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ABSTRACT
More than 50% of congenital hearing loss is hereditary, in which the majority form is
non-syndromic. In this study we estimate the most prevalent pathogenic genetic
changes in an Ossetian cohort of patients. This is useful for local public health
officials to promote genetic counseling of affected families with regard to high allele
frequencies of prevalent pathogenic variants and assortative mating in the
community of people with hearing loss. In this study, genetic heterogeneity of
hereditary non-syndromic sensorineural hearing loss (NSNHL) in a cohort of 109
patients and an assessment of the frequency of two GJB2 gene pathogenic variants in
a cohort of 349 healthy individuals from the populations of the Republic of North
Ossetia–Alania (RNO–Alania) were assessed. The molecular genetic cause of
NSNHL in the GJB2 gene in RNO–Alania was confirmed in ~30% of the cases,
including ~27% in Ossetians. In Russian patients, the most frequent variant is GJB2:
c.35delG (~83%). The GJB2:c.358_360delGAG variant was found to be the most
frequent among Ossetians (~54%). Two genetic variants in GJB2, c.35delG and
c.358_360delGAG, accounted for 91% of GJB2 pathogenic alleles in the Ossetian
patients. A search for large genome rearrangements revealed etiological cause in two
Ossetian patients, a deletion at the POU3F4 gene locus associated with X-linked
hearing loss (type DFNX2). In another Ossetian patient, a biallelic pathogenic variant
in the MYO15A gene caused hearing loss type DFNB3 was identified, and in one
Russian family a heterozygous MYH14 gene variant associated with dominant
NSNHL was found. Thus, the informative value of the diagnosis was ~37% among all
patients with NSNHL from RNO–Alania and ~32% among the Ossetians. These
estimates correspond to the literature data on the fraction of recessive genetic forms
of hearing loss within the affected population. The importance of this study consists
not only in the estimation of the most prevalent pathogenic genetic changes in the
Ossetian cohort of patients which could be useful for the public health but also in the
genetic counselling of the affected families with regard to the high allele frequencies
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of revealed pathogenic variants as well as to the assortative mating in community of
people with hearing loss.

Subjects Epidemiology, Otorhinolaryngology, Medical Genetics
Keywords North Ossetia–Alania, GJB2, POU3F4, MYH14, MYO15A, Non-syndromic
sensorineural hearing loss

INTRODUCTION
Congenital hearing impairment is one of the most common causes of human disability.
It occurs in 1–2 out of 1,000 newborns, and more than half of these are accounted for by
hereditary forms (Morton & Nance, 2006; Mehl & Thomson, 2002). According to the
World Health Organization, around 360 million people (~5% of the World’s population)
have hearing loss leading to disability, and 32 million of them are children (Talbi et al.,
2018; TheWorld Health Organization, 2022). In the structure of prelingual isolated hearing
loss in children, sensorineural hearing loss prevails (detected in ~91% of the patients),
mixed hearing loss is detected in ~7% of the patients, and conductive hearing loss is
present in only in ~1.5% of cases (Petit, Levilliers & Hardelin, 2001). In the Russian
Federation, 8–9 million people have various hearing impairments (All-Russian Society of
the Deaf, 2022; Hereditary Hearing Loss Homepage, 2022) that manifest in different time
periods of life.

Most cases (~70%) of hereditary hearing loss (HHL) are non-syndromic forms
characterized by wide locus and allelic heterogeneity. More than 6,000 pathogenic variants
in more than 120 genes have been identified to date. In the structure of HHL forms, those
of autosomal recessive (AR) type of inheritance prevail (~70–80%), autosomal dominant
forms (AD) account for up to 20%, X-linked and mitochondrial forms being relatively rare
at ~1–2% and ~1% respectively (Talbi et al., 2018; Petit, Levilliers & Hardelin, 2001; Online
Mendelian Inheritance in Man, 2022). The same genes can be involved in either AD or AR
hearing loss and contribute to disability with digenic mode of inheritance (Morton &
Nance, 2006; Talbi et al., 2018; Petit, Levilliers & Hardelin, 2001). About 20–30% of
hereditary hearing disorders are detected as part of various hereditary syndromes, i.e.,
hearing loss is accompanied by damage to other organs and systems, the other damage not
always being simultaneously manifested (Morton & Nance, 2006; Talbi et al., 2018; Petit,
Levilliers & Hardelin, 2001). Early detection of hearing impairment and subsequent clinical
and precise DNA diagnostics of the genetic forms of hearing loss allows the cause of the
disease to be determined at early age in the patients. Timeliness in taking measures to
rehabilitate children with hearing impairment should contribute to the success of their
social adaptation.

Non-syndromic sensorineural hearing loss (NSNHL) occurs due to damage to the
organs of the inner ear, the auditory nerve, or the center in the brain that is responsible for
the perception of sound. Mapping the genes responsible for the occurrence of NSNHL was
a breakthrough in understanding the mechanisms of the occurrence and inheritance of
hearing loss. Mutations in the GJB2 gene have been shown to be the most common cause
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of NSNHL (OMIM #220290) (Kenneson, Van Naarden Braun & Boyle, 2002). On average,
about half of the cases of AR NSNHL in European populations are associated with
mutations in the GJB2 gene (Kenneson, Van Naarden Braun & Boyle, 2002). The highest
contribution of pathogenic variants of the GJB2 gene is shown in European countries
(~27% of the cases), whereas in African countries it is much smaller (~6%) (Chan &
Chang, 2014). In most European countries the most common GJB2 pathogenic variant in
patients with AR NSNHL is c.35delG. (Chan & Chang, 2014). Variant c.35delG prevails
among Russians with NSNHL, accounting for up to 80% of mutant alleles of the GJB2 gene
(Bliznetz et al., 2012). Pathogenic variants in the STRC,USH2A, SLC26A4,MYO7A,OTOF,
MYO15A, and TECTA genes are less frequent but occur in Europe and elsewhere in the
world. Mutations in other genes have been found in rare cases (Del Castillo et al., 2022).

Our previous studies have shown that both allelic and locus heterogeneity genetic causes
of NSNHL are observed in populations and ethnic groups of the Russian Federation: in
Mari-El Republic (Zinchenko et al., 2007a); Udmurt Republic (Zinchenko et al., 2007b);
Chuvash Republic (Zinchenko et al., 2007c); Karachay–Cherkess Republic (Petrina et al.,
2017); Rostov region (Petrina et al., 2018; Shokarev et al., 2005); Kirov region (Sharonova,
Osetrova & Zinchenko, 2009; Zinchenko, Osetrova & Sharonova, 2012); and in the Nogai
population (Zinchenko et al., 2018; Petrina et al., 2020). The following mutation rates of
c.35delG were found: Chuvash, 0.78%; Bashkirs, 0.25%; Karachay, 0.14%; Udmurts, 0.25%;
Russians in general, ~0.04–0.05% (1:2,000–2,500 newborns). Sequencing of the GJB2 gene
has made it possible to identify additionally only one or two mutations that have very low
population frequencies. Further, in our works locus heterogeneity was determined for
Chuvash, for whom NSNHL associated with the GIPC3 gene variants was found.
The frequency of GIPC3 genetic variant c.245G>A in Chuvash NSNHL patients was ~21%,
and the frequency of carrying variant c.245G>A was 1/44 in the Chuvash, the population
frequency being 0.01143, i.e., more than 1% (Petrova et al., 2021).

The main diagnostic protocols and algorithms developed in the Russian Federation are
based on general population data concerning the title ethnic group of Russia (“Russians”),
who make up more than 80% of the population of the country. Given that the population
of the Russian Federation is represented by many nationalities, it is necessary to study the
ethnic characteristics of molecular diagnostics with subsequent optimization of existing
research protocols, and this is currently being carried out by workers of the Laboratory of
Genetic Epidemiology of the Research Centre for Medical Genetics (Zinchenko et al.,
2007a; Petrova et al., 2021).

In this work the results of the study of the genetic and allelic genetic heterogeneity of
hereditary non-syndromic hearing loss (NSNHL) in the Republic of North Ossetia–Alania
(RNO–Alania) is reported and the frequencies of a number of GJB2 gene variants and their
heterozygous carrier rate in healthy Ossetians are assessed.

MATERIALS AND METHODS
The material studied was DNA isolated from blood samples of NSNHL patients and
healthy Ossetians from RNO–Alania. Informed consent was obtained from all participants
or their legal guardians. The study was approved by the Ethics Committee of the Research
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Centre for Medical Genetics. The study was conducted in accordance with the Declaration
of Helsinki and was approved by the Institutional Ethics Committee of the Research
Centre for Medical Genetics (protocol No. 5 dated December 20, 2010).

Characteristic of NSNHL patients
The cohort of patients with hearing loss from RNO–Alania consisted of 109 individuals
from 93 unrelated families: 83 Ossetian: 12 Russian: three Ingush: two Avar; nine people of
other ethnicities. The ethnicity of the participants was determined upon completion of a
questionnaire that gathered information about three generations of direct relatives from
both parents.

All of the studied patients had prelingual bilateral sensorineural hearing loss of degrees
2–4 or complete deafness as determined by an audiologist. There were no known external
environmental risk factors for the development of hearing loss in the anamneses of the
patients. The age of the patients ranged from 0.5 to 68 years (mean age 19.87 ± 17.10
years); the male/female sex ratio was 58/53. The diagnosis was made on the basis of the
clinical picture in the hearing center of Vladikavkaz, RNO–Alania. The diagnosis was
established upon birth (in ~73% cases) or within the 1st year of life. Patients were also
examined by a geneticist at the Research Centre for Medical Genetics (Moscow) to exclude
syndromic forms of sensorineural hearing loss.

Characteristics of the cohort of healthy individuals
The cohort of healthy individuals consisted of 349 North Ossetians living in the city of
Vladikavkaz as well as in the Prigorodny, Alagirsky, Ardonsky, Digorsky, and Irafsky
Districts. Ethnic origin to the third generation was determined when compiling the
questionnaire of informed consent to participate in the study.

DNA isolation
DNA from peripheral blood was isolated using the Wizard Genomic DNA Purification Kit
(Promega, Madison, WI, USA) in accordance with the manufacturer’s recommendations.

MOLECULAR GENETIC TESTING
Search for point mutations in the GJB2, GJB6, and GJB3 genes
The presence of the c.35delG variant in the GJB2 gene was determined by amplified
fragments length analysis (AFLP). Fragments containing the first and second exons of the
GJB2 gene as well as coding exons of the GJB6 and GJB3 genes were subjected to Sanger
sequencing.

In the cohort of healthy individuals, the c.35delG and c.358_360delGAG variants in the
GJB2 gene were screened by AFLP using the primer sequences shown in Table 1.

Search for large genome rearrangements associated with NSNHL
Copy number variations (CNVs) in causative genome loci were analyzed by multiplex
ligase-dependent probe amplification (MLPA) analysis using the SALSA MLPA P163-
GJB-WFS1-POU3F4 kit (MRC-Holland, Amsterdam, The Netherlands). The MLPA
results were analyzed using the Coffalyser.Net program software (MRC-Holland). The set
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of probes for the MLPA analysis P163-GJB-WFS1-POU3F4 contains probes for each of the
genes: GJB3 (1p34.3); WFS1 (4p16.1); GJB2 (13q12.11); GJB6 (13q12.11); POU3F4
(Xq21.1). The CNVs are named according to the ISNC-2020 recommendations using the
GRCh37/hg19 human genome reference and the LiftOver tool (UCSC Genome Browser;
https://genome.ucsc.edu/).

Whole-exome sequencing
The DNA samples from two patients were subjected to whole-exome sequencing (WES)
with an BGISEQ-500 instrument using pair-end readings with a length of 2 × 100 bp and
average on-target coverage of 75× with the MGIEasy Exome Capture V4 reagents (MGI,
Shenzhen, China) for library preparation by Genomed Ltd, Moscow, Russia. Bioinformatic
analysis was performed using an in-house software pipeline designed to detect both
single-nucleotide variants (SNVs) and copy number variations (CNVs) as described earlier
(Marakhonov et al., 2020). The results were further filtered for functional consequences
and population frequencies (gnomAD AF <0.5% and <0.1% for recessive and dominant
genes, respectively) as well as for clinical relevance according to the Human Phenotype
Ontology database (Köhler et al., 2019). The pathogenicity status of the identified DNA
sequence variants was established based on the recommendations of the American College
of Medical Genetics and the Association of Molecular Pathology (Richards et al., 2015).

Analysis of variants in the MYO15A gene
The SNVs in the MYO15A gene detected during WES were analyzed by bidirectional
Sanger sequencing of two fragments of the first coding exon and a fragment containing
exon 18. Specific primers were developed (Table 2) for amplification and sequencing of
fragments of the MYO15A gene (isoform NM_016239.4).

Statistical analysis
The frequency of identified alleles was calculated according to the formula: pi = ni/n, where
ni is the number of i-th alleles and n is the sample size (Zhivotovsky, 1991). The population
frequencies of variants in different cohorts were compared using Fisher’s exact test
according to a generally accepted methodology (Zhivotovsky, 1991).

Table 1 Primers for GJB2:c.35delG testing and sequencing of the GJB2, GJB3 and GJB6 genes.

Gene/variant or exon Forward primer sequence (5′→3′) Reverse primer sequence (5′→3′)

GJB2/c.35delG CTTTTCCAGAGCAAACCGCCC TGCTGGTGGAGTGTTTGTTCAC

GJB2/c.358_360delGAG GCAGCTGATCTTCGTGTCCA GCTTCGAAGATGACCCGGAA

GJB2/exon 1 CGTAACTTTCCCAGTCTCCGA GCCCAAGGACGTGTGTTG

GJB2/exon 2 GTTCTGTCCTAGCTAGTGATT GGTTGCCTCATCCCTCTCAT

GJB3/exon 2 part 1 CGTTGTGAGTATTGAACAAGTCAGAACTCAG GTTGATCCCTTCCTGGTTA

GJB3/exon 2 part 2 CTCTGCTACCTCATCTGCCA GTTGATCCCTTCCTGGTTGA

GJB6/exon 2 part 1 CTTTCAGGGTGGGCATTCCT AGCACAACTCTGCCACGTTA

GJB6/exon 2 part 2 CTTCGTCTGCAACACACTGC GCAATGCTCCTTTGTCAAGCA
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RESULTS
During this genetic epidemiological study of the population of RNO–Alania, 117 patients
with NSNHL from 100 unrelated families were revealed. Of these, 115 patients from 96
families of Ossetian origin were identified. Considering the total size of the Ossetian
population in RNO–Alania (366,748) according to the All-Russia Census, 2010, this
number of patients gives us the prevalence of NSNHL of 1/3,189 in the population (95%
confidence interval [1/2,657–1/3,863]) (or 31.36 per 100,000 population; 95% confidence
interval [25.89–37.64] per 100,000). These prevalence numbers are in accordance with
global estimates (Morton & Nance, 2006; Mehl & Thomson, 2002). Of these 117 patients,
109 individuals from 93 unrelated families (83 Ossetians, 12 Russians, three Ingush, two
Avar, and nine people of other ethnicity) were available for the genetic analysis.

In the studied cohort of NSNHL patients from RNO–Alania, ~30% of the cases (33/109)
were caused by pathogenic variants in the GJB2 gene: ~27% in Ossetians (22/83); half in
Russians (6/12) (Table 3). The most frequent genotype in the total cohort was the
homozygous genotype GJB2:c.[35delG];[35delG] identified in ~39% (13/33): five Ossetian;
four Russian; two Ingush; two others. The secondmost common genotype in the total cohort
was the homozygous genotype GJB2:c.[358_360delGAG];[358_360delGAG] identified in
~27% (9/33), with all of the patients of that genotype being Ossetians. This genotype was the
most frequent at ~40% (9/22) in the Ossetians. The second most common genotype was the
compound heterozygous GJB2:c.[35delG];[358_360delGAG] found in ~27% (6/22). Five
patients had only one pathogenic GJB2 allele. No pathogenic variants in the coding regions
of the GJB3 and GJB6 genes were detected in NSNHL patients from that cohort.

The frequency of the GJB2:c.358_360delGAG and the GJB2:c.35delG variants was
analyzed in 349 healthy individuals from the Ossetian population, which included 246
Iron-Ossetians, 45 Digor-Ossetians, and 17 Kudar-Ossetians (Table 4).

Six heterozygous carriers of variant GJB2:c.358_360delGAG and three heterozygous
carriers of variant GJB2:c.35delG were identified in the Iron-Ossetians, and only one
carrier of variant GJB2:c.358_360delGAG was found among Digor-Ossetians (but
differences of the frequencies of these variants were not significant) (Table 4).

Large copy number variations (CNVs) were analyzed by MLPA in patients who were
negative or carried only one pathogenic GJB2 variant. Pathogenic hemizygous deletion
rsa[GRCh37] Xq21.1(81789851×1,81841838_81842142×0,81979450×1) affecting the
upstream regulatory region of the POU3F4 gene was revealed in two Ossetian patients
(Table 3).

Due to the relatively low proportion of patients who had a molecular cause established
at the first stage, whole-exome DNA sequencing of two NSNHL patients was performed.

Table 2 Primers for validation of MYO15A gene variants.

Variant Forward primer sequence (5′→3′) Reverse primer sequence (5′→3′)

c.823G>C CTACTACGACCGGCAGTCAC GTCATAGGGTGGGTATGGCG

c.3576G>A CCTGTAGTCTTCGCTGGTCC CCCCAACTTACAGACCCAGAG

c.5192C>T GGAGGATCCAGTCCCTCCTA TTTAGGGCGGAGCCAAGCTA
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In the Ossetian patients, two probably pathogenic heterozygous variants in the MYO15A
gene were identified–NM_016239.4(MYO15A):c.3576G>A, p.(Trp1192Ter) and
c.5192T>C, p.(Phe1731Ser) (see Table 3). In a Russian patient, the NM_024729.3
(MYH14):c.500G>A, p.(Arg167His) variant in the MYH14 gene was revealed (Table 3).

DISCUSSION
Non-syndromic sensorineural hearing loss (NSNHL; OMIM PS220290) is a group of
disabilities in which hearing loss occurs due to damage to the organs of the inner ear, the
auditory nerve, or the center in the brain that is responsible for the perception of sound.
About 75% of all cases of hereditary hearing loss are related to recessive non-syndromic
hearing disorders. Considering the key role of the GJB2, GJB6, and GJB6 connexin genes in
the development of NSNHL, analysis for the c.35delG variant and sequencing of the
non-coding and coding exons of the GJB2 gene was performed in the first step of the study.
Then point mutations in coding exons of the GJB3 and GJB6 genes were analyzed.
The CNVs of the GJB2, GJB3, GJB6,WFS1, POU3F4 loci were searched by MLPA analysis
in patients negative for intragenic mutations in the GJB2, GJB6 and GJB3 genes.

Spectrum of GJB2 variants associated with hereditary hearing loss in
RNO–Alania
In the total patient cohort, six different pathogenic variants of the GJB2 gene were
identified (Tables 3 and 5). The most frequent mutation causing NSNHL in many

Table 3 Results of molecular testing in NSNHL patients from RNO–Alania.

Genotype Ossetians Russians Ingush Avars Others Total
sample

GJB2:c.[35delG];[35delG] 5 4 2 – 2* 13

GJB2:c.[358_360delGAG];[358_360delGAG] 9 – – – – 9

GJB2:с.[35delG];[358_360delGAG] 6 1 – – – 7

GJB2:c.[35delG];[−23+1G>A] 1 – – 1 – 2

GJB2:c.[35delG];[290dupA] 1 – – – – 1

GJB2:c.[35delG];[95G>A] – 1 – – – 1

GJB2:c.[35delG];[=] – – – 1 – 1

GJB2:с.[358_360delGAG];[=] 1 – – – – 1

rsa[GRCh37] Xq21.1(81789851×1,81841838_81842142×0,81979450×1); GJB2:с.
[358_360delGAG];[=]

1 – – – – 1

MYO15A:c.[3576G>A];[5192T>C];
GJB2:c.[313_326delAAGTTCATCAAGGG];[=]

1 – – – – 1

GJB2:c.[313_326delAAGTTCATCAAGGG];[=] 1 – – – – 1

rsa[GRCh37] Xq21.1(81789851×1,81841838_81842142×0,81979450×1) 1 – – – – 1

MYH14:c.[500G>A];[=] – 1 – – – 1

ni/ni 56 5 1 – 7** 69

In total 83 12 3 2 9 109

Notes:
1ni; Not identified.
* Patients from Russian inter-ethnic marriages (Russian × Ossetian, Chechen × Russian).
** Patients from other marriages (1 Armenian × Armenian, 1 Azerbaijani × Ossetian, 1 Belorussian × Russian, 3 Gipsy × Gipsy, 1 Korean × Korean).
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European populations, GJB2:c.35delG, accounted for a significant proportion of the
identified alleles in the total patient cohort (~53%, 38/71): in Russian patients (~83%,
10/12); in Ossetian patients (~38%, 18/48). Hence, in Ossetian patients the frequency of
the GJB2 variant c.35delG was significantly lower than in the Russian patients (p = 0.0076)
(Table 5).

The variant GJB2:c.358_360delGAG was the second most frequent in the total patient
cohort (~38%; 27/71) and it was the most frequent variant in Ossetian patients (~54%;
26/48) of the identified alleles (Table 5).

Table 4 Frequency distribution of the GJB2:c.358_360delGAG and GJB2:c.35delG variants in ethnic groups of Russian Federation.

Ethnic group c.35delG
allele count/number of tested alleles (frequency)

p-value c.358_360delGAG
allele count/number of tested alleles (frequency)

p-value

Ossetians 5/698 (0.0072) 9/698 (0.0129)

Ossetians–Irons 3/492 (0.0061) 6/492 (0.0122)

Ossetians–Digors 0/90 1/90 (0.0111)

Ossetians–Kydars 0/34 0/34

Karachay* 1/740 (0.0014) 0.1142

Nogai* 1/244 (0.0041) 1.0000

Circirsians* 2/230 (0.0087) 0.6855

Abaza* 4/274 (0.0146) 0.2793

Ingush* 3/302 (0.0099) 0.7037 0/302 0.0643

Chechens (Chechnya)* 1/284 (0.0035) 0.6787 2/284 (0.0070) 0.7386

Chechens (Ingushetia)* 0/180 0.5894 1/180 (0.0055) 0.6965

Tatars* 18/1420 (0.0127) 0.3536

Bashkirs* 2/792 (0.0025) 0.2630

Chuvash 6/768 (0.0078) 1.0000

Udmurts* 3/1184 (0.0025) 0.1557

Mary* 9/804 (0.0112) 0.5921

Russians (Rostov)* 19/1320 (0.0144) 0.2265

Russians (Kirov)* 8/412 (0.0194) 0.1224

Russians (Pskov)* 2/204 (0.0102) 0.7054

Note:
* Variant frequencies were calculated from references (Zinchenko et al., 2007a, 2007b, 2007c; Petrina et al., 2017; Shokarev et al., 2005; Sharonova, Osetrova & Zinchenko,
2009; Zinchenko, Osetrova & Sharonova,
2012; Zinchenko et al., 2018; Shearer
et al., 2013).

Table 5 Variant count and proportion (%) of identified GJB2 gene variants in NSNHL patients from
RNO–Alania.

Variant Total (%) Ossetians (%) Russians (%)

c.35delG 38 (53.52) 18 (37.50) 10 (83.33)

c.358_360delGAG 27 (38.03) 26 (5.42) 1 (8.33)

c.313_326delAAGTTCATCAAGGG 2 (2.82) 2 (4.16)

c.-23+1G>A 2 (2.82) 1 (2.08)

c.290dupA 1 (1.41) 1 (2.08)

c.95G>A, p.(Arg32His) 1 (0.01) 1 (0.08)

In total 71 48 12
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The in-frame deletion variant GJB2:c.358_360delGAG, p.(Glu120del), which does not
change the reading frame, leads to the loss of one amino acid. A functional study showed
that GJB2:p.Glu120del cannot form homotypic slit channels, which leads to the loss of
their conductivity (Bruzzone et al., 2003). This variant has been described in at least 20
patients with hearing loss including 7 homozygotes and 12 compound heterozygotes
(Mani et al., 2009; The National Center for Biotechnology Information, 2022). This variant
was classified as pathogenic (ClinVar Variation ID: 17006) (The National Center for
Biotechnology Information, 2022).

According to Bliznetz and coauthors (Bliznetz et al., 2017), the variant GJB2:
c.358_360delGAG was the sixth most common variant of the GJB2 gene (~0.9%) in
NSNHL patients from the Russian Federation, but the ethnicity of patients carrying this
variant was not presented in that report. The GJB2:c.358_360delGAG variant was found in
healthy Chechen individuals from the Republic of Chechnya and the Republic of
Ingushetia (Bliznetz et al., 2017). In the study of NSNHL in the Karachay–Cherkess
Republic, the GJB2:c.358_360delGAG variant was found in four patients from three
families (Circassians and Kabardians) (Petrina et al., 2017). The geographical proximity of
the studied regions and the high level of migration in the historical past suggest a common
source of origin of this variant among the North Caucasian peoples.

Comparing the frequencies of the GJB2:c.35delG and GJB2:c.358_360delGAG variants,
we found no statistically significant difference between Ossetians and the studied
populations of the North Caucasian and Volga–Ural regions (Table 4).

Two variants, GJB2:c.358_360delGAG and GJB2:c.35delG, accounted for a large
proportion of GJB2-associated NSNHL in Ossetians. Their total share was ~92% of the
identified alleles (Table 5). Therefore, to evaluate the frequency of NSNHL associated with
the GJB2 gene in the Ossetian population, it was sufficient to test the variants
c.358_360deGAG and c.35delG. A cohort of 349 healthy Ossetians was tested for the two
common pathogenic GJB2 variants (Table 4). Allele frequency of the GJB2:c.35delG
variant was 0.0072, that of the GJB2:c.358_360delGAG was 0.0129, so their summed
frequency is 0.0201. According to the Hardy–Weinberg equilibrium, the frequency of all
pathogenic alleles of the GJB2 gene (q) should be 0.0219 ((0.0201 × 100%)/91.67%); the
frequency of hearing loss due to the variants of the GJB2 gene (q2) in Ossetians should be
0.0004796 (1/2,085 of population).

GJB2-negative hearing loss in RNO–Alania
For ~70% of NSNHL patients from the total patient cohort (78/111), in ~75% (63/84) of
Ossetians and half (6/12) of Russians the molecular cause of hearing loss was not related to
the GJB2 gene (Table 3). In five patients (four of them Ossetians), only one heterozygous
pathogenic variant in the GJB2 gene was detected, two patients had the GJB2:
c.313_326delAAGTTCATCAAGGG variant, two had the GJB2:c.358_360delGAG variant,
and one Avar patient carried the GJB2:c.35delG variant. Hearing loss in those patients was
apparently not associated with the GJB2 gene, and the heterozygous carrier state was due to
the relatively high population frequency of GJB2 variants. Indeed, for two of those five
patients it was possible to identify the molecular cause of hearing loss: in one, a carrier of
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the variant GJB2:c.358_360delGAG, the cause was found when analyzing CNVs; in the
second, a carrier of the GJB2:c.313_326delAAGTTCATCAAGGG variant, the cause was
found through whole exome sequencing. In addition, the latter patient’s affected sibling
was found not to have the GJB2:c.313_326delAAGTTCATCAAGGG variant.

Large genome rearrangements causing X-linked deafness
The analysis of large genome rearrangements revealed pathogenic CNVs associated with
Х-linked deafness in two unrelated male patients. They were Ossetians and represented
sporadic cases of hearing impairment.

In a male patient, a heterozygous carrier of the GJB2:c.358_360delGAG variant, hearing
loss was found to be caused by hemizygous deletion rsa[GRCh37] Xq21.1(81789851×
1,81841838_81842142×0,81979450×1) found by MLPA analysis. The patient’s healthy
mother was a heterozygous carrier of both of the variants carried by the proband, the
rearrangement and the GJB2:c.358_360delGAG variant. A healthy sister was a
heterozygous carrier of the GJB2:c.358_360delGAG variant.

A deletion found by the same MLPA probes was identified in another male patient in
whom no pathogenic variant was found in the GJB2, GJB3 and GJB6 genes. Thus, X-linked
hearing loss was found in two male Ossetian patients, and this accounted for ~6% of the
cases (2/33).

The abovementioned chromosome deletion located in the Xq21.1 region removed a
distal cis-regulatory region ~920 kb upstream from the POU3F4 gene, and it did not affect
the coding sequence. Exact chromosome breakpoints were not determined. Size could vary
from 300 bp to 200,000 bp. Previously, two other deletions in the same area (~8 and ~200
kb in size) were identified in patients from Europe. They were associated with
non-syndromic hearing loss (OMIM #304400; DFNX2) (The National Center for
Biotechnology Information, 2022). Observations of similar chromosome region deletions in
patients from different populations from West Europe and the North Caucasus indicate
that the Xq21 region with its multiple conserved non-coding sequences is a hotspot for
chromosome breaks. Earlier, Petrina and coauthors (Petrina et al., 2020) revealed the
variant c.907C>T in the POU3F4 gene as a cause of X-linked hearing loss in a Nogai family
from the Karachay–Cherkess Republic. These findings are the reason to include Xq21
deletion screening as well as target Sanger sequencing of the POU3F4 gene in the protocols
of routine molecular genetic analysis of inherited deafness in the Russian Federation.

Search for disability-causing variants by NGS analysis
Due to the relatively low proportion of patients for whom a molecular cause was
established in the first stage, whole-exome DNA sequencing (WES) was performed for two
NSNHL patients.

One of these patients was from a family with one affected sibling and healthy parents,
and they are ethnic Iron-Ossetians who were born of a non-consanguineous marriage.
Three single nucleotide variants had been identified in the MYO15A gene, each in a
heterozygous state. The first two were in exon 1 – c.823G>C, p.(Gly275Arg) and
c.3576G>A, p.(Trp1192Ter). The third was in exon 18 – c.5192T>C, p.(Phe1731Ser).
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Of the three identified variants, only the c.823G>C (rs183969516) variant was registered in
the gnomAD database with frequency 0.0014384 (The Genome Aggregation Database,
2022). It had been found in one study of NSNHL patients from the United States and was
regarded as variant of unknown clinical significance (Shearer et al., 2013). The two other
pathogenic variants were identified for the first time. The results of the pathogenicity
prediction for the new variants are included in Table S1.

The NM_016239.4(MYO15A):c.3576G>A, p.(Trp1192Ter) variant leads to creation of a
premature stop codon and can be regarded as probably pathogenic. The NM_016239.4
(MYO15A):c.5192T>C, p.(Phe1731Ser) variant is a missense mutation, and the gnomAD
database contained two missense variants that result from substitutions in neighboring
nucleotides: c.5191T>C (p.Phe1731Leu; rs1459406061; found on one of 248,934 alleles
with frequency 0.000004017) and c.5193C>T (p.Phe1731Phe; rs767426819; found on 18 of
280,172 alleles with frequency 0.00006424), the pathogenicity of the latter variant being
considered contradictory (The National Center for Biotechnology Information, 2022).

Mutations of myosin XVA encoded by the MYO15A gene are the cause of severe
congenital deafness type DFNB3 (The National Center for Biotechnology Information,
2022). The full-size transcripts of myosin XVA contain 66 exons >12 thousand bp long and
encode a 365-kDa protein that differs from other myosins by the presence of a very long
1,200-a.a. N-terminal region preceding the conservative motor domain. The tail regions of
myosin XVA protein contain two MyTH4 domains, two regions similar to the
membrane-coupled FERM domain, and a putative SH3 domain. Northern-blot analysis
showed that myosin XVA is expressed in the pituitary gland in both humans and mice.
In in situ hybridization experiments, myosin XVA transcripts were observed in areas
corresponding to the sensory epithelium of the cochlea and the vestibular system in the
developing inner ear of mice. Immuno-staining of the organ of Corti in adult mouses
showed that myosin XVA protein is concentrated in the cuticle plate and stereocilia of the
cochlear sensory hair cells. These results indicate a probable role of myosin XVA in the
formation or maintenance of unique, actin-rich structures of sensory hair cells of the inner
ear (Liang et al., 1999).

To confirm the diagnosis, we performed segregation analysis of all three identified
MYO15A variants in the proband’s family (Table 6). All three variants were confirmed by
Sanger sequencing in the proband and were found in his affected sibling, each variant
being in the heterozygous state, and the healthy mother was found to be a heterozygous
carrier of the two variants, c.823G>C and c.5192T>C, i.e., those variants making up a
single complex allele of the MYO15A gene.

Table 6 Validation of single nucleotide variants and confirmation of the diagnosis in a family with
MYO15A-associated deafness.

Variant in NM_016239.4 (MYO15A) Proband Healthy mother Affected sibs

c.823G>C G/C G/C G/C

c.3576G>A G/A G/G G/A

c.5192T>C T/C T/C T/C
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Next, we searched for the three describedMYO15A variants in 54 patients with NSNHL
in whom the molecular cause of the disease had not been identified. The c.823G>C variant
in heterozygous state was detected in four patients with frequency 0.03704 (4/108).
Variants c.3576G>A and c.5192T>C were not found. With a high degree of probability, the
c.823G>C variant could not be considered as pathogenic since its frequency in the
population exceeds 1% according to the gnomAD database (The Genome Aggregation
Database, 2022). Thus, in the affected family, c.3576G>A and c.5192T>C variants should
be considered as causative.

In a Russian family with two affected patients, WES was performed for one of the
patients. The variant NM_024729.3(MYH14):c.500G>A (rs776632941), p.(Arg167His) in
heterozygous state was identified. Sanger sequencing of the MYH14 gene fragment
confirmed the heterozygosity for the variant in the proband and his affected father. This
variant was present in the gnomAD database, and it was found on five alleles from 280,642
with frequency 0.0000178 among healthy people (The Genome Aggregation Database,
2022), but this was not mentioned in the ClinVar dataset as a pathogenic mutation (The
National Center for Biotechnology Information, 2022). The p.Arg167His substitution is
located in a functionally significant domain of the myosin head of the protein. The results
of pathogenicity prediction for this variant are included in Table S1. This variant should be
regarded as having uncertain clinical significance with a level of significance PM2
(moderate piece of evidence for pathogenicity), PP3 (Multiple lines of computational
evidence support a deleterious effect on the gene or gene product), and PP4 (phenotype or
family history is highly specific for a disease with a single genetic etiology) according to the
American College of Medical Genetics and Genomics (ACMG) criteria.

The MYH14 gene encodes one of the heavy chains of class II non-muscle myosin
(NMIIC), a member of the myosin superfamily, and it is a causative gene for autosomal
dominant sensorineural hearing loss (AD NSNHL, OMIM #600652, DFNA4). It is widely
expressed in the inner ear, including the organ of Corti.MYH14-associated hearing loss is
rare, the currently available information regarding the variant spectrum and clinical
characteristics being limited. There have been reports of 43 MYH14 variants causing AD
NSNHL, most of which were missense mutations (Donaudy et al., 2004; Hiramatsu et al.,
2021).

CONCLUSIONS
Our molecular genetic analysis of the causes of NSNHL in the RNO–Alania population
revealed pathogenic variants of the GJB2 gene in 29.7% of the cases, including 26.5% of
cases among Ossetians. In Russian patients the most frequent variant was GJB2:c.35delG
identified in ~83% of the patients. In Ossetian patients, two genetic variants shared more
than 91% of the pathogenic alleles of the GJB2 gene. The most frequent variant in the
Ossetian patients was GJB2:c.358_360delGAG, which accounted for ~54% (26/48) of the
identified pathogenic alleles of the GJB2 gene. The GJB2:c.35delG variant was the second
most frequent (~38%, 18/48). The search for large genome rearrangements by MLPA
revealed the etiological cause of X-linked hearing loss (type DFNX2), a hemizygous
deletion in the POU3F4 gene locus in two unrelated Ossetian patients. In one of these
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Ossetian patients, biallelic pathogenic variants in the MYO15A gene were associated with
DFNB3, and in one Russian family a variant in the MYH14 gene was associated with
autosomal dominant hearing loss of type DFNA4. Thus, the informativity of our molecular
genetic diagnostics in the total cohort of NSNHL patients from RNO–Alania was ~37%, or
~32% among Ossetians, which is typical for other populations.
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