosphorylation sites do not
have to be explicitly named. In contrast, the increase in the number of reactions compared
to the reactions occurred in the components “PKA activation” and “PP2B activation”.
They both have four sites that bind the same molecules, Ca2þ and cAMP, respectively.

RB model recapitulates dynamics of ODE model with minor
discrepancies
The RB model recapitulates the principal dynamics of the ODE model, albeit there are
some observable differences (compare Figs. 3B and 3C). For instance, during the relaxation
phase (after the 600th time point), “D34” in the ODE model needs 100 more time steps to
reach the second peak, and it is weaker than its RB counterpart (“D34�”). Worth noting is
that the standard deviation in the stochastically simulated ODE model reveals a distinctive
variation in abundance of the “D34” observable during the relaxation phase. We further
use the stochastic trajectories of the ODE model for comparison with the RB model. For a

Table 1 The specifications of the ODE and RB models can be broken down into elements, the
number of which can be compared.

ODE model RB model
Model component Total counts Total counts Model component

Reaction instances 152 132 Reaction rules

Concentration-based rate constants 152 62 Stochastic rate constants

Initial concentrations 75 8 Initial copy numbers

Molecular species 75 91/137 Molecular species

Stimuli events 21 21 Stimuli events
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closer examination, traces of 15 observables (defined in Table S1) obtained from ODE and
RB simulations were paired and superimposed (Fig. 4). Next to the clear matches (e.g., Figs.
4B, 4E, 4H and 4N), there are discrepancies between paired curves. Five of these 15
observables (Figs. 4C, 4F, 4I, 4J and 4O) are examples of the largest divergence between
models following a similar pattern of behaviour. They are directly connected in a chain of
activation reactions that begins with Ca2þ (Fig. 2B). Higher abundance of all Ca2þ ions
present in the system of the ODE model (Fig. 4C) could explain differences between the
remaining four observables. However, the trajectory of “all_Ca” remains at the 0 level
during steady states rising only in the spiking interval, which resembles the abundance of
free Ca2þ (Fig. 4B). Ca2þ activates PP2B represented by the trajectory “PP2Bactive”.
The higher level of “PP2Bactive” is consistent with the other three observables,
suggesting that this is a factor generating the divergences between the models. Based on the
curves of the ODE model, we can reason that a stronger activation of PP2B results in
proportionally more copies of the unphosphorylated CK1 and phosphorylated D137. This,
in turn, increases substrate availability for PP2C; therefore, more copy-numbers of its
bound form. This effect is inverted in the trajectories of the RB model.

RB language allows for detailed dissection of observed molecular
species
As the “all_Ca” observable trajectory produced by the ODE model is much lower than in
the RB model at the steady state, and “PP2Bactive” appears to dictate the higher effect on
the other three observables (“D137”, “CK1u”, “_PP2C”), “all_Ca” and “PP2Bactive”
are closer analysed in further steps.

According to the reaction system underlying both models, the activated PP2B is a
complex of four Ca2þ ions and PP2B. This detail is not explicitly stated in the variable
name of the ODEmodel. Therefore, to obtain the trajectory of all Ca2þ ions, the sum of the

Table 2 The list of reactions in the Fernandez et al. (2006) publication was divided into components
based on more general molecular processes represented by subsets of reactions, such as
phosphorylation or activation. We can closely examine the relationship between reaction and rule by
comparing models by component. The table shows the number of reaction rules vs reaction instances and
a unique number of rates per model component. It is noticeable that the reduction in the number of
reaction instances due to the translation of reactions into Kappa language occurred in only two model
components (1. & 8.), while in two others, it resulted in an expansion of the rule number (5. & 6.).

Model component Reactions Rules Unique rate constants

1. DARPP-32 phosphorylation 84 27 27

2. CK1 phosphorylation 4 4 4

3. PDE phosphorylation 4 4 4

4. PP2A phosphorylation 4 4 4

5. PP2B activation 4 24 4

6. PKA activation 12 56 7

7. cAMP & Ca2þ degradation 8 8 8

8. PP2A activation by Ca2þ 32 4 4
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copy numbers of the molecular species whose variable names contain “Ca2þ”, would have
to be replaced by a more thorough analysis of the relevant reaction context of the ODE
model. This is not the case in the RB model, where an observable of interest is obtained
with an automated procedure that sums the trajectories of molecular species containing
the specified expression pattern. Since the trajectory of all Ca2þ in the RB model includes
the ions bound to PP2B, the comparison of “all_Ca” to “all_Ca�” is inaccurate due to a
difference in the molecular species included in these observables. A similar inaccuracy,
related to the naming of the observables, explains the discrepancy between the time courses
of the total number of cAMP observables (Fig. 3). In contrast to the RB model, the multiple
copies of cAMP bound to R2C2 are not included in this ODE model time course (Fig. 4A).

To determine the identity of molecular species whose trajectories were summed up in
“all_Ca�”, all species containing Ca2þ in the RB model simulation were isolated from
snapshot data ammounting to 24 compared to only 13 in the ODE model (“all_Ca”).

Figure 3 Time-courses of the ODE model for DARPP-32 isoforms triggered by a pulse of cAMP followed by a train of Ca2+ spikes obtained
with (A) a deterministic solver, and (B) a stochastic simulation. Trajectories of the stochastic simulation were obtained from calculating mean
value (line) and standard deviation (shade) based on 40 simulations. (C) RB model (stochastic simulation). Variable isoforms of DARPP-32: “D”—
unphosphorylated; “D137”—Ser137 phosphorylated; “D75”—Thr75 phosphorylated; “D34”—Thr34 phosphorylated.

Full-size DOI: 10.7717/peerj.14516/fig-3
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Figure 4 (A-O) Superimposed time courses of stochastic variants of the ODE and RB models in the
baseline condition. Note that the scales on the y-axis are different to closely compare the traces of the
observables. Trace colour: ODE (red), RB (black). Full-size DOI: 10.7717/peerj.14516/fig-4
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These 13 species correspond in molecular composition to 18 of the 24 RB species sampled
in total. The six absent species in the “all_Ca” observable are composed of an active form
of PP2B containing four Ca2þ ions, either free or bound to phosphorylated CK1, or
DARPP-32 in four different combinations of phosphorylation states. The number of
species comprising “all_Ca” observable in the RB model is higher by five because the
half-active form of PP2B (bound to two Ca2þ ions) in the RB model exists in six variants.
Whilst in the ODE model, it is represented as a single species, named
“PP2BinactiveCa2”. By rerunning the RB model with a new set of observables matching
those in the ODE model and superimposing only one of six trajectories of
“PP2BinactiveCa2”, we can obtain a close match between the “all_Ca” observables
(Fig. S1C). This demonstrates that the differences between the “all_Ca” observables of the
two models can be explained by the difference in the number of representations of the
molecular species. As the six trajectories have the same dynamics and average levels of
abundances, choosing one of them is arbitrary (Fig. S2). Moreover, the distinction between
locations of two Ca2þ ions on the numbered sites of PP2B is irrelevant since all four sites
are functionally indistinguishable.

Rate constants of reactions formulated with “combinatorial-binding”
notation should be increased to match ODE trajectories
The largest discrepancy between trajectories can be observed in “PP2BinactiveCa2”
(Fig. 5M) that for the RB time course was obtained by summing six entities representing a
half-active PP2B into one. If divided by six, representing a single variant of half-active
PP2B, the trajectory of the RB model becomes lower than the one of the ODE model
(Fig. S3M). These six forms of the half-active PP2B suggest that a better fit between the two
models can be achieved by decreasing the constant rate of rules that represent the binding
of Ca2þ to free PP2B. However, the decrease of this rate constant of PP2B intermediate
form would lead to a further decrease of copy numbers of other coupled observables that
trajectories are lower than in the ODEmodel in the current parameter setting, e.g., the fully
active form of PP2B (Fig. 4J). To further examine this observation, we can return to the
comparison of model specifications (Table 2). The four reactions of PP2B activation are
represented by 24 rules, explicit in site-specific detail that includes all combinations of
Ca2þ positioning on four sites of PP2B. Moreover, instead of three distinct PP2B species in
the reaction representation (inactive, half-active, activated), in the RB model there are
eight different molecular species. Thus, the fine-grained representation of species in the
molecular mixture slows down the transition from inactive to active PP2B, despite equal
presence of the two-step transition encoded in both formalisms. The same can be observed
in the second example that required a much larger number of rules, i.e., an activation of
PKA. Figure 4D shows that the RB trajectory of the “PKA�” observable also reaches a
much lower peak than its ODE counterpart. Accordingly, values of rate constants of rules
that the number increased due to the “combinatorial binding” notation in the RB model, i.
e., are represented by more variants of species, should be increased to closely match the
ones in the ODE model.
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Figure 5 (A-M) Traces of 13 pairs of molecular species containing Ca2+, selected to match the ODE
model. The largest disparity lies in the “PP2BinactiveCa2” variable—summation result of six entities
representing an inactive form of PP2B in the RB model. Full-size DOI: 10.7717/peerj.14516/fig-5
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RB language facilitates modifications of dynamic models
Site-directed mutations
The ODEmodel was analysed under two site-directed mutagenesis conditions affecting the
Ser137 site. When these perturbations were applied in the RB model, we could observe a
close fit in the initial conditions and a general pattern of dynamics based on six key
observables (Fig. 6). Thus, RBM allows to emulate experimentally observed perturbations
similarly to ODEs.

Competitive and non-competitive site binding
We also compared two variants of the RB model with different binding site specifications
to establish whether the dynamics of the model are affected when DARPP-32s binds
multiple partners at once. The first specification is a competitive variant of the model with
one binding site (oBS). In the second, a non-competitive variant, the partners bind
simultaneously (three-binding-sites, tBS). This type of comparison between ODEs and RBs

Figure 6 Comparison of the constitutive Ser137 mutation induced in (A) ODE model in deterministic setting; (B) RB model in stochastic
setting; and the Ser137Ala mutation in (C) ODE model in deterministic setting; (D) RB model in stochastic setting; The same interference
performed on rate constants of the two models caused similar dynamics. Full-size DOI: 10.7717/peerj.14516/fig-6
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was previously presented by Blinov et al. (2006). In contrast to their results, the
superimposed trajectories of two models (Fig. S4) demonstrate no effect on model
dynamics. As the direct consequence of this modification is an increase in the size of the
complexes to more than two proteins, it seems that larger complexes are rarely formed
during the simulation. This interpretation is confirmed in a direct examination of species
counts (Fig. S5).

DISCUSSION
ODE-based modelling is a classical and commonly used method for creating detailed
dynamic models of biological systems (Lotka, 1920; Hodgkin & Huxley, 1952; Lisman,
1989). It is frequently a point of reference and comparison to newly proposed modelling
methods (Morris et al., 2010; Ciocchetta & Hillston, 2008; Chaouiya, 2007; Chylek et al.,
2015; Danos & Laneve, 2004). Nevertheless, modelling of signalling systems with ODE
poses difficulties due to complexities underlying molecular interactions (Kholodenko, 2006;
Stefan et al., 2014). RBM was proposed as a solution to this problem.

Numerous reviews (Danos, 2007; Chylek et al., 2014; Hlavacek et al., 2006) and studies
discussed the advantages of RB modelling over ODE. This article presents results of
encoding reactions underlying an ODE model to the RB language and a comparison of
their specification and simulation results. The manual translation of this ODE model into
any RB language was necessary despite the existence of a method (Tapia & Faeder, 2013)
for automated translation of the SBML-format encoding ODE-based models to an RB
model format. The translation failed to generate executable model with correctly identified
agents (Supplement 1).

Effects of the RB framework on the model notation
Encoding reactions into rules slightly reduced the size of model specification and increased
counts of molecular species, which confirmed the well-known advantage of rule
representation (Hlavacek et al., 2006; Chylek et al., 2014). Closer analysis of reaction
subsets representing more general molecular mechanisms showed that reduction in the
reaction number is only true for reactions occurring between the same reactants, describe
the same transformation, and are parameterised with the same values of rate constants, but
differ only concerning binding or internal state of reactants. In this type of reaction, the
number of unique reaction rates was equal to the number of rules. An increase in the
number of rules representing reactions occurred where the same partner binds an agent at
multiple sites. In such reactions, all possible positions and stages of the binding process had
to be explicitly encoded. The “combinatorial binding” notation is not a general property of
the RB language but characteristic of the Kappa syntax. In the alternative to Kappa RB
framework, BNG, a rule is definable with identical sites’ names. This implies that the rule
pattern defined for one applies to the others, effectively shortening the rule description
(Sekar & Faeder, 2012).
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Discrepancies in dynamics between models
As in other similar study (Blinov et al., 2006), the comparison of trajectories showed
agreement between model dynamics, with some discrepancies. Their source is not due to
the issue of ambiguous molecularity that can arise in Kappa, which requires control on the
part of the modeller, as none of the rules in the DARPP-32 model allow the formation of
closed rings between agents. The discrepancies mainly appeared due to a lack of precision
in the variable names of the ODE model caused by differences in molecular species
comprising tracked observables. When the simulation of the RB model was performed
with observables exactly matching the ones in the ODE model, almost all paired
trajectories fitted perfectly. The only problematic observable involved the “combinatorial
binding” notation. Further analysis suggested that activation of proteins encoded with fine
detail was slower than in the ODE model. More specifically, although half-active PP2B was
more abundant in the RB model, its active form had lower levels compared to the ODE
model. This observation may apply to RBM in general because the molecular mixture
when simulated with NFsim (Sneddon, Faeder & Emonet, 2011), a variant of the
network-free simulator for BNGL, will implicitly contain the same number of molecular
species with different binding variants as it is in KaSim. Further, based on the example of
antibodies with identical antigen-binding sites, the BNGL developers demonstrated that
the equivalent set of rules in both RBM frameworks are parameterised by the same rate
constant (Suderman & Hlavacek, 2017). In the BNG framework, however, this rate is
automatically scaled by a factor equivalent to the multiplicity of indistinguishable ways to
obtain the reaction product (Faeder et al., 2005; Faeder, Blinov & Hlavacek, 2009).
Moreover, comparison of the time traces of Kappa- and BNGL-defined rules shows
equivalent results under stochastic realisations (Suderman & Hlavacek, 2017). Thus, we
argue that “combinatorial binding” expressed as a single rule in BNGL will not change the
dynamics observed with Kappa. These specific discrepancies should be taken into account
when the reactions and rate constants of RB models are derived from ODE models, and
preferably determined experimentally for these reaction types.

A shift in modelling focus with the use of the RB framework
The process of encoding reactions into rules turns attention to questions such as how
many binding partners can simultaneously bind a protein. The translation process has
shown that information about interfaces of interacting proteins and their alternative states
would considerably ease the process of model development by guiding decisions on agents’
signatures. Therefore, data resources that could support RB modelling, such as a source of
protein interaction interfaces, post-translational modifications (PTMs), and protein
domains. For instance, proteins containing phosphatase catalytic domains are enzymes of
dephosphorylation reactions (Sacco et al., 2012). However, such detailed information is not
accessible for most molecular agents.

Facilitation of modification and reuse of dynamic models
Molecular species defined in the ODE framework are fixed and definite, whereas, in the RB
model, they are a subject of investigation. The determination of created species and their
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abundances is enabled with snapshots, state vectors of molecular mixture sampled during
the simulation. Snapshots have been used as a tool for model exploration in other studies
(Sorokina, Sorokin & Armstrong, 2011; Suderman & Deeds, 2013), and their visualisation is
included as a standard tool in the Kappa framework (Boutillier et al., 2018). Although,
unlike Kappa, BNG allows counting the number of species through network generation,
this option is limited by the size of the model. Then, if not sampled, the number of specie
types is calculated analytically (Suderman & Deeds, 2013). While this is an approximate
approach, by using snapshots, we were able to study the emerging molecular species in
detail and precisely track the observables of interest. Furthermore, the automatic
identification and merging of time courses into observables makes the RB framework
particularly advantageous over the ODE framework, as it avoids errors in the identification
of molecules in the modelled system. This is important when the system consists of many
molecules and their states are to be analysed in detail. In ODE models, on the other hand,
obtaining the details of the molecule composition, hidden in the arbitrary names of the
individual molecular species, would require further deconstruction of the reaction system.
Though, the precise identification of molecules within species could be performed by
parsing the SBML-model encoding, the Fernandez et al. (2006) model web page in the
BioModels website (http://www.ebi.ac.uk/biomodels-main/BIOMD0000000153), shows
incomplete annotations of molecular species behind variable names, both concerning the
actual counts of interactions (e.g., Ca2þ) and their components.

The Fernandez et al. (2006) study does not discuss if DARPP-32 partners bind to the
same or different active sites, though DARPP-32 is an intrinsically disordered protein with
an unknown binding interface (Dancheck, Nairn & Peti, 2008; Mollica et al., 2016;
Engmann et al., 2015; Choy, Page & Peti, 2012). The ODE model specification
demonstrates that DARPP-32 forms at most heterodimers. This type of modification in the
ODE model would require the arduous extension to much more complex model by
enumeration of additional molecular species, the addition of new equations and updating
the existing ones. Contrary to this, a definition of such a binding scenario in the RB
notation requires the same number of rules, provided that concurrently bound interactors
do not influence each other. The RB model was tested with two types of site-directed
modifications, demonstrating the framework’s flexibility to reproduce experimentally
conducted perturbations. Though the binding site modification effectively changed the
model reaction network, it did not affect the model response. Nevertheless, this
intervention demonstrated the ease of performing such alterations within the RB
framework. Additionally, the pattern notation improves model clarity and provides an
intuitive representation of a model akin to a set of chemical reactions rather than
equations, potentially improving the learning curve for a modeller-to-be.

Note on simulation time
The ODE simulation remains incomparably faster than the RB simulation. In both
deterministic and stochastic settings, COPASI returns ODE results in seconds, while
KaSim 3.5 requires ∼40 min1 to return the RB model results (single core on ThinkPad
Core i7-4700MQ; RAM: 16GB). With more recent versions of KaSim (≥4), the execution

1 The total CPU time measured with the
“time” command on Linux OS.
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time could be much shorter thanks to a new solution for the update of observable instances
(Boutillier, Ehrhard & Krivine, 2017). Nevertheless, with a sufficiently simple model,
network-based simulation can be performed far more efficiently using BNGL, bearing in
mind that more complex models will have a higher runtime (Sneddon, Faeder & Emonet,
2011). When generating large-scale models, the type of RB model simulation can be
scheduled on a case-by-case basis (Santibáñez, Garrido & Martin, 2020).

Further explorations of the DARPP-32 RB model
There are two main routes for further explore the RB model. The first one is a modification
of parameters defining different phases of combinatorially bound Ca2þ ions to PP2B and
cAMP to R2C2. A particular task would be to identify factors by which the binding
constants could be modified to counteract the many intermediate variants of these
complexes and the lower copies of their activated final forms. Next, it would be interesting
to identify conditions under which we could observe a difference in model dynamics after
the addition of binding sites to DARPP-32. In the current setup, the lack of difference
might be caused by the similarity in occupancy between a single site and all three sites
together, as they do not counter each other’s binding properties. The probability of a site
being connected depends on copy numbers of reactants and the strength of binding
affinities. Reactions in the model are classified as weak, with dissociation rates in the range
of lM. Low-affinity bindings generally lead to lower levels of site occupancy. Moreover,
the amount of DARPP-32 molecules exceeds the total counts of all its interactors. Thus,
with the current proportions of reactants, all three DARPP-32 sites cannot be saturated.
To expose the potential differences in dynamics between the two binding scenarios, the site
occupancy could be modified by increasing the size of the reactant pools or reducing the
level of DARPP-32. As mentioned by Fernandez et al. (2006), levels of DARPP-32 vary
considerably, between lM to tens of lMs, in the striatum. With the greater availability of
single-cell techniques for protein quantification (Lo et al., 2015) it would be worth
establishing more precisely the range of DARPP-32 even at the resolution of a dendritic
spine (Otmakhov & Lisman, 2012). Estimating variability between cells could also be used
to compare the varying levels of phosphorylated DARPP-32 at Thr34 that were observed in
the stochastic simulations.

Extending the model to match evolving knowledge on the DARPP-32
interaction network
The main advantage of RBM over ODE is the flexibility to extend and manipulate the
model, rather than to rewrite it into a new one. Through a single representation, the
community interested in DARPP-32-related molecular systems could pool their
knowledge. We believe that the refactored model of the DARPP-32 in a rule-based
framework will facilitate the creation of such an updated model in future. It should be
noted that the “DARPP-32 events” pathway (R-HSA-180024.3) specified in the
REACTOME database is in fact the model of Fernandez et al. (2006) used in this study.
So far, only early signalling events of DARPP-32 have been modelled, localised mainly in
the cytosol. The Ser102 site regulates nuclear transportation of DARPP-32 representing

Wysocka et al. (2022), PeerJ, DOI 10.7717/peerj.14516 19/28

http://dx.doi.org/10.7717/peerj.14516
https://peerj.com/


late signalling events (Stipanovich et al., 2008). The site was omitted in the Fernandez et al.
(2006) model due to the lack of evidence that it may be affected by DA or Glu signalling
(Girault et al., 1989; Svenningsson et al., 2004). However, a recent study by Nishi et al.
(2017) suggests that Glu can decrease the effect of DA signalling by dephosphorylating
DARPP-32 at Ser102 causing the accumulation of DARPP-32 in the nucleus, the effect
known to be promoted by drugs of abuse (Stipanovich et al., 2008). Moreover, the role of
the DARPP-32 interaction network in the nucleus appears to be an important future goal
of the recently published ODE model incorporating DARPP-32 (Yapo et al., 2018),
indicating the need to explicitly demonstrate the contribution of DARPP-32 to the
observed switch-like behaviour of PKA in the nucleus. The inclusion of the Ser102 site
seems inevitable to achieve this goal, but extending the current model with two
phosphorylation sites may prove to be quite complex. Encouragingly, to calibrate this
extended model, measurements experimentally obtained by Nishi et al. (2017) for all four
phosphorylation sites could be fed into Pleione (Santibáñez, Garrido & Martin, 2019), a
recently developed tool for this task in RBM. Lastly, it would be worth to establish if
stochastic simulation can demonstrate new behaviour of this particular molecular system
that deterministic simulation has so far not revealed.

Need for formal prioritisation methods of emerging molecular species
RB modelling offers tools for the dissection of emerging molecular species during
simulations. As the number of such molecular species increases it becomes difficult to
identify which model components are of particular importance to the system. There is
great potential to exploit commonly used methods for model exploration, such as
sensitivity analysis, to identify critical model features including parameters and model
output variables. It would be advantageous to support the modeller’s assumptions with
automated methods to prioritise model outputs for downstream analysis and to gain
greater insight into the underlying biological systems.

CONCLUSIONS
Dynamic molecular modelling has become increasingly important in uncovering and
integrating our dispersed knowledge of molecular mechanisms. Choosing the best
formalism to meet this challenge is a difficult task. In this work, we have presented a
detailed and systematic comparison of two major formal approaches to quantitative
modelling. We demonstrated the advantages and disadvantages of RB modelling to the
prominent ODE approach. We confirm, after other similar studies, that RB modelling is a
more detailed and flexible way to represent biological molecular systems, enabling
exploration of individual molecular entities, model extension, and future reuse. These
conclusions confirm the potential of the RB formalism and hopefully will embolden future
exploration and research in this topic.

LIST OF ACRONYMS
BNG BioNetGen

Ca2+ Calcium ions
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cAMP cyclic adenosine monophosphate

DA dopamine

DARPP-32 dopamine- and cAMP-regulated neuronal phosphoprotein with molecular
weight 32 kDa

EGFR epidermal growth factor receptor

Glu glutamate

MSPN medium spiny projection neurons

ODE ordinary differential equation

PTM post-translational modification

RB rule-based

RBM rule-based modelling

SBML Systems Biology Markup Language

Ser102 Serine 102

Ser137 Serine 137

SSA Stochastic Simulation Algorithm

Thr34 Threonine 34

Thr75 Threonine 75
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