2

14	ABSTRACT
15	Complete, articulated crinoids from the Ordovician peri-Gondwanan margin are rare. Here, we
16	describe a new species, Iocrinus africanus sp. nov., from the Darriwilian-age Taddrist Formation
17	of Morocco. The anatomy of this species was studied using a combination of traditional
18	palaeontological methods and non-destructive X-ray micro-tomography (micro-CT). This
19	revealed critical features of the column, distal arms, and aboral cup, which were hidden in the
20	surrounding rock and would have been inaccessible without the application of micro-CT. <i>Iocrinus</i>
21	africanus sp. nov. is characterized by the presence of seven to thirteen tertibrachials, three in-line
22	bifurcations per ray, and an anal sac that is predominantly unplated or very lightly plated. <i>Iocrinus</i>
23	is a common genus in North America (Laurentia) and has also been reported from the United
24	Kingdom (Avalonia) and Oman (middle east Gondwana). Together with Merocrinus, it represents
25	one of the few geographically widespread crinoids during the Ordovician and serves to
26	demonstrate that faunal exchanges between Laurentia and Gondwana occurred at this time. This
27	study highlights the advantages of using both conventional and cutting-edge techniques (Let 50ch as)
28	micro-CT) to describe the morphology of new fossil specimens.
29	
30	Subjects: Paleontology, Taxonomy
31	Keywords: Crinoidea Paleozoic, Ordovician Morocco Micro-CT, Paleogeography
32	Keywords: Paleozoic, Ordovician Morocco Micro-CT, Paleogeography Words from the title as
33	Key Words

INTRODUCTION

35	Ordovician crinoids from West peri-Gondwana (North Africa and Southwestern and Central
36	Europe) are relatively rare, with only a few species reported from Spain, France, Italy, Morocco,
37 9	Portugal, and the Czech Republic (Ubaghs, 1969) Ubaghs, 1983; Prokop & Petr, 1999; Ausich, Gil
38	Cid & Domínguez Alonso, 2002; Ausich, Sá & Gutiérrez-Marco, 2007; Correia & Loureiro, 2009;
39	Zamora, Colmenar & Ausich, 2014; Sumrall et al., 2015). Crinoids from Morocco include an
40	incomplete specimen assigned to Ramseyocrinus sp. by Donovan and Savill (1988) from the
41	Upper Fezouata Formation, which is Floian (Lower Ordovician) in age (sensu Ausich, Sá &
42	Gutiérrez-Marco, 2007), and several well-preserved complete specimens of Rosfacrinus robustus
43	Le Menn and Spjeldnaes, 1996 from the Upper Tiouririne Formation (Lefebvre et al., 2007),
44 7	which is dated as Katian (Upper Ordovician).
45	Most of the crinoid genera from the Ordovician of peri-Gondwana are endemic, and this
46	hampers our ability to understand the migration patterns of crinoids during this important time
47	interval, in which several echinoderm classes reached major peaks in diversity (Guensburg &
48	Sprinkle, 2000; Sprinkle & Guensburg, 2004; Nardin & Lefebvre, 2010; Lefebvre et al., 2013).
49	Until now, the only exception was Merocrinus, which has been reported from England (Avalonia),
50	Spain (peri-Gondwana), and North America (Laurentia) (Ausich, Gil Cid & Domínguez Alonso,
51	2002). Herein, we report a new species of <i>Iocrinus</i> from the Ordovician of Morocco, thereby
52	extending the range of this genus with certainty to encompass West peri-Gondwana (in addition to
53	Avalonia and Laurentia; Donovan et al., 2011) and confirming its cosmopolitan distribution.
54	Iocrinus africanus sp. nov. is described based on a single well-preserved specimen, which was
55	collected from south Alnif (eastern Anti-Atlas, Morocco) and is preserved in a concretion found in
56	the Taddrist Formation, which is Darriwilian in age (Rábano, Gutiérrez-Marco & García-Bellido,
57 7	2014). In this paper, we study the new crinoid using both traditional techniques and X-ray

58	micro-tomography (micro-CT). This allows us to describe the morphology of <i>Iocrinus africanu</i>
59	sp. nov. in great detail and serves as a basis for comparison with other species of <i>Iocrinus</i> .
60	
61	Geological Setting and Stratigraphy
62	Ordovician outcrops are very well/developed and exposed in the Anti-Atlas Mountains of
63	Morocco (Destombes, Hollard & Willefert, 1985). Many units yield well-preserved specimens
64	of echinoderms, a number of which are currently under study (e.g., Hunter et al., 2010; Van
65	Roy et al., 2010, in press; Sumrall & Zamora, 2011; Martin et al., in press), and these faunas
66	occur throughout sections from the Lower to Upper Ordovician. Numerous clades of
67	echinoderms have been documented in these faunas, including stylophorans, solutes,
68	blastozoans, crinoids, asteroids, edrioasteroids, and cyclocystoids.
69	The Ordovician succession in the Anti-Atlas region is divided into the following
70	lithostratigraphic units: the Outer Feijas Shale Group, the First Bani Sandstone Group, the
71	Ktaoua Clay and Sandstone Group, and the Second Bani Sandstone Group (Choubert, 1943;
72	Choubert & Termier, 1947; Destombes, Hollard & Willefert, 1985). The Outer Feijas Shale
73	Group includes the Lower and Upper Fezouta formations (Tremadocian-Floian) and the
74	Tachilla Formation (Darriwilian) (Fig. 1). These units are characterized by siltstones that are
75	very rich in graptolites, with some thin sandstone interbeds, and contain exceptionally
76	preserved Burgess Shale-type faunas in places (Van Roy et al., 2010, in press; Martin et al., in
77	press). The overlying First Bani Group spans the Darriwilian to Sandbian and is subdivided into
78 %	five formations (Taddrist Formation, Bou-Zeroual Formation, Guezzart Formation,
79	Ouine-Inirne Formation and Izegguirene Formation that are chiefly comprised of sandstones
80	with interbedded shales. This group is the thickest, most constant, and most extensive sandstone

	/	5
81	group in the Anti-Atlas Mountains (Destombes, Hollard & Willefert, 1985). The fossil taxa	,
82	recovered from the First Bani Group were reviewed by Gutiérrez-Marco et al. (2003), and there	
83	are no reports of crinoids from this time interval.	
84	The First Bani Group is overlain by the Ktaoua Clay and Sandstone Group (Sandbian-	
85	Katian), which is comprised of siltstones interbedded with two or three sandstones units,	
86	depending on the exact position within the Anti-Atlas Mountains. It is divided into three units:	
87	the Sandbian to Katian Lower Ktaoua Formation, the Katian Upper Tiouririne Formation, and	
88	the Katian Upper Ktaoua Formation. The Ordovician ends with the Second Bani group, which	
89	is Hirnantian in agg. (not shown in Fig. 1)	Bani Gne
90	The new locality yielding <i>Iocrinus africanus</i> sp. nov. lies in the Taddrist Formation, close to)
91	the village of Battou (south Alnif, eastern Anti-Atlas) (Figs. 1, 2). This locality was recently	
92	described by Rábano, Gutiérrez-Marco, and García-Bellido (2014), who provided detailed	
93	information about the faunal content and age based on the presence of key graptolites and	
94	trilobites. In this area, the Taddrist Formation has been excavated predominantly by local	
95	collectors and has yielded a rich faunal assemblage preserved in carbonate concretions (Fig. 3).	
96	Rábano, Gutiérrez-Marco, and García-Bellido (2014) suggested that the levels containing	
97	fossiliferous concretions belong to the Didymograptus murchisoni praptolite Biozone	7
98	(Gutiérrez-Marco et al., 2003), which is roughly equivalent to the upper Darriwilian 2/basal	
99	Darriwilian 3 stage slices of the global chronostratigraphic scale (Gutiérrez-Marco, Sá & Rábano	,
100	2008 Bergström et al., 2009). According to Rábano, Gutiérrez-Marco, and García-Bellido (2014)	,
101	the fossiliferous concretions have yielded the trilobites Caudillaenus nicolasi Rábano,	
102	Gutiérrez-Marco, and García-Bellido, 2014, Morgatia? rochi (Destombes, 1972), Placoparia	
103	(Coplacoparia) sp. nov., Colpocoryphe sp., Parabarrandia aff. crassa (Barrande, 1872), and an	

undetermined cheirurid (*Eccoptochile*? sp.). Other non-trilobite fossils include molluscs (e.g., a cyrtonellid tergomyan, bivalves such as *Praenucula* sp., and orthoconicnautiloids), hyoliths (*Elegantilites* sp.), echinoderms (Diploporita and Asterozoa indet.), conularids (*Exoconularia* sp.), and rare graptolites (*Didymograptus* sp.). In addition to the crinoid described herein, new cyclocystoids, the first ever reported from Africa, were recently presented from this locality and await formal description (Sprinkle, Reich & Lefebvre, 2015).

MATERIAL AND METHODS

The studied specimen is preserved in a yellowish carbonate concretion that is approximately 7-em 70 mm in length and 4.5 cm in width. The crinoid is preserved as a natural mould and includes the complete theca, articulated arms, and part of the column. The specimen is housed in the Museo Geominero (Madrid, Spain) under the repository number MGM 6754.

Be Meric!

A latex cast of the specimen was prepared to study the morphology of the animal (Fig. 4). In addition, the specimen was imaged using micro-CT and digitally reconstructed to characterize the fossil in three dimensions (Fig. 5). The specimen was scanned on a Nikon XT H 225 cabinet scanner at the Natural History Museum, London with a 0.5 mm thick copper filter, 215 kV voltage, 177 μA current, and 3142 projections (each with an exposure time of 708 ms). Tomographic reconstruction was performed in Nikon CT Pro software using filtered back projection, giving a tomographic dataset with a voxel size of 37 μm. This dataset was then visualized with the free SPIERS software suite (Sutton *et al.*, 2012); an inverted linear threshold was applied to the dataset, and the pixels that could be unambiguously identified as representing the crinoid were manually assigned to a separate region-of-interest. Isosurfaces were rendered to give an interactive

	7
127	three-dimensional model of the fossil, which was subjected to weak smoothing and island removal
128	to reduce noise. Micro-CT slices, segmented images, and the interactive 3-D model (in VAXML
129	format) are provided as supplemental information (Data S1, S2).
130	1.201
131	Terminology Webster (1974)
132	Terminology The terminology used below follows Moore (1962), Ubaghs (1978), and Ausich et al. (1999); the classification follows Ausich (1998). Note, the terminology used for the aboral plates differs from that of Ausich, Gil Cid, and Domínguez Alonso (2002).
133	classification follows Ausich (1998). Note, the terminology used for the aboral plates differs from
134	that of Ausich, Gil Cid, and Domínguez Alonso (2002).
135	
136	Nomenclatural acts
137	The electronic version of this article in Portable Document Format (PDF) will represent a
138	published work according to the International Commission on Zoological Nomenclature (ICZN),
139	and hence the new names contained in the electronic version are effectively published under that
140	Code from the electronic edition alone. This published work and the nomenclatural acts it contains
141	have been registered in ZooBank, the online registration system for the ICZN. The ZooBank
142	LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through
143	any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for
144	this publication is: urn:lsid:zoobank.org:act:D091338E-643F-4D5A-8A08-7D7D190DBC2E.
145	The online version of this work is archived and available from the following digital repositories:
146	PeerJ, PubMed Central and CLOCKSS.
147	
148	

	149	RESULTS 8
	150	Systematic paleontology /
	151	Class CRINOIDEA Miller, 1821
•	152	Subclass DISPARIDA Moore and Laudon, 1943
	153	Order MYELODACTYLIDA Ausich, 1998
	154	Family IOCRINIDAE Moore and Laudon, 1943
	155	Genus <i>Iocrinus</i> Hall, 1866
	156	
	157	Type species
	158	Heterocrinus (Iocrinus) polyxo Hall, 1866 = Heterocrinus subcrassus Meek and Worthen, 1865.
	159	
	160	Iocrinus africanus sp. nov.
	161	urn:lsid:zoobank.org:act:D091338E-643F-4D5A-8A08-7D7D190DBC2E
	162	
	163	Holotype (not retaining the attachment structure and dististed
	164	MGM 6754, a nearly complete, articulated specimen preserved as a mould in a carbonate
3	165	concretion (Figs. 4, 5; Data S1, S2).
	166	*
	167	Type locality and age
1	168	Close to the village of Battou, south Alnif, eastern Anti-Atlas, Morocco (Fig. 2); Taddrist
]	169	Formation, Darriwilian (Middle Ordovician).
1	170	

9

Etymology 171 Named in reference to the African continent. 172 173 Diagnosis 174 Basal plate height approximately 37 percent of radial plate height; radial plates 1.25 times higher 175 than wide; single, broad transverse ridge between adjacent radial plates; primibrachials 1.5 times 176 wider than high; three to five primibrachials; four to five secundibrachials; seven to thirteen 177 tertibrachials; three in-line bifurcations per ray; anal sac unplated or very lightly plated (except for 178 the robust column of plates from the C-ray superradial); proximal columnals pentastellate. 179 - Very is grossly overused by geologists - I delete it here because no locinus has a large crown. 180 Description 181 Crown very small in size. Aboral cup medium bowl-shaped; smooth plate surfaces; radial and 182 183 basal plates sharply convex. Basal circlet 27 percent of aboral cup height; five basal plates, approximately / times wider 184 than high, much smaller than radial plates. Radial circlet 73 percent of aboral cup height; radial 185 plates five, maximum height approximately 1.25 times higher than maximum width; maximum 186 width of radial plate at mid-height, radials narrow sharply proximally, maximum width more than 187 10 times proximal width; maximum width 1.6 times distal width. Radial facets peneplenary, 188 approximately as deep as wide. A, B, D, E radial plates simple, C radial compound; C inferradial 189 approximately same size as simple radials; C superradial much smaller than C inferradial, wider 190 than high, distal heterotomous division with anal plates to left and C-ray arm to right. 191 All anal plates above aboral cup; column of 16 stout anal sac plates preserved from the left 192 facet on the C-ray superradial, plates very convex, successive plates with bend yielding a sinuous 193

194	appearance for this column of plates; each plate higher than wide, otherwise very similar to shape
195	of brachials. Other anal sac plates disarticulated and collapsed within the crown, presumably sac
196	plates were lightly calcified or uncalcified, except for the column of plates from the C superradial.
197	Arms robust, primaxil varies from third to fifth primibrachial (45553; ABCDE), secundaxil
198	fourth or fifth secundibrachial; where known, tertaxil positioned on the seventh or thirteenth tertibrachial; as many as 16 unbranched quartibrachials on a branch of the A-ray arm. Brachials
199	tertibrachial; as many as 16 unbranched quartibrachials on a branch of the A-ray arm. Brachials
200	strongly convex aborally with flattened lateral, abambulacral extensions, rectangular uniserial,
201	deep ambulcacral groove, more proximal brachials approximately 1.7 times wider than high.
202	Brachial facet with two, merging aboral ligament fossae. Primaxial approximately the same size as
203	non-axillary primibrachials; remaining brachials diminish in size distally.
204205	Column strongly pentastellate, holomeric, heteromorphic, proximal column N3231323; hodels higher than primin terno dals ex seggio obvious heteromorphic pattern lacking in mesistele, large portion of columnal facets presumably a
206	petaloid articulation (but details not preserved). Preserved column higher than crown height and
207	preserved in an open coil.
208	
209	Remarks
210	Characters differentiating genera within the Iocrinidae are listed in Ausich, Rozhnov, and Kammer
211	(2015). The combination of visible basal plates, three to five primibrachials, no fixed interradial
212	plates, pentalobate/pentastellate columnal shape, holomeric column construction, and a petaloid
213	facet clearly align the new crinoid described herein with the genus Iocrinus. Another feature that
214	identifies the specimen as belonging to <i>Iocrinus</i> is the preservation of the column in an open coil.
215	This is similar to <i>Iocrinus subcrassus</i> , which is thought to have had a holdfast that could coil
216	around erect objects (Brett, Deline & McLaughlin, 2008; Meyer & Davis, 2009).
	C mention Kelly's MS Resis?

Ponovan et al. (2011) placed the British taxa will a conical, Peer J Reviewing Manuscript Smooth cup and perlagonal proxistele in Margoiocrinus Donovan.

11

Species-level characters within Iocrinus include: the height of the basal plates, the height of the radial plates, radial plate height versus width, presence and character of the transverse ridge between adjacent radial plates, primibrachial shape, number of primibrachials, number of secundibrachials, number of tertibrachials, maximum number of in-line bifurcations in a ray, anal sac plating, and the shape of the proximal columnal (Table 1). Iocrinus africanus sp. nov. is distinguished from other Iocrinus species based on the shape of the radial plates, the number of tertibrachials, the number of bifurcations in-line per ray, and the lack of or very light plating of most of the anal sac. Donovan et al. (2011) reported the only other putative Iocrinus known from Gondwana, I. sp. cf. I. subcrassus from the Middle Ordovician of Oman. Assuming that this taxon does belong to Iocrinus, which cannot be confirmed without further information about the CD-interray and C-ray morphologies, the new Moroccan species differs from the Donovan et al. (2011) specimen as follows. Iocrinus africanus sp. nov. has a basal plate height approximately 37 percent of radial plate height; a broad transverse ridge; primibrachials 1.5 times wider than high; four to five secundibrachials; and three in-line bifurcations per ray. In contrast, I. sp. cf. I. subcrassus has a basal plate height approximately 50 percent of radial plate height; a narrow transverse ridge; primibrachials slightly higher than wide; seven secundibrachials; and as many as seven in-line bifurcations per ray. Taxonomic assignments within the locrinidae have received some attention in the last three decades (Warn, 1982; Guensburg, 1984; Donovan, 1985, 1989; Ausich, Rozhnov & Kammer, 2015); with the new species described herein, a total of eight/species and one subspecies are currently recognized for *Iocrinus* (Webster & Webster, 2014). These include the Laurentian

species: I. crassus (Meek and Worthen, 1865); I. similis (Billings, 1865); I. subcrassus (Meek and

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

	What of locrinus shelvensis Ramobetom, 1961? Although it
240	Worthen, 1865); I. subcrassus torontoensis Fritz, 1925; and I. trentonensis Walcott, 1884; and the
241	Avalonian species: I. llandegleyi Botting, 2003; I. pauli Donovan and Gale, 1989; and I. whitteryi
242	Ramsbottom, 1961 (Table 2). Additional <i>Iocrinus</i> identifications left in open nomenclature are
243	known from Avalonia, Laurentia, and Gondwana (for the previous potential Gondwanan
244	occurrence, see Donovan et al., 2011). Il africanus sp. nov. is Darriwilian in age, and thus it is
245	among the oldest members of the genus (Table 2). In terms of morphology, it is equally dissimilar with an
246	to species from both Laurentia and Avalonia. The occurrence of I. africanus sp. nov. in Morocco
247	confirms the presence of Iocrinus in Gondwana and demonstrates that Iocrinus, together with
248	Merocrinus, is the most geographically widespread Ordovician crinoid genus.
249	The use of micro-CT was essential for describing the morphology of <i>Iocrinus africanus</i> sp.
250	nov. in full. The posterior interray is buried below the surface of the concretion and is hence not
251	visible in the latex casts (Fig. 4); however, the posterior interray and the C-ray can be clearly seen
252	in the micro-CT scans (Fig. 5; Data S1, S2). Without an understanding of these characters, it would
253	not have been possible to confidently assign the specimen to the genus <i>Iocrinus</i> .
254	
255	
256	PALEOBIOGEOGRAPHICAL IMPLICATIONS
257	The Middle to Late Ordovician was characterized by high degrees of endemism in crinoids (Paul,
258	1976; Lefebvre et al., 2013), and <i>Iocrinus</i> and <i>Merocrinus</i> are the only geographically widespread
259	genera from this period (Fig. 6). Both genera first appeared in Gondwana and/or Avalonia during

the Darriwillian. Merocrinus first occurred in Laurentia during the Sandbian, and Iocrinus first

occurred in Laurentia during the Katian. Therefore, the known geographical distribution of these

genera indicates that their migration to Laurentia was asynchronous. *Iocrinus* is a disparid crinoid,

260

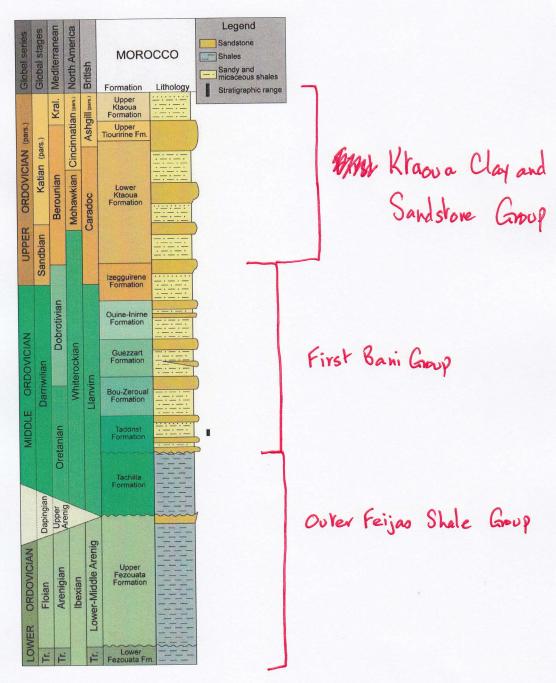
261

262

	15
307	Supplemental Information
308	Supplemental information for this article can be found online at the following links:
309	S1: https://fluff.bris.ac.uk/fluff/u3/ir12122/2mItdZD36sXtqlZhYzXQtQTES/
310	S2: https://fluff.bris.ac.uk/fluff/u1/ir12122/4y_W6sShmkjAFWN_tWCeYwTEH/
311	
312	REFERENCES
313	Ausich WI. 1998. Early phylogeny and subclass division of the Crinoidea (phylum
314	Echinodermata). Journal of Paleontology 72:499-510.
315	Ausich WI, Brett CE, Hess H, Simms MJ. 1999. Crinoid form and function. In: Hess H, Ausich
316	WI, Brett CE, Simms MJ, eds. Fossil crinoids. Cambridge: Cambridge University Press. 3-30
317	Ausich WI, Gil Cid MD, Domínguez Alonso P. 2002. Ordovician [Dobrotivian (Llandeilian
318	Stage) to Ashgill] crinoids (phylum Echinodermata) from the Montes de Toledo and Sierra
319	Morena, Spain with implications for the paleogeography of Peri-Gondwana. Journal of
320	Paleontology 76 :975–992.
321	Ausich WI, Sá AA, Gutiérrez-Marco JC. 2007. New and revised occurrences of Ordovician
322	crinoids from southwestern Europe. Journal of Paleontology 81:1374–1383.
323	Ausich WI, Rozhnov SV, Kammer TW. 2015. Iocrinid crinoids from the Ordovician of the
324	Baltic Region, Estonia. Paleontological Journal 49:145-152.
325	Barrande J. 1872. Systême silurien du centre de la Bohême. 1ère partie: Recherches
326	paléontologiques. Supplément au Vol. I. Trilobites, crustacés divers et poissons. 647 pp. Che
327	l'auteur et éditeur, Imprimerie de Charles Bellmann, Prague.

	17
351	Donovan SK. 1985. The Ordovician crinoid genus Caleidocrinus Waagen and Jahn, 1899.
352	Geological Journal 20:109–121.
353	Donovan SK. 1989. Pelmatozoan columnals from the Ordovician of the British Isles. Part 2.
354	Palaeontographical Society Honograph 142:69–114
355	/Donovan SK, Gale AS. 1989. <i>Iocrinus</i> in the Ordovician of England and Wales. <i>Palaeontology</i>
356	32 :313–323.
357	Donovan SK, Savill JJ. 1988. Ramseyocrinus (Crinoidea) from the Arenig of Morocco. Journal
358	of Paleontology 62:283–285.
359	Donovan SK, Miller CG, Sansom IJ, Heward AP, Schreurs J. 2011. A Laurentian Iocrinus
360	Hall (Crinoidea, Disparida) in the Dapingian or Darriwilian (Middle Ordovician, Arenig) of
361	Oman. Palaeontology 54:525–533.
362	Fortey RA, Harper DAT, Ingham JK, Owen AW, Rushton AWA. 1995. A revision of
363	Ordovician series and stages from the historical type area. Geological Magazine 132:15-30.
364	Fritz MA. 1925. The stratigraphy and paleontology of Toronto and vicinity, Part IV; Hydrozoa,
365	Echinodermata, Trilobita, and markings. Ontario Department of Mines, Annual Report 32:1-
366	34.
367	Guensburg TE. 1984. Echinodermata of the Middle Ordovician Lebanon Limestone, central
368	Tennessee. Bulletins of American Paleontology 86:1–100.
369	Guensburg TE, Sprinkle J. 2000. Ecologic radiation of Cambro-Ordovician echinoderms. In:
370	Zhuravlev AY, Riding R, eds. Ecology of the Cambrian radiation. New York: Columbia
371	University Press. 428–444.
372	Gutiérrez-Marco JC, Destombes J, Rábano I, Aceñolaza GF, Sarmiento GN, San José
373	MA. 2003. El Ordovícico Medio del Anti-Atlas marroquí: paleobiodiversidad, actualización

419	ed. The Ordovician system: proceedings of a palaeontological association symposium,
420	Birmingham, September 1974. Cardiff: University of Wales Press. 553-574.
421	Prokop RJ, Petr V. 1999. Echinoderms in the Bohemian Ordovician. Journal of the Czech
422	Geological Society 44:63–68.
423	Rábano I, Gutiérrez-Marco JC, García-Bellido DC. 2014. A remarkable illaenid trilobite from
424	the Middle Ordovician of Morocco. Bulletin of Geosciences 89:365-374.
425	Ramsbottom WHC. 1961. The British Ordovician Crinoidea. Monograph of the
426	Palaeontographical Society 114.1-37. (no. 492)
427	Sprinkle J, Guensburg TE. 2004. Crinozoan, blastozoan, echinozoan, asterozoan, and
428	homalozoan echinoderms. In: Webby BD, Paris F, Droser ML, Percival IG, eds. The great
429	Ordovician biodiversification event. New York: Columbia University Press. 266–280.
430	Sprinkle J, Guensburg TE. 2013. Multiple crossovers between monocyclic and dicyclic cup
431	designs: experimentation and plasticity in early crinoid phylogeny. Geological Society of
432	America Abstracts with Programs, 46:138.
433	Sprinkle J, Reich M, Lefebvre B. 2015. Computed tomography (CT) scans of a new Ordovician
434	cyclocystoid from Morocco and its orientation and life mode. In: Zamora S, Rábano I, eds.
435	Progress in echinoderm palaeobiology. Cuadernos del Museo Geominero 19:163–167.
436	Sumrall CD, Zamora S. 2011. Ordovician edrioasteroids from Morocco: faunal exchanges across
437	the Rheic Ocean. Journal of Systematic Palaeontology 9:425-454.
438	Sumrall CD, Deline B, Colmenar J, Sheffield S, Zamora S. 2015. New data on late Ordovician
439	(Katian) echinoderms from Sardinia, Italy. In: Zamora S, Rábano I, eds. Progress in
440	echinoderm palaeobiology. Cuadernos del Museo Geominero 19:175–180.


Sutton MD, Garwood RJ, Siveter DJ, Siveter DJ. 2012. SPIERS and VAXML; a software 442 toolkit for tomographic visualisation and a format for virtual specimen interchange. Paleontologia Electronica 15:1-14. 443 Ubaghs G. 1969. Aethocrinus moorei Ubaghs, n. gen., n. sp., le plus ancient crinoïde dicyclique 444 connu. The University of Kansas Paleontological Contributions 38:1–25. 445 Ubaghs G. 1983. Echinodermata. Notes sur les échinoderms de l'Ordovicien inférieur de la 446 447 Montagene Noire (France). In: Courtessole R, Marek L, Pillet J, Ubaghs G, Vizcaïno D, eds. Calymenina, Echinodermata et Hyolitha de l'Ordovicien inférieur de la Montagne Noire 448 (France méridionale). Carcassonne: Mémoires de la Société d'études scientifiques de l'Aude. 449 450 33-55. Ubaghs G. 1978. Skeletal morphology of fossil crinoids. In: Moore RC, Teichert K., eds. Treatise 451 452 on invertebrate paleontology, part T, Echinodermata 2. Boulder and Lawrence: Geological 453 Society of America and University of Kansas Press. T58–T216. √Van Roy P, Orr PJ, Botting JP, Muir LA, Vinther J, Lefebvre B, El Hariri K, Briggs DEG. 454 2010. Ordovician faunas of Burgess Shale type. Nature 465:215–218. 455 Van Roy P, Briggs DEG, Gaines RR. In press. The Fezouata fossils of Morocco; an 456 extraordinary record of marine life in the -Early Ordovician. Journal of the Geological Society. 457 Villas E, Vizcaïno D, Álvaro JJ, Destombes J, Vennin E. 2006. Biostratigraphic control of 458 459 the latest-Ordovician glaciogenic unconformity in Alnif (Eastern Anti-Atlas, Morocco), 460 based on brachiopods. Geobios 39:727–737. Walcott CD. 1884. Descriptions of new species of fossils from the Trenton Group of New York. 461 462 New York State Museum of Natural History, Annual Report 35:207–214. Warn JM. 1982. Long-armed disparid inadunates. In: Sprinkle J, ed. Echinoderm faunas from the 463

	22
164	Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological
465	Contributions, Monograph 1:77–89.
466	Webby BD, Cooper RA, Bergström SM, Paris F. 2004. Stratigraphic framework and time
467	slices. In: Webby BD, Paris F, Droser ML, Percival IG, eds. The great Ordovician
468 469	biodiversification event. New York: Columbia University Press. 41–47. Webster GD, Webster DW. 2014. Bibliography and index of Paleozoic crinoids, coronates, and
470	hemistreptocrinoids, 1758–2012. http://crinoids.azurewebsites.net/ [April 2015]
471	Zamora S, Colmenar J, Ausich WI. 2014. The echinoderm faunas from the Fombuena
472	Formation (Upper Ordovician, Iberian Chains, Spain). In: Royo-Torres R, Verdú FJ, Alcalá L,
473	eds. XXX Jornadas de Paleontología de la Sociedad Española de Paleontología.
474	¡Fundamental! 24 :257–259.
475	
476	FIGURE CAPTIONS
477	Figure 1. Chronostratigraphical chart for the Ordovician, indicating the levels that provided the
478	studied specimen. Correlations between stratigraphical units in the Anti-Atlas (after Destombes,
479	Hollard & Willefert, 1985; Gutjérrez-Marco et al., 2003; Villas et al., 2006), the British regional
480	time scale (Fortey et al., 1995), North American graptolite zonal sequences (Webby et al., 2004)
481	Mediterranean regional stages (Gutierrez-Marco et al., 2003), and global stages are shown.
482	Modified from Sumrall and Zamora (2011). Abbreviations: Kral., Kralodvorian; pars., partial; Tr.
483	Tremadocian.
484	<i>I</i>
485	Figure 2. Geographical and geological setting of the eastern Anti-Atlas Mountains, Morocco,
486	showing the type locality (indicated by a star) close to the village of Battou. After Rábano et al.

	23
487	(2014).
488	Figure 3. Field photographs showing the Taddrist Formation and the levels yielding fossiliferous $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
490	concretions. (A) [describe]. (B) [lescribe] Vigure 4. Iocrinus africanus sp. nov. (MGM 6754) from the Darriwilian (Middle Ordovician) of
491	
492	√Figure 4. <i>Iocrinus africanus</i> sp. nov. (MGM 6754) from the Darriwilian (Middle Ordovician) of
493	Morocco. A, B. General morphology including the complete theca showing the E-ray (A) and
494	BC-interray (B), the proximal column, and part of the arms. C. Detail of the theca showing the
495	E-ray. D. Detail of the theca showing the A-ray. E. Detail of the theca showing the D-ray. All
496	images are photographs of latex casts of the specimen whitened with ammonium chloride
497	sublimate.
498	
499	Figure 5. <i>Iocrinus africanus</i> sp. nov. (MGM 6754) from the Darriwilian (Middle Ordovician) of
500	Morocco. Digital reconstructions of the specimen. A. General morphology showing the
501	AE-interray. B. Detail of the theca showing the C-ray. C. Detail of the theca showing the
502	BC-interray. D. Detail of the theca showing the D-ray. E. Detail of the column showing
503	pentastellate shape and holomeric construction. F. Detail of the proximal arms showing the E-ray.
504	G. Column in an open coil. Abbreviations: A-E, ambulacra.
505	
506	Figure 6. Distribution of the major paleocontinents during the Middle Ordovician, showing the
507	known geographical distribution of <i>Iocrinus</i> and <i>Merocrinus</i> . Modified from Cocks and Torsvik
508	(2006).
509	

PeerJ reviewing PDF | (2015:09:6555:0:0:NEW 2 Sep 2015)

533 FIGURE 1

