A new iocrinid crinoid (Disparida) from the Ordovician (Darriwillian) of Morocco

Samuel Zamora, Imran A. Rahman, William I. Ausich

Complete, articulated crinoids from the Ordovician peri-Gondwanan margin are rare. Here, we describe a new species, *locrinus africanus* sp. nov., from the Darriwilian-age Taddrist Formation of Morocco. The anatomy of this species was studied using a combination of traditional palaeontological methods and non-destructive X-ray micro-tomography (micro-CT). This revealed critical features of the column, distal arms, and aboral cup, which were hidden in the surrounding rock and would have been inaccessible without the application of micro-CT. *locrinus africanus* sp. nov. is characterized by the presence of seven to thirteen tertibrachials, three in-line bifurcations per ray, and an anal sac that is predominantly unplated or very lightly plated. *locrinus* is a common genus in North America (Laurentia) and has also been reported from the United Kingdom (Avalonia) and Oman (middle east Gondwana). Together with *Merocrinus*, it represents one of the few geographically widespread crinoids during the Ordovician and serves to demonstrate that faunal exchanges between Laurentia and Gondwana occurred at this time. This study highlights the advantages of using both conventional and cutting-edge techniques (i.e. micro-CT) to describe the morphology of new fossil specimens.

A new iocrinid crinoid (Disparida) from the

Ordovician (Darriwillian) of Morocco

- 4 Samuel Zamora¹, Imran A. Rahman² and William I. Ausich³
- 6 ¹ Instituto Geológico y Minero de España, Zaragoza, Spain
- ² School of Earth Sciences, University of Bristol, Bristol, UK
- 8 ³ School of Earth Sciences, The Ohio State University, Columbus, USA
- 10 Corresponding Author:
- 11 Samuel Zamora

3

5

- 12 Instituto Geológico y Minero de España, C/ Manuel Lasala, 44 9º B, 50006 Zaragoza, Spain
- 13 Email address: s.zamora@igme.es

2

14	ABSTRA	CT
17		\sim $-$

15	Complete, articulated crinoids from the Ordovician peri-Gondwanan margin are rare. Here, we
16	describe a new species, <i>Iocrinus africanus</i> sp. nov., from the Darriwilian-age Taddrist Formation
17	of Morocco. The anatomy of this species was studied using a combination of traditional
18	palaeontological methods and non-destructive X-ray micro-tomography (micro-CT). This
19	revealed critical features of the column, distal arms, and aboral cup, which were hidden in the
20	surrounding rock and would have been inaccessible without the application of micro-CT. <i>Iocrinus</i>
21	africanus sp. nov. is characterized by the presence of seven to thirteen tertibrachials, three in-line
22	bifurcations per ray, and an anal sac that is predominantly unplated or very lightly plated. <i>Iocrinus</i>
23	is a common genus in North America (Laurentia) and has also been reported from the United
24	Kingdom (Avalonia) and Oman (middle east Gondwana). Together with <i>Merocrinus</i> , it represents
25	one of the few geographically widespread crinoids during the Ordovician and serves to
26	demonstrate that faunal exchanges between Laurentia and Gondwana occurred at this time. This
27	study highlights the advantages of using both conventional and cutting-edge techniques (i.e.
28	micro-CT) to describe the morphology of new fossil specimens.
29	
30	Subjects: Paleontology, Taxonomy

Keywords: Crinoidea, Paleozoic, Ordovician, Morocco, Micro-CT, Paleogeography

33

34

32

31

INTRODUCTION

	3
35	Ordovician crinoids from West peri-Gondwana (North Africa and Southwestern and Central
36	Europe) are relatively rare, with only a few species reported from Spain, France, Italy, Morocco,
37	Portugal, and the Czech Republic (Ubaghs, 1969; Ubaghs, 1983; Prokop & Petr, 1999; Ausich, Gil
<mark>38</mark>)	Cid & Domínguez Alonso, 2002; Ausich, Sá & Gutiérrez-Marco, 2007; Correia & Loureiro, 2009;
<mark>39</mark>	Zamora, Colmenar & Ausich, 2014; Sumrall et al., 2015). Crinoids from Morocco include an
40	incomplete specimen assigned to Ramseyocrinus sp. by Donovan and Savill (1988) from the
41	Upper Fezouata Formation, which is Floian (Lower Ordovician) in age (sensu Ausich, Sá &
42	Gutiérrez-Marco, 2007), and several well-preserved complete specimens of Rosfacrinus robustus
43	Le Menn and Spjeldnaes, 1996 from the Upper Tiouririne Formation (Lefebvre et al., 2007),
44	which is dated as Katian (Upper Ordovician).
45	Most of the crinoid genera from the Ordovician of peri-Gondwana are endemic, and this
46	hampers our ability to understand the migration patterns of crinoids during this important time
47	interval, in which several echinoderm classes reached major peaks in diversity (Guensburg &
48	Sprinkle, 2000; Sprinkle & Guensburg, 2004; Nardin & Lefebvre, 2010; Lefebvre et al., 2013).
49	Until now, the only exception was Merocrinus, which has been reported from England (Avalonia),
50	Spain (peri-Gondwana), and North America (Laurentia) (Ausich, Gil Cid & Domínguez Alonso,
51	2002). Herein, we report a new species of <i>Iocrinus</i> from the Ordovician of Morocco, thereby
52	extending the range of this genus with certainty to encompass West peri-Gondwana (in addition to
53	Avalonia and Laurentia; Donovan et al., 2011) and confirming its cosmopolitan distribution.
54	Iocrinus africanus sp. nov. is described based on a single well-preserved specimen, which was
55	collected from south Alnif (eastern Anti-Atlas, Morocco) and is preserved in a concretion found in
56	the Taddrist Formation, which is Darriwilian in age (Rábano, Gutiérrez-Marco & García-Bellido,
57	2014). In this paper, we study the new crinoid using both traditional techniques and X-ray

4

micro-tomography (micro-CT). This allows us to describe the morphology of *Iocrinus africanus* 58 59 sp. nov. in great detail and serves as a basis for comparison with other species of *Iocrinus*. 60 **Geological Setting and Stratigraphy** 61 Ordovician outcrops are very well developed and exposed in the Anti-Atlas Mountains of 62 63 Morocco (Destombes, Hollard & Willefert, 1985). Many units yield well-preserved specimens of echinoderms, a number of which are currently under study (e.g., Hunter et al., 2010; Van 64 Roy et al., 2010, in press; Sumrall & Zamora, 2011; Martin et al., in press), and these faunas 65 66 occur throughout sections from the Lower to Upper Ordovician. Numerous clades of echinoderms have been documented in these faunas, including stylophorans, solutes, 67 blastozoans, crinoids, asteroids, edrioasteroids, and cyclocystoids. 68 69 The Ordovician succession in the Anti-Atlas region is divided into the following lithostratigraphic units: the Outer Feijas Shale Group, the First Bani Sandstone Group, the 70 Ktaoua Clay and Sandstone Group, and the Second Bani Sandstone Group (Choubert, 1943; 71 72 Choubert & Termier, 1947; Destombes, Hollard & Willefert, 1985). The Outer Feijas Shale Group includes the Lower and Upper Fezouta formations (Tremadocian-Floian) and the 73 Tachilla Formation (Darriwilian) (Fig. 1). These units are characterized by siltstones that are 74 very rich in graptolites, with some thin sandstone interbeds, and contain exceptionally 75 preserved Burgess Shale-type faunas in places (Van Roy et al., 2010, in press; Martin et al., in 76 press). The overlying First Bani Group spans the Darriwilian to Sandbian and is subdivided into 77 five formations (Taddrist Formation, Bou-Zeroual Formation, Guezzart Formation, 78 Ouine-Inirne Formation, and Izegguirene Formation) that are chiefly comprised of sandstones 79 80 with interbedded shales. This group is the thickest, most constant, and most extensive sandstone

undetermined cheirurid (*Eccoptochile*? sp.). Other non-trilobite fossils include molluscs (e.g., a cyrtonellid tergomyan, bivalves such as *Praenucula* sp., and orthoconicnautiloids), hyoliths (*Elegantilites* sp.), echinoderms (Diploporita and Asterozoa indet.), conularids (*Exoconularia* sp.), and rare graptolites (*Didymograptus* sp.). In addition to the crinoid described herein, new cyclocystoids, the first ever reported from Africa, were recently presented from this locality and await formal description (Sprinkle, Reich & Lefebvre, 2015).

MATERIAL AND METHODS

The studied specimen is preserved in a yellowish carbonate concretion that is approximately 7 cm in length and 4.5 cm in width. The crinoid is preserved as a natural mould and includes the complete theca, articulated arms, and part of the column. The specimen is housed in the Museo Geominero (Madrid, Spain) under the repository number MGM 6754.

A latex cast of the specimen was prepared to study the morphology of the animal (Fig. 4). In addition, the specimen was imaged using micro-CT and digitally reconstructed to characterize the fossil in three dimensions (Fig. 5). The specimen was scanned on a Nikon XT H 225 cabinet scanner at the Natural History Museum, London with a 0.5 mm thick copper filter, 215 kV voltage, 177 μA current, and 3142 projections (each with an exposure time of 708 ms). Tomographic reconstruction was performed in Nikon CT Pro software using filtered back projection, giving a tomographic dataset with a voxel size of 37 μm. This dataset was then visualized with the free SPIERS software suite (Sutton *et al.*, 2012); an inverted linear threshold was applied to the dataset, and the pixels that could be unambiguously identified as representing the crinoid were manually assigned to a separate region-of-interest. Isosurfaces were rendered to give an interactive

	7
127	three-dimensional model of the fossil, which was subjected to weak smoothing and island removal
128	to reduce noise. Micro-CT slices, segmented images, and the interactive 3-D model (in VAXML
129	format) are provided as supplemental information (Data S1, S2).
130	
131	Terminology
132	The terminology used below follows Moore (1962), Ubaghs (1978), and Ausich et al. (1999); the
133	classification follows Ausich (1998). Note, the terminology used for the aboral plates differs from
134	that of Ausich, Gil Cid, and Domínguez Alonso (2002).
135	
136	Nomenclatural acts
137	The electronic version of this article in Portable Document Format (PDF) will represent a
138	published work according to the International Commission on Zoological Nomenclature (ICZN),
139	and hence the new names contained in the electronic version are effectively published under that
140	Code from the electronic edition alone. This published work and the nomenclatural acts it contains
141	have been registered in ZooBank, the online registration system for the ICZN. The ZooBank
142	LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through
143	any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for
144	this publication is: urn:lsid:zoobank.org:act:D091338E-643F-4D5A-8A08-7D7D190DBC2E.
145	The online version of this work is archived and available from the following digital repositories:
146	PeerJ, PubMed Central and CLOCKSS.
147	
148	

149	RESULTS
150	Systematic paleontology
151	Class CRINOIDEA Miller, 1821
152	Subclass DISPARIDA Moore and Laudon, 1943
153	Order MYELODACTYLIDA Ausich, 1998
154	Family IOCRINIDAE Moore and Laudon, 1943
155	Genus Iocrinus Hall, 1866
156	
157	Type species
158	Heterocrinus (Iocrinus) polyxo Hall, 1866 = Heteroccrinus subcrassus Meek and Worthen, 1865.
159	
160	Iocrinus africanus sp. nov.
161	urn:lsid:zoobank.org:act:D091338E-643F-4D5A-8A08-7D7D190DBC2E
162	
163	Holotype
164	MGM 6754, a nearly complete, articulated specimen preserved as a mould in a carbonate
165	concretion (Figs. 4, 5; Data S1, S2).
166	
167	Type locality and age
168	Close to the village of Battou, south Alnif, eastern Anti-Atlas, Morocco (Fig. 2); Taddrist
169	Formation, Darriwilian (Middle Ordovician).
170	

9 171 **Etymology** 172 Named in reference to the African continent. 173 **Diagnosis** 174 Basal plate height approximately 37 percent of radial plate height; radial plates 1.25 times higher 175 than wide; single, broad transverse ridge between adjacent radial plates; primibrachials 1.5 times 176 wider than high; three to five primibrachials; four to five secundibrachials; seven to thirteen 177 tertibrachials; three in-line bifurcations per ray; anal sac unplated or very lightly plated (except for 178 the robust column of plates from the C-ray superradial); proximal columnals pentastellate. 179 180 **Description** 181 Crown very small in size. Aboral cup medium bowl-shaped; smooth plate surfaces; radial and 182 183 basal plates sharply convex. Basal circlet 27 percent of aboral cup height; five basal plates, approximately 2 times wider 184 than high, much smaller than radial plates. Radial circlet 73 percent of aboral cup height; radial 185 plates five, maximum height approximately 1.25 times higher than maximum width; maximum 186 width of radial plate at mid-height, radials narrow sharply proximally, maximum width more than 187 10 times proximal width; maximum width 1.6 times distal width. Radial facets peneplenary, 188 approximately as deep as wide. A, B, D, E radial plates simple, C radial compound; C inferradial 189 approximately same size as simple radials; C superradial much smaller than C inferradial, wider 190 191 than high, distal heterotomous division with anal plates to left and C-ray arm to right.

All anal plates above aboral cup; column of 16 stout anal sac plates preserved from the left

facet on the C-ray superradial, plates very convex, successive plates with bend yielding a sinuous

192

appearance for this column of plates; each plate higher than wide, otherwise very similar to shape of brachials. Other anal sac plates disarticulated and collapsed within the crown, presumably sac plates were lightly calcified or uncalcified, except for the column of plates from the C superradial.

Arms robust, primaxil varies from third to fifth primibrachial (45553; ABCDE), secundaxil fourth or fifth secundibrachial; where known, tertaxil positioned on the seventh or thirteenth tertibrachial; as many as 16 unbranched quartibrachials on a branch of the A-ray arm. Brachials strongly convex aborally with flattened lateral, abambulacral extensions, rectangular uniserial, deep ambulcacral groove, more proximal brachials approximately 1.7 times wider than high. Brachial facet with two, merging aboral ligament fossae. Primaxial approximately the same size as non-axillary primibrachials; remaining brachials diminish in size distally.

Column strongly pentastellate, holomeric, heteromorphic, proximal column N3231323; obvious heteromorphic pattern lacking in mesistele, large portion of columnal facets presumably a petaloid articulation (but details not preserved). Preserved column higher than crown height and preserved in an open coil.

Remarks

Characters differentiating genera within the Iocrinidae are listed in Ausich, Rozhnov, and Kammer (2015). The combination of visible basal plates, three to five primibrachials, no fixed interradial plates, pentalobate/pentastellate columnal shape, holomeric column construction, and a petaloid facet clearly align the new crinoid described herein with the genus *Iocrinus*. Another feature that identifies the specimen as belonging to *Iocrinus* is the preservation of the column in an open coil. This is similar to *Iocrinus subcrassus*, which is thought to have had a holdfast that could coil around erect objects (Brett, Deline & McLaughlin, 2008; Meyer & Davis, 2009).

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

Species-level characters within *Iocrinus* include: the height of the basal plates, the height of the radial plates, radial plate height versus width, presence and character of the transverse ridge between adjacent radial plates, primibrachial shape, number of primibrachials, number of secundibrachials, number of tertibrachials, maximum number of in-line bifurcations in a ray, anal sac plating, and the shape of the proximal columnal (Table 1). *Iocrinus africanus* sp. nov. is distinguished from other *Iocrinus* species based on the shape of the radial plates, the number of tertibrachials, the number of bifurcations in-line per ray, and the lack of or very light plating of most of the anal sac. Donovan et al. (2011) reported the only other putative *Iocrinus* known from Gondwana, I. sp. cf. I. subcrassus from the Middle Ordovician of Oman. Assuming that this taxon does belong to *Iocrinus*, which cannot be confirmed without further information about the CD-interray and C-ray morphologies, the new Moroccan species differs from the Donovan et al. (2011) specimen as follows. *Iocrinus africanus* sp. nov. has a basal plate height approximately 37 percent of radial plate height; a broad transverse ridge; primibrachials 1.5 times wider than high; four to five secundibrachials; and three in-line bifurcations per ray. In contrast, I. sp. cf. I. subcrassus has a basal plate height approximately 50 percent of radial plate height; a narrow transverse ridge; primibrachials slightly higher than wide; seven secundibrachials; and as many as seven in-line bifurcations per ray. Taxonomic assignments within the Iocrinidae have received some attention in the last three

Taxonomic assignments within the Iocrinidae have received some attention in the last three decades (Warn, 1982; Guensburg, 1984; Donovan, 1985, 1989; Ausich, Rozhnov & Kammer, 2015); with the new species described herein, a total of eight species and one subspecies are currently recognized for *Iocrinus* (Webster & Webster, 2014). These include the Laurentian species: *I. crassus* (Meek and Worthen, 1865); *I. similis* (Billings, 1865); *I. subcrassus* (Meek and

Worthen, 1865); *I. subcrassus torontoensis* Fritz, 1925; and *I. trentonensis* Walcott, 1884; and the Avalonian species: *I. llandegleyi* Botting, 2003; *I. pauli* Donovan and Gale, 1989; and *I. whitteryi* Ramsbottom, 1961 (Table 2). Additional *Iocrinus* identifications left in open nomenclature are known from Avalonia, Laurentia, and Gondwana (for the previous potential Gondwanan occurrence, see Donovan *et al.*, 2011). *I. africanus* sp. nov. is Darriwilian in age, and thus it is among the oldest members of the genus (Table 2). In terms of morphology, it is equally dissimilar to species from both Laurentia and Avalonia. The occurrence of *I. africanus* sp. nov. in Morocco confirms the presence of *Iocrinus* in Gondwana and demonstrates that *Iocrinus*, together with *Merocrinus*, is the most geographically widespread Ordovician crinoid genus.

The use of micro-CT was essential for describing the morphology of *Iocrinus africanus* sp. nov. in full. The posterior interray is buried below the surface of the concretion and is hence not visible in the latex casts (Fig. 4); however, the posterior interray and the C-ray can be clearly seen in the micro-CT scans (Fig. 5; Data S1, S2). Without an understanding of these characters, it would not have been possible to confidently assign the specimen to the genus *Iocrinus*.

PALEOBIOGEOGRAPHICAL IMPLICATIONS

The Middle to Late Ordovician was characterized by high degrees of endemism in crinoids (Paul, 1976; Lefebvre *et al.*, 2013), and *Iocrinus* and *Merocrinus* are the only geographically widespread genera from this period (Fig. 6). Both genera first appeared in Gondwana and/or Avalonia during the Darriwillian. *Merocrinus* first occurred in Laurentia during the Sandbian, and *Iocrinus* first occurred in Laurentia during the Katian. Therefore, the known geographical distribution of these genera indicates that their migration to Laurentia was asynchronous. *Iocrinus* is a disparid crinoid,

	13
263	and disparids are usually recognized as having a more widespread geographic distribution and
264	temporal range than other clades (Kammer et al., 1998). Merocrinus is generally considered to be
265	a cladid (but see Sprinkle and Guensburg, 2013), which in general are not as cosmopolitan as
266	disparids, at least later during the Paleozoic. Unfortunately, there is not currently enough known
267	about the life history of Paleozoic crinoids to propose any explanation for the cosmopolitan nature
268	of <i>Iocrinus</i> and <i>Merocrinus</i> during the Ordovician.
269	
270	
271	ACKNOWLEDGEMENTS
272	We thank Isabel Pérez (University of Zaragoza) for providing photographs of the studied specimen
273	and Dan Sykes (Natural History Museum, London) for assistance with micro-CT. The specimen
274	was collected by Samuel Zamora on a field trip accompanied by Andrew Smith (Natural History
275	Museum, London). Juan Carlos Gutiérrez-Marco (Spanish Research Council) and Richard Fortey
276	(Natural History Museum, London) provided helpful comments on the associated fauna.
277	
278	
279	ADDITIONAL INFORMATION AND DECLARATIONS
280	Funding
281	Samuel Zamora is funded by a Ramón y Cajal Grant (RYC-2012-10576) and projects
282	CGL2012-39471 and CGL2013-48877 from the Spanish Ministry of Economy and
283	Competitiveness. Imran Rahman is funded by an 1851 Royal Commission Research Fellowship.
284	William I. Ausich is supported by the National Science Foundation project, Assembling the

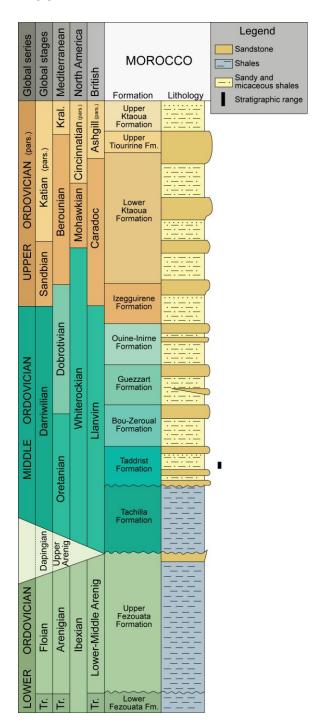
	14
285	Echinoderm Tree of Life (DEB 1036416). The funders had no role in study design, data collection
286	and analysis, decision to publish, or preparation of the manuscript.
287	
288	Grant Disclosures
289	The following grant information was disclosed by the authors:
290	Ramón y Cajal Grant RYC-2012-10576.
291	Projects CGL2012-39471 and CGL2013-48877 from the Spanish Ministry of Economy and
292	Competitiveness.
293	1851 Royal Commission Research Fellowship.
294	National Science Foundation, DEB 1036416.
295	
296	Competing Interests
297	No competing interests.
298	
299	Author Contributions
300	• Samuel Zamora conceived and designed the experiments, analyzed the data, wrote the paper,
301	prepared figures/tables, reviewed drafts of the paper.
302	• Imran Rahman performed the experiments, analyzed the data, wrote the paper, prepared
303	figures/tables, reviewed drafts of the paper.
304	• William Ausich analyzed the data, wrote the paper, prepared figures/tables, reviewed drafts of
305	the paper.
306	

307	Supplemental Information
308	Supplemental information for this article can be found online at the following links:
309	S1: https://fluff.bris.ac.uk/fluff/u3/ir12122/2mItdZD36sXtqlZhYzXQtQTES/
310	S2: https://fluff.bris.ac.uk/fluff/u1/ir12122/4y_W6sShmkjAFWN_tWCeYwTEH/
311	
312	REFERENCES
313	Ausich WI. 1998. Early phylogeny and subclass division of the Crinoidea (phylum
314	Echinodermata). Journal of Paleontology 72:499–510.
315	Ausich WI, Brett CE, Hess H, Simms MJ. 1999. Crinoid form and function. In: Hess H, Ausich
316	WI, Brett CE, Simms MJ, eds. Fossil crinoids. Cambridge: Cambridge University Press. 3–30.
317	Ausich WI, Gil Cid MD, Domínguez Alonso P. 2002. Ordovician [Dobrotivian (Llandeilian
318	Stage) to Ashgill] crinoids (phylum Echinodermata) from the Montes de Toledo and Sierra
319	Morena, Spain with implications for the paleogeography of Peri-Gondwana. Journal of
320	Paleontology 76 :975–992.
321	Ausich WI, Sá AA, Gutiérrez-Marco JC. 2007. New and revised occurrences of Ordovician
322	crinoids from southwestern Europe. Journal of Paleontology 81:1374–1383.
323	Ausich WI, Rozhnov SV, Kammer TW. 2015. Iocrinid crinoids from the Ordovician of the
324	Baltic Region, Estonia. Paleontological Journal 49:145–152.
325	Barrande J. 1872. Systême silurien du centre de la Bohême. 1ère partie: Recherches
326	paléontologiques. Supplément au Vol. I. Trilobites, crustacés divers et poissons. 647 pp. Chez
327	l'auteur et éditeur, Imprimerie de Charles Bellmann, Prague.

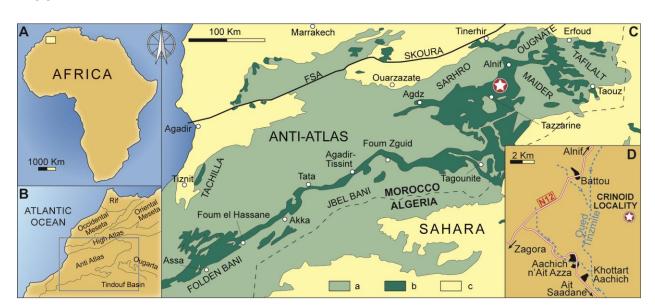
328	Bergström SM, Chen X, Gutiérrez-Marco JC, Dronov AV. 2009. The new chronostratigraphic
329	classification of the Ordovician System and its relations to major regional series and stages and
330	δ^{13} C chemostratigraphy. <i>Lethaia</i> 42 :97–107.
331	Billings E. 1865. Paleozoic fossils (from Silurian). Geological Society of Canada 1:1–426.
332	Botting JP. 2003. Llanvirn (Middle Ordovician) echinoderms from Llandegley rocks, central
333	Wales. Palaeontology 46:685–708.
334	Brett CE, Deline BL, McLaughlin PI. 2008. Attachment, facies distribution, and life history
335	strategies in crinoids from the Upper Ordovician of Kentucky. In: Ausich WI, Webster GD, eds
336	Echinoderm paleobiology. Bloomington: Indiana University Press. 23–52.
337	Choubert G. 1943. L'Acadien et l'Ordovicien de l'Anti Atlas. Comptes Rendus Adadémie
338	Sciences Paris 216 :1092–1094.
339	Choubert G, Termier H. 1947. Sur la stratigraphie de l'Ordovicien marocain. Comptes
340	Rendus sommaire Société géologique France 16 :335–337.
341	Cocks LRM, Torsvik TH. 2006. European geography in a global context from the Vendian to
342	the end of the Palaeozoic. In: Gee DG, Stephenson RA, eds. European lithosphere
343	dynamics. Geological Society, London, Memoirs 32:83–95.
344	Correia P, Loureiro J. 2009. Novas ocorrências de crinóides no Darriwiliano (Ordovícico
345	Médio) do anticlinal de Valongo (NW de Portugal). Paleolusitana 1:141-150.
346	Destombes J. 1972. Les trilobites du sous-ordre des Phacopina de l'Ordovicien de l'Anti-Atlas
347	(Maroc). Notes et Mémoires du Service Géologique du Maroc 240 : 1–114.
348	Destombes J, Hollard H, Willefert S. 1985. Lower Palaeozoic rocks of Morocco. In Holland
349	CH, ed. Lower Palaeozoic rocks of the world. Vol. 4. Lower Palaeozoic rocks of Northwest
350	and West-Central Africa. Chichester: John Wiley and Sons. 91–336.

	17
351	Donovan SK. 1985. The Ordovician crinoid genus <i>Caleidocrinus</i> Waagen and Jahn, 1899.
352	Geological Journal 20 :109–121.
353	Donovan SK. 1989. Pelmatozoan columnals from the Ordovician of the British Isles. Part 2.
354	Palaeontographical Society Monograph 142:69–114
355	Donovan SK, Gale AS. 1989. Iocrinus in the Ordovician of England and Wales. Palaeontology
356	32 :313–323.
357	Donovan SK, Savill JJ. 1988. Ramseyocrinus (Crinoidea) from the Arenig of Morocco. Journal
358	of Paleontology 62 :283–285.
359	Donovan SK, Miller CG, Sansom IJ, Heward AP, Schreurs J. 2011. A Laurentian Iocrinus
360	Hall (Crinoidea, Disparida) in the Dapingian or Darriwilian (Middle Ordovician, Arenig) of
361	Oman. Palaeontology 54 :525–533.
362	Fortey RA, Harper DAT, Ingham JK, Owen AW, Rushton AWA. 1995. A revision of
363	Ordovician series and stages from the historical type area. <i>Geological Magazine</i> 132 :15–30.
364	Fritz MA. 1925. The stratigraphy and paleontology of Toronto and vicinity, Part IV; Hydrozoa,
365	Echinodermata, Trilobita, and markings. Ontario Department of Mines, Annual Report 32:1-
366	34.
367	Guensburg TE. 1984. Echinodermata of the Middle Ordovician Lebanon Limestone, central
368	Tennessee. Bulletins of American Paleontology 86:1–100.
369	Guensburg TE, Sprinkle J. 2000. Ecologic radiation of Cambro-Ordovician echinoderms. In:
370	Zhuravlev AY, Riding R, eds. Ecology of the Cambrian radiation. New York: Columbia
371	University Press. 428–444.
372	Gutiérrez-Marco JC, Destombes J, Rábano I, Aceñolaza GF, Sarmiento GN, San José
373	MA. 2003. El Ordovícico Medio del Anti-Atlas marroquí: paleobiodiversidad, actualización

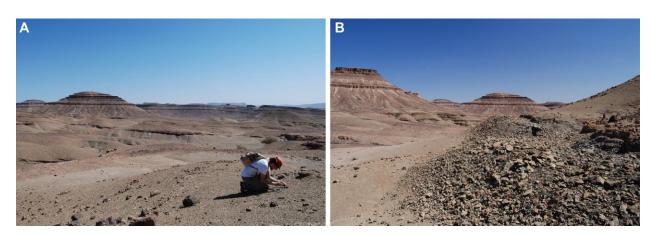
	19
396	Le Menn J, Spjeldnaes N. 1996. Un nouveau crinoïde Dimerocrinitidae (Camerata,
397	Diplobathrida) de l'Ordovicien supérieur du Maroc: Rosfacrinus robustus nov. gen., nov. sp.
398	Geobios 29 :341–351.
399	Martin ELO, Pittet B, Gutiérrez-Marco JC, Vannier J, El Hariri K, Lerosey-Aubril R,
400	Masrour M, Nowak H, Servais T, Vandenbroucke TRA, Van Roy P, Vaucher R,
401	Lefebvre B. In press. The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco:
402	age, environment and evolutionary perspectives. Gondwana Research.
403	Meek FB, Worthen AH. 1865. Descriptions of new species of Crinoidea, etc., from the Paleozoic
404	rocks of Illinois and some of the adjoining states. Proceedings of the Academy of Natural
405	Sciences of Philadelphia 17:143–155.
406	Meyer DL, Davis RA. 2009. A sea without fish. Life in the Ordovician sea of the Cincinnati
407	region. Bloomington: Indiana University Press. 347 pp.
408	Miller JS. 1821. A natural history of the Crinoidea or lily-shaped animals; with observations on
409	the genera Asteria, Euryale, Comatula and Marsupites, Bristol: Bryan and Co. City Printing
410	Office. 150 pp.
411	Moore RC. 1962. Ray structures of some inadunate crinoids. The University of Kansas
412	Paleontological Contributions, Echinodermata, Article 5:1–47.
413	Moore RC, Laudon LR. 1943. Evolution and classification of Paleozoic crinoids. Geological
414	Society of America Special Papers 46 :1–158.
415	Nardin E, Lefebvre B. 2010. Unravelling extrinsic and intrinsic factors of the early Palaeozoic
416	diversification of blastozoan echinoderms. Palaeogeography, Palaeoclimatology,
417	Palaeoecology 294 :142–160.
418	Paul, CRC. 1976. Palaeogeography of primitive echinoderms in the Ordovician. In: Bassett MG,

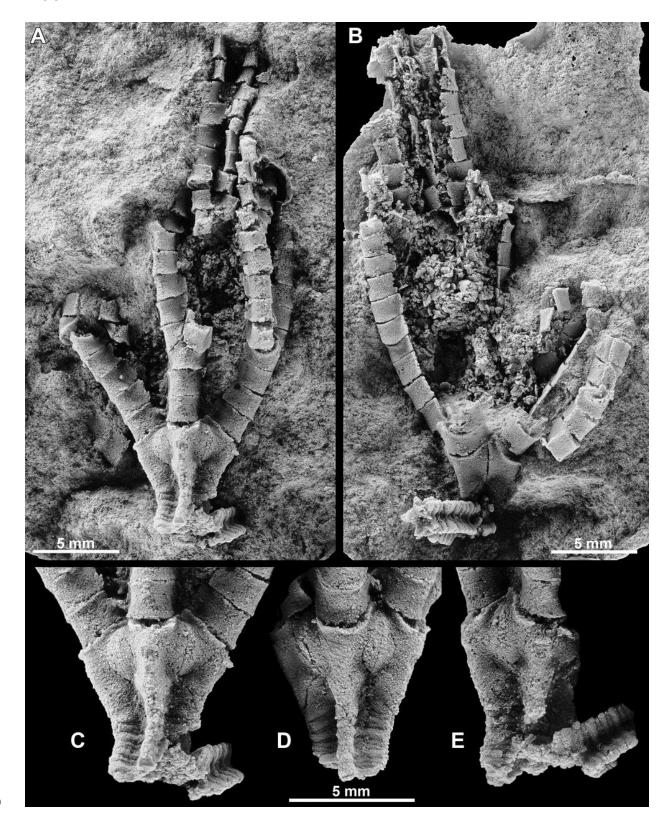

	22
464	Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological
165	Contributions, Monograph 1:77–89.
466	Webby BD, Cooper RA, Bergström SM, Paris F. 2004. Stratigraphic framework and time
467	slices. In: Webby BD, Paris F, Droser ML, Percival IG, eds. The great Ordovician
468	biodiversification event. New York: Columbia University Press. 41–47.
469	Webster GD, Webster DW. 2014. Bibliography and index of Paleozoic crinoids, coronates, and
470	hemistreptocrinoids, 1758–2012. http://crinoids.azurewebsites.net/ [April 2015]
471	Zamora S, Colmenar J, Ausich WI. 2014. The echinoderm faunas from the Fombuena
172	Formation (Upper Ordovician, Iberian Chains, Spain). In: Royo-Torres R, Verdú FJ, Alcalá L
173	eds. XXX Jornadas de Paleontología de la Sociedad Española de Paleontología.
174	¡Fundamental! 24 :257–259.
475	
176	FIGURE CAPTIONS
177	Figure 1. Chronostratigraphical chart for the Ordovician, indicating the levels that provided the
178	studied specimen. Correlations between stratigraphical units in the Anti-Atlas (after Destombes,
179	Hollard & Willefert, 1985; Gutiérrez-Marco et al., 2003; Villas et al., 2006), the British regional
480	time scale (Fortey et al., 1995), North American graptolite zonal sequences (Webby et al., 2004).
481	Mediterranean regional stages (Gutierrez-Marco et al., 2003), and global stages are shown.
482	Modified from Sumrall and Zamora (2011). Abbreviations: Kral., Kralodvorian; pars., partial; Tr.
183	Tremadocian.
184	
185	Figure 2. Geographical and geological setting of the eastern Anti-Atlas Mountains, Morocco,
186	showing the type locality (indicated by a star) close to the village of Battou. After Rábano <i>et al</i> .

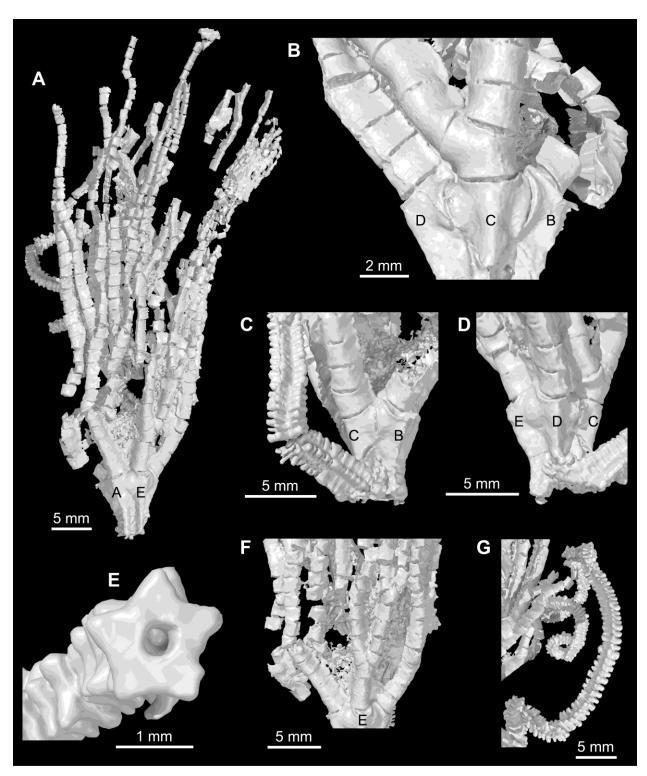
	23
487	(2014).
488	
489	Figure 3. Field photographs showing the Taddrist Formation and the levels yielding fossiliferous
490	concretions.
491	
492	Figure 4. <i>Iocrinus africanus</i> sp. nov. (MGM 6754) from the Darriwilian (Middle Ordovician) of
493	Morocco. A, B. General morphology including the complete theca showing the E-ray (A) and
494	BC-interray (B), the proximal column, and part of the arms. C. Detail of the theca showing the
495	E-ray. D. Detail of the theca showing the A-ray. E. Detail of the theca showing the D-ray. All
496	images are photographs of latex casts of the specimen whitened with ammonium chloride
497	sublimate.
498	
499	Figure 5. <i>Iocrinus africanus</i> sp. nov. (MGM 6754) from the Darriwilian (Middle Ordovician) of
500	Morocco. Digital reconstructions of the specimen. A. General morphology showing the
501	AE-interray. B. Detail of the theca showing the C-ray. C. Detail of the theca showing the
502	BC-interray. D. Detail of the theca showing the D-ray. E. Detail of the column showing
503	pentastellate shape and holomeric construction. F. Detail of the proximal arms showing the E-ray.
504	G. Column in an open coil. Abbreviations: A–E, ambulacra.
505	
506	Figure 6. Distribution of the major paleocontinents during the Middle Ordovician, showing the
507	known geographical distribution of <i>Iocrinus</i> and <i>Merocrinus</i> . Modified from Cocks and Torsvik
508	(2006).
509	


PeerJ reviewing PDF | (2015:09:6555:0:0:NEW 2 Sep 2015)

510	Table 1. Morphological comparison of <i>Iocrinus</i> species.
511	
512	Table 2. Stratigraphic and geographical distribution of species of <i>Iocrinus</i> and <i>Merocrinus</i> .
513	
514	
515	SUPPLEMENTAL INFORMATION
516	Supplemental Data S1. Micro-CT slices, working images, and associated SPIERSedit settings file.
517	Supplemental Data S2. Interactive 3-D model in VAXML format.
518	
519	
520	
521	
522	
523	
524	
525	
526	
527	
528	
529	
530	
531	
532	


533 FIGURE 1


538 FIGURE 2


540 FIGURE 3

549 FIGURE 4

551 FIGURE 5

552

554 FIGURE 6

TABLE 1

Diagnostic table for species of *locrinus* (* indicates type species)

locrinus species	Basal Plate Height	Radial Plate Height vs Width	Transverse Ribbing on Between Adjacent Radial Plates	Primibrachial Shape	Number of Primibrachials	Number of Secundibrachials	Number of Tertibrachials	Number of Arm Bifurcations in Line	Anal Sac Plating Robust	Proximal Column Shape
locrinus crassus	Approximately 50 % of radial plate height	Height approximately equals width	Yes, single, broad	2.0 times wider than high	4 to 5	4 to 6	4 to 8	As many as 7	Unknown	Pentastellate
locrinus Ilandegleyi	Approximately 67 % of radial plate height	Slightly wider than high	No	2.0 times wider than high	5 to 8	4 to 5	4 to 5	At least 3	Yes	Pentastellate
locrinus pauli	Approximately 60 % of radial plate height	Height approximately equals width	Yes, double, narrow	Less than 2.0 times wider than high	5	5 to 6	5 to 8	4	Yes	Pentalobate
locrinus similis	Unknown	Height approximately equals width	Unknown	1.5 times wider than high	3 to 4	Unknown	Unknown	Unknown	Unknown	Unknown
locrinus subcrassus*	Approximately 50 % of radial plate height	Height less than width	Yes, single, narrow	2.0 times wider than high	3 to 8	4 to 5	5 to 13	Typically 4 but 3 to 8	Yes	Pentalobate
locrinus subcrassus torontoensis	Approximately 50 % of radial plate height	Height approximately equals width	Yes, single, narrow	2.0 times wider than high	5	6 to 7	6 to 11	4	Yes	Pentastellate?
locrinus trentonensis	Approximately 50 % of radial plate height	Height approximately equals width	Yes, single, broad	1.5 times wider than high	4 to 6	6 to 9	> 12	4	Yes	Pentalobate?
locrinus whitteryi	Approximately 67 % of radial plate height	Slightly wider than high	No	More than 2.0 times wider than high	7	Unknown	Unknown	Unknown	Yes	Unknown
locrinus africanus n.sp.	Approximately 37 % of radial plate height	1.25 times higher than wide	Yes, single, broad	1.5 times wider than high	3 to 5	4 to 5	7 to 13	3	No	Pentastellate

571 TABLE 2

Genus	Species	Formation	Age	Location	Country	Paleo- continent
OCRINUS						
	locrinus sp. cf. I. subcrassus	Amdeh Formation	late Dapingian or early Darriwilian	Muscat	Oman	Gondwana
	locrinus llandegleyi	Builth Volcanic Group	Darriwillian	Wales	UK	Avalonia
	locrinus pauli	Camnant Mudstone	Darriwillian	Wales	UK	Avalonia
	locrinus pauli	Didmograptus bifidus Beds	Darriwillian	England	UK	Avalonia
	locrinus sp. cf. pauli	Llandeilo Flags	Darriwillian	Wales	UK	Avalonia
	locrinus cf. whitteryi	volcanic sandstones	Darriwillian	England	UK	Avalonia
	locrinus whitteryi	Chirbury Formation	Sandbian .	England	UK	Avalonia
	locrinus cf. subcrassus	Whittery Beds	Sandbian	England	UK	Avalonia
	locrinus subcrassus	Arnheim Formation	Katian	Southwestern Ohio Region	USA	Laurentia
	locrinus subcrassus	Lorraine Shale	Katian	New York	USA	Laurentia
	locrinus cf. subcrassus	Lorraine Shale	Katian	New York	USA	Laurentia
	locrinus subcrassus	Cobourg Limestone	Katian	Ontario	Canada	Laurentia
	locrinus subcrassus	Georgian Bay Formation	Katian	Ontario	Canada	Laurentia
	torontoensis	Dundas Formation	Katian	Ontario	Canada	Laurentia
	locrinus similis	Cobourg Limestone	Katian	Ontario	Canada	Laurentia
	locrinus subcrassus	Correyville Formation	Katian	Southwestern Ohio Region	USA	Laurentia
	locrinus sp.	Fort Atkinson Formation	Katian	Iowa and Illinois	USA	Laurentia
	locrinus subcrassus	Fairview Formation	Katian	Southwestern Ohio Region	USA	Laurentia
	locrinus sp.	Kope Formation	Katian	Southwestern Ohio Region	USA	Laurentia
	locrinus subcrassus	Liberty Formation	Katian	Southwestern Ohio Region	USA	Laurentia
	locrinus crassus	Maquoketa Shale	Katian	Illinois	USA	Laurentia
	locrinus trentonensis	Rust Formation	Katian	New York	USA	Laurentia
	locrinus trentonensis	Trenton Limestone	Katian	New York	USA	Laurentia
	locrinus subcrassus	Waynesville Formation	Katian	Southwestern Ohio Region	USA	Laurentia
MEROCRINUS						
	Merocrinus millanae	Guindo Shales	Darriwilian	Embalse de Fresnedas	Spain	Gondwan
	Merocrinus salopioe	Meadowtown Beds	Darriwilian		England	Avalonia
	Merocrinus britonensis	Mifflin Formation	Sandbian	Illinois	US	Laurentia
	Merocrinus britonensis	Platteville Group	Sandbian	Illinois, Iowa, Wisconsin, Minn	US	Laurentia
	Merocrinus impressus	Bromide Formation (Pooleville Mbr.)	Sandbian	Oklahoma	US	Laurentia
	Merocrinus impressus	5	?	?	Sweden	Baltica
	Merocrinus curtus	Kope Formation	Katian	Southwestern Ohio Region	US	Laurentia
	Merocrinus curtus	Rust Formation	Katian	New York	US	Laurentia
	Merocrinus retractilis	Rust Formation	Katian	New York	US	Laurentia
	Merocrinus sp.	Wisf Formation (Sinsinewa Mbr.)	Katian	Illinois and Iowa	US	Laurentia
	Merocrinus corroboratus	Trenton Limestone	Katian	New York	US	Laurentia
	Merocrinus typus	Trenton Limestone	Katian	New York	US	Laurentia