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ABSTRACT
Background. Ferroptosis is a new type of iron- and reactive oxygen species-dependent
cell death, studies on ferroptosis-related long noncoding RNAs (FerLncRNAs) in
clear cell renal cell carcinoma (ccRCC) are limited. The purpose of this study was to
investigate the potential prognostic value of FerLncRNAs and their relationship with
the immune microenvironment and immunotherapy response of ccRCC.
Methods. RNA sequencing data of 526 patients with ccRCC were downloaded from
The Cancer Genome Atlas (TCGA) database. The patients with ccRCC in TCGA
were randomly divided (1:1) into a training and testing cohort. ICGC and GEO
databases were used for validation. Screening for FerLncRNAs was performed using
Pearson’s correlation analysis with the reported ferroptosis-related genes. A FerLncRNA
signature was constructed using univariate, LASSO, and multivariate Cox regression
analyses in the training cohort. Internal and external datasets were performed to
verify the FRlncRNA signature. Four major FRlncRNAs were verified through in vitro
experiment.
Results. We identified seven FerLncRNAs (LINC00894, DUXAP8, LINC01426, PVT1,
PELATON, LINC02609, and MYG1-AS1), and established a risk signature and nomo-
gram for predicting the prognosis of ccRCC. Four major FRlncRNAs were verified with
the prognosis of ccRCC in the GEPIA and K-M Plotter databases, and their expressions
were validated by realtime PCR. The risk signature can also effectively reflect the
immune environment, immunotherapy response and drug sensitivity of ccRCC. These
FRlncRNAs have great significance to the implementation of individualized treatment
and disease monitoring of ccRCC patients.

Subjects Bioinformatics, Cell Biology, Molecular Biology, Nephrology, Oncology
Keywords Ferroptosis, lncRNA, Clear cell renal cell carcinoma, Immune microenvironment,
Immune checkpoin, Treatment

INTRODUCTION
Renal cell carcinoma (RCC) is the ninth most frequent cancer in males and fourteenth
most frequent cancer in females, the rise in RCC morbidity and mortality around the
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world has raised serious concerns (Nabi et al., 2018). The median overall survival (OS)
rate of patients with RCC remains unsatisfactory despite the recent rapid discovery and
extensive clinical usage of antiangiogenic drugs and immune checkpoint inhibitors (ICIs)
for the treatment of cancer, including RCC (Chen et al., 2020). Therefore, it is crucial to
investigate the the pathophysiology and development mechanisms of RCC and explore
novel therapeutic targets. Clear cell RCC (ccRCC) is the most common type of RCC,
accounting for approximately 75–80% of all cases of RCC (Nabi et al., 2018). Recent
research has demonstrated that ccRCC cells are vulnerable to ferroptosis, a new form of
iron-dependent programmed death that differs from previous types of cell death in terms
of morphologically, genetically, and chemically properties (Chen et al., 2020; Ganini et al.,
2022). Lipid peroxidation, iron buildup, and glutathione deprivation are the hallmarks
of ferroptosis, which is intimately associated with the formation and progression of
cancer (Stockwell et al., 2017). A unique approach to treat cancer, particularly in cases of
drug resistance following traditional therapy, involves activating the process of ferroptosis
in cancer cells (Chen et al., 2020).

Long noncoding RNAs (lncRNAs) are noncoding RNAs greater than 200 nucleotides
in length. Genetic research has turned its attention to lncRNAs because studies have
revealed that these molecules are crucial for the control of the cell cycle, differentiation,
and epigenetic regulation (Zhai et al., 2019). Although lncRNAs do not encode proteins,
they have several specific functions, such as transcriptional regulation, mRNA processing,
and posttranscriptional regulation of mRNA (Zhai et al., 2019). Studies have also shown
that lncRNAs play a role in regulating ferroptosis (Mao et al., 2018; Xie & Guo, 2021);
however, the impact of ferroptosis on lncRNAs-dependent ccRCC progression, immune
microenvironment and immunotherapy response has been scarcely studied (Han et al.,
2022; Xing et al., 2021; Zhou et al., 2022).

In this study, we aimed to investigate the ferroptosis-related genes (FRGs) and
FerLncRNAs in ccRCC. We established a ferroptosis-related lncRNA prognostic signature
to predict the individual prognosis of ccRCC. To validate the prognostic signature, we
investigated its efficiency and accuracy in the training, testing, total cohorts in TCGA
database, as well as ICGC database. The results obtained with GEPIA, and K-M Plotter
data supported the predictive ability of the major lncRNAs in risk signature. In addition,
immune cell infiltration and check point expressions associated with this signature were
explored. Our study demonstrated and proved that the prognostic signature can be applied
in the clinical prognosis of ccRCCpatients. Importantly, our study provided a new approach
for predicting the response to treatment, including immunotherapy, chemotherapy and
targeted therapy, in ccRCC patients.

MATERIALS AND METHODS
Data source
The RNA-seq (FPKM) data for ccRCC samples (n= 539) and adjacent nontumorous
kidney samples (n = 72) were retrieved from The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov). Corresponding clinicopathological characteristics of
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Table 1 Clinical characteristics and related cohort grouping of 526 patients with ccRCC.

Variates Type Overall cohorts
(n= 526)

Training cohorts
(n= 264)

Testing cohorts
(n= 262)

P value

Age <=60 years 264(50.19%) 135(51.14%) 129(49.24%) 0.7275
>60 years 262(49.81%) 129(48.86%) 133(50.76%)

Gender Female 183(34.79%) 97(36.74%) 86(32.82%) 0.3944
Male 343(65.21%) 167(63.26%) 176(67.18%)

Grade G1-G2 239(45.44%) 124(46.97%) 115(43.89%) 0.631
G3-G4 279(53.04%) 137(51.89%) 142(54.2%)
Unknown 8(1.52%) 3(1.14%) 5(1.91%)

Stage I–II 318(60.46%) 164(62.12%) 154(58.78%) 0.4872
III–IV 208(39.54%) 100(37.88%) 108(41.22%)

M M0 418(79.47%) 207(78.41%) 211(80.53%) 0.0709
M1 78(14.83%) 36(13.64%) 42(16.03%)
Unknown 30(5.7%) 21(7.95%) 9(3.44%)

N N0 238(45.25%) 117(44.32%) 121(46.18%) 0.9085
N1 16(3.04%) 8(3.03%) 8(3.05%)
Unknown 272(51.71%) 139(52.65%) 133(50.76%)

T I–II 336(63.88%) 177(67.05%) 159(60.69%) 0.1535
III–IV 190(36.12%) 87(32.95%) 103(39.31%)

patients with ccRCC (n= 526), including OS, were also obtained from the TCGA database.
Based on the patient ID number, we matched their transcriptome data with clinical
information and excluded the data for patients who did not match. Thus, we obtained
complete gene expression profiles of 526 patients with ccRCC. Using the caret R package,
all patients with ccRCC were randomly divided into two cohorts (1:1): training and test.
The specific clinical parameters for both cohorts, as well as for the entire TCGA cohort,
are shown in Table 1. There were no significant differences in the clinical characteristics of
patients between the training and test cohorts.

From the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/), three ccRCC datasets (GSE15641 (Jones et al., 2005), GSE46699 (Eckel-Passow et al.,
2014), and GSE40435 (Wozniak et al., 2013)) were selected for bioinformatics analysis. The
expression data of 91 ccRCC patients from the ICGC database (https://dcc.icgc.org/analysis)
were obtained for the external validation of the risk signature.

Identification of FerLncRNAs
lncRNAs and protein-coding genes were classified using the Ensembl human genome
browser GRCh38.p13 (http://asia.ensembl.org/index.html) (Cunningham et al., 2019).
FRGs were identified in the FerrDb (http://www.zhounan.org/ferrdb/current/) (Zhou & Bao,
2020). Pearson’s correlation coefficients were then calculated to determine the correlation
between the expression of FRGs and the corresponding lncRNAs. Ferroptosis-associated
lncRNAs were identified based on p< 0.001 and the absolute value of the Pearson’s
correlation coefficient greater than 0.35.
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Construction and validation of a prognostic FerLncRNA signature
Screening for differentially expressed FRGs and lncRNAs between tumor and nontumor
tissues was performed using the edgeR R package. The screening criteria were a false
discovery rate of p< 0.001 and |log2FC|≥2, LncRANwith expression value of 0 was deleted.
Next, the differentially expressed lncRNAs were analyzed by univariate Cox regression
analysis with OS to identify the prognostic lncRNAs in the entire cohort. The univariate
variables with P-values of <0.05 were included in the least absolute shrinkage and selection
operator (LASSO) analysis, which was used to further select useful predictive features to
avoid overfitting of the model. Subsequently, a multivariate Cox regression analysis of
candidate ferroptosis-associated lncRNAs was performed to assess their contribution as
prognostic factors for OS in the training group. Finally, seven best ferroptosis-associated
lncRNAs were identified for the prognostic model. The risk score of each patient was
calculated based on this prognostic signature according to the normalized expression levels
of FerLncRNAs and corresponding regression coefficients as follows:

Risk score=
n∑

k=1

Coefκ ∗Xκ.

The patients in the training cohort were divided into low- and high-risk groups based on
the median risk score, and OS was compared between the groups using the Kaplan–Meier
method and log-rank test. The area under the time-dependent ROC curve (AUC) was then
determined using the survivalROC R package to assess the predictive accuracy of lncRNA
features associated with ferroptosis. To validate this prognostic model, the risk score for
each patient in the test cohorts, overall cohorts, and ICGC cohorts was calculated using
the same way to confirm the stability of the established model.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis and Gene Ontology (GO) enrichment analysis of differentially
expressed FRGs
The clusterProfiler R package was used for the enrichment analysis of differentially
expressed genes based on KEGG and GO pathway annotations.

Construction of an lncRNA–mRNA coexpression network
To demonstrate the correlation between FerLncRNAs and their corresponding mRNAs, we
mapped an mRNA–lncRNA coexpression network using the Cytoscape software (version
3.8.2, Mac OSX, http://www.cytoscape.org/). A Sankey diagram was then plotted to further
demonstrate the degree of correlation between FerLncRNAs and their corresponding
mRNAs.

Principal component analyses
We utilized the principal component analysis (PCA) to reduce the dimension and visualize
the renal cancer patients with different risk values.

Immunity analysis and gene expression
Based on the results of immunotyping of pancancer in the literature (Thorsson et al., 2018),
we compared the relationship between risk score and different immunotyping (C1: wound
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healing, C2: IFN-gamma dominant, C3: inflammatory, C4: lymphocyte depleted, C5:
immunologically quiet, and C6: TGF-beta dominant-characterized). The infiltration of
immune cells was evaluated using the CIBERSORT tool (Newman et al., 2015). Immune
and stromal cell scores were calculated using the Estimation of Stromal and Immune cells
in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm. The Tumor
Immune Estimation Resource (TIMER), CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC algorithms were compared to assess cellular
components or cell immune responses between the high- and low-risk groups based on the
FerLncRNA signature. In addition, the algorithm for single sample gene set enrichment
analysis (ssGSEA) was utilized to determine the scores of tumor microenvironment (TME)
cells in each sample (Rooney et al., 2015) with the GSVA package. This score is used to
quantify the types of tumor infiltrating immune cells between the two groups. Potential
immune checkpoints were retrieved from previous literature.

External verification
The gene expression profiling interactive analysis (GEPIA, http://gepia.cancer-pku.
cn/) (Tang et al., 2017) contained RNA-seq and clinical data compiled by TCGA and
GTEx after standardized analysis. The K-M Plotter database (http://kmplot.com/analysis/;
Lanczky & Gyorffy, 2021) included data on the correlation between the gene expression and
prognostic data of 530 patients with ccRCC. The expression levels of the major FRlncRNAs
and the prognostic correlation were verified in the above two online databases.

Cell culture and treatment
Human renal proximal tubule epithelial cells (HK-2 cells) and renal clear cell carcinoma
cell lines (786-0, and Caki-1) were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, United States). Cells were incubatedat 37 ◦C in a humid 5% CO2

environment and routinely cultured in RPMI 1640 or DEM supplemented with 10% fetal
bovine serum (Invitrogen, Carlsbad, CA, United States).

RNA extraction, reverse transcription, and quantitative real-time PCR
(qRT-PCR)
A spectrophotometer is used to determine the quantity and quality of total RNA after it
has been extracted from the aforementioned cells using the total RNA extraction micro-Kit
(RNT411-03; Guangdong, China). Then, cDNA was synthesized using SuperScript II
Reverse Transcriptase, oligo 18dT, and random primers (hexamers) (Invitrogen). On
a Roche LightCycler 480 sequence detection system, qRT-PCR was carried out under
the following conditions: 30 s of predenaturation at 95 ◦C, 40 cycles of denaturation
at 95 ◦C lasting 5 s, and 30 s of annealing and extension at 60 ◦C. The constitutive
control used was human glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the
levels of gene expression were determined using the 2−11 CT function.The following
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primer sequences were used: PVT1, (forward) 5′-CCTGGTGAAGCATCTGATGCACG-
3′ and (reverse) 5′-GCCAGGCTTTGTGGCACACGC-3′; LINC00894, (forward) 5′-
GCAGGGTCTCTTGAGTTCCT-3′, and (reverse) 5′-TTCCTCAAGCTTCTCCAGGG-
3′; DUXAP8, (forward) 5′-AGGATGGAGTCTCGCTGTATTGC-3′, and (reverse) 5′-
GGAGGTTTGTTTCTTCTTTTTT-3′; LINC01426, (forward) 5′-CGCACCCAGATACTT
TTCGT-3′, and (reverse)5′-GCCGTTGAGGTTGTCGTAAT-3′. PCR reactions of each
sample were done in triplicate. All results are presented as the mean ± standard deviation
(SD).

Prediction of immunotherapy response
Tumor Immune Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/) (Fu et
al., 2020) algorithms were used to predict immune checkpoint response inhibitors in
the high-risk and low-risk group. Immune Cell Abundance Identifier (ImmuCellAI,
http://bioinfo.life.hust.edu.cn/ImmuCellAI/#!/) (Miao et al., 2020) is a computational
method published in 2020 to predict the response to immune checkpoint blockade based
on the abundance of immune cells, particularly different T cell subsets. The abundance of
infiltrating immune cells was calculated by ImmuCellAI and used to develop the response
prediction model. The immunotherapy response prediction model was developed using a
support vector machine with the radial basis function kernel.

Assessment of the sensitivity of chemotherapy and molecular drugs
To estimate the risk score in predicting the response to chemotherapy and molecular
drugs, the pRRophetic R package was applied to calculate the half-maximal inhibitory
concentration (IC50) of samples between the low-risk and high-risk groups. The IC50
between the low- risk and high-risk groups was compared by the Wilcoxon signed-rank
test.

Statistical analysis
TheWilcoxon test was used to compare the proportions of tumor-infiltrating immune cells
and the expression levels of immune checkpoint molecules between the high- and low-risk
groups. Spearman’s correlation analysis was used to analyze the correlations between
tumor-infiltrating immune cells. Differences in the proportions of clinical features were
analyzed using a chi-squared test. Univariate Cox regression, LASSO, and multivariate
Cox regression analyses were performed to determine independent prognostic factors for
OS. The predictive accuracy of the OS prognostic model was assessed by a time-dependent
AUC analysis. All statistical analyses were performed using the R software (version 4.1.0;
R Core Team, 2021) and RStudio (version 2021.09.1 Build 372 for macOS; RStudio Team,
2021). Statistical significance was defined as a two-tailed P-value of <0.05.

RESULTS
Identification of prognostic differentially expressed FerLncRNAs in
Patients with ccRCC
The overall workflow of this study is shown in Fig. S1. Analysis of RNA-seq data from
patients with ccRCC resulted in the identification of 14,056 lncRNAs. FerLncRNAs were
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Figure 1 GO and KEGG pathway analyses of differentially expressed FRGs in ccRCC. (A) GO analysis
of differentially expressed FRGs. (B) Chord plots illustrating the top six enriched items in the GO terms
biological process, cellular component, and molecular function (right); genes contributing to the enrich-
ment (left), arranged by their expression levels. (C) KEGG pathway analysis of differentially expressed
FRGs.

Full-size DOI: 10.7717/peerj.14506/fig-1

identified using 259 downloaded FRGs (Zhou & Bao, 2020). The expressions of 3,012
FerLncRNAs were found to be correlated (|R|>0.35 and p< 0.001) with the expression of
FRGs. 77 FRGs were differentially expressed between benign and malignant tumor tissues.

Enrichment analysis of differentially expressed FRGs in ccRCC
Based on the GO analysis at the biological process level, differentially expressed FRGs were
mainly enriched in response to hypoxia, response to decreased oxygen levels, and response
to oxygen levels; at the cellular component level, differentially expressed FRGs were mainly
enriched in the apical part of the cell, apical plasma membrane, and basolateral plasma
membrane; and at the molecular function level, differentially expressed FRGs were mainly
enriched in iron ion binding, oxidoreductase activity, acting on single donors with the
incorporation of molecular oxygen, and acting on NADPH (Fig. 1A). At these three levels,
the top six enriched terms and the specific genes involved are presented in Fig. 1B.

Based on the KEGG pathway analysis, the differentially expressed FRGs were mainly
enriched in the HIF-1 signaling pathway, ferroptosis, microRNA in cancer, the PPAR
signaling pathway, bladder cancer, autophagy, programmed death ligand 1 (PD-L1)
expression, and the PD-1 checkpoint pathway (Fig. 1C).
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Construction of the prognostic model in the training cohorts
The correlation between differentially expressed FerLncRNAs and patient survival
information was evaluated using univariate Cox analysis in training cohorts, which
identified 30 prognostic lncRNAs in the training cohort. Because of the large number,
LASSO analysis was conducted to avoid overfitting of the model (Fig. 2A). Eventually,
the following 10 FerLncRNAs were selected: LINC00894, DUXAP8, LINC01426, PVT1,
MIR155HG , LINC01355, PELATON, LINC02609, MYG1-AS1, and PRKAR1B-AS1.

To further evaluate the significance of these differentially expressed FerLncRNAs in
normal and malignant tissues and their prognostic significance in the model construction,
multivariate Cox regression analysis was performed in the training group, which revealed
that seven FerLncRNAs were independent prognostic factors for patients with ccRCC.
Therefore, a seven-FerLncRNA signature was constructed to predict the OS of each patient
with ccRCC. The risk score was calculated using the following equation:

Risk score= 0.967×Expression of LINC00894+0.786×Expression of DUXAP8+0.069

×Expression of LINC01426+0.103×Expression of PVT1+0.132

×Expression of PELATON+0.245×Expression of LINC02609+0.291

×Expression of MYG1−AS1.

Based on the median risk score, patients were divided into a high- and low-risk group.
Kaplan–Meier curves demonstrated that the high-risk group had a worse prognosis in
the training cohort (Fig. 2B). The accuracy of the prognostic signature was evaluated by
the ROC curve, the AUC values of 1, 3, 5, 7, and 10 years of overall survival (OS) were
0.896, 0.793, 0.801, 0.823, and 0.967, respectively (Fig. 2C). As to the 5-year AUC values
of prognostic signature compared with other clinicopathological factors (age, gender,
grade, stage, T, M, and N), the prognostic signature has the highest values (Fig. 2D). The
heatmap showed remarkable differences in the expression of seven FerLncRNAs between
the high-risk group and the low-risk group (Fig. 2E), the scatter plot indicated that ccRCC
patients with a high-risk score had a lower survival rate than those with a low-risk score (Fig.
2F). Moreover, the distribution map of the risk score was consistent with the categorization
of patient groups (Fig. 2G).

Validation of the prognostic model
To validate the predictive capacity of the FRlncRNA signature, risk scores of patients were
calculated in the testing cohorts and overall cohorts, and patients were classified into the
low- risk group and the high-risk group based on the median risk scores in the training
cohorts. The Kaplan–Meier survival analysis of OS in the testing and overall cohorts
demonstrated that high-risk group had a worse prognosis (all P < 0.001, Figs. 3A and
3G). The 5-year ROC curves of testing cohorts (AUC = 0.739) and overall cohorts (AUC
= 0.772) demonstrated that the FRlncRNA signature has a better predictive capability
compared with other clinicopathological factors (Figs. 3B and 3H, respectively). The AUC
values of 1-, 3-, 5-, 7-, and 10-years of OS were 0.599, 0.634, 0.739, and 0.838 in testing
cohorts (Fig. 3C), and the the AUC values of 1-, 3-, 5-, 7-, and 10-years of OS were
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Figure 2 Construction and evaluation of FerLncRNAs prognostic signature in training cohorts. (A)
Least absolute shrinkage and selection operator (LASSO) regression was performed with the minimum
criteria. (B) Kaplan–Meier curves for overall survival (OS) of the patients from the high- and low-risk
groups. (C) ROC curves and their AUC values represented (continued on next page. . . )

Full-size DOI: 10.7717/peerj.14506/fig-2
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Figure 2 (. . .continued)
1-, 3-, 5-, 7, and 10-year predictions. (D) ROC curves of prognostic signature and clinicopathological
factors (age, gender, grade, stage, T, M, and N) for 5-year AUC. (E) Heatmap showing expression of the
seven FerLncRNAs between the high- and low-risk groups. (F) Scatter plot showing the correlation be-
tween the survival status and risk score of ccRCC patients. (G) Risk score distribution plot showing the
distribution of high-risk and low-risk ccRCC patients.

0.739, 0.712, 0.772, and 0.909 in overall cohorts (Fig. 3I), these results further validate
the prognostic signature. The consistent expression profiles of seven FRlncRNAs in the
training cohorts are shown in the heatmaps (testing cohorts, Fig. 3D; overall cohorts, Fig.
3J). The survival rate of high-risk group was lower than that of low-risk group, and the risk
score distribution map confirmed that the risk score of high-risk group was higher (testing
cohorts, Figs. 3E and 3F; overall cohorts, Figs. 3K and 3L).

In addition, ICGC cohorts were used to evaluate the constructed model, which showed
consistent expression profiles of the risk FRlncRNAs, and a good predictive capability of
OS for patients with ccRCC (Fig. S2).

These results show that, compared with other prediction models reported in the recent
studies with ferroptosis in ccRCC, our FRlncRNAs prediction model has great advantages
and clinical operability with less LncRNA number and the highest 5-year AUC value (Xing
et al., 2021; Zhou et al., 2022; Chen et al., 2022d; Bai et al., 2022) (Table S1). Therefore, it
can be used as a good index to predict the prognosis of ccRCC patients.

Taken together, our data suggested that the FRlncRNA signature showed a stable
prognostic-predictive power.

PCA and stratified survival analysis of clinicopathological
characteristics
The PCA schematic diagram shows two different risk levels of ccRCC patients in entire
gene expression, ferroptosis genes expression, ferroptosis-related differentially expressed
lncRNAs expression, and seven lncRNAs risk models (Figs. 4A–4D, respectively).

To assess the predictive ability of FRlncRNA signature and its stability in predicting
OS in high-risk and low-risk groups, we performed stratified survival analysis of
clinicopathological factors including age (<=60 years vs. >60 years), grade (Grade 1-2
vs. Grade 3-4), gender (Male vs. Female), stage (Stage I-II vs. Stage III-IV), T (T1-2 vs.
T3-4), M (M1 vs. M0). The results of Kaplan–Meier survival analysis including different
clinical factors further showed that OS in high-risk group was worse than that in low-risk
group (all P < 0.01) (Fig. 4E).

Correlation between the FerLncRNA prognostic signature and
Clinicopathological features
Strong correlations were observed between the risk scores and clinicopathological
characteristics (stage, grade, T, M, and survival status) with ccRCC (Fig. 5A), that is, as
the stage, grade, metastasis and mortality increased, the risk score also gradually increased
(Fig. 5B, all P < 0.001).
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Figure 3 Validation of the FerLncRNAs prognostic signature for ccRCC patients in testing cohorts
and overall cohorts. Kaplan–Meier curves for overall survival (OS) of the patients from the high- and
low-risk groups in the testing cohorts (A) and overall cohorts (G); ROC curves of prognostic signature
and clinicopathological factors (age, gender, grade, stage, T, M, and N) for 5-year AUC in the testing co-
horts (B) and overall cohorts (H); ROC curves and their AUC values showed 1-, 3-, 5-, 7-, and 10-year
predictions in the testing cohorts (C) and overall cohorts (I); Heatmap of seven FRlncRNA expression
profiles showed the expression of FRlncRNAs in high-risk and low-risk groups in the testing cohorts (D)
and overall cohorts (J); Risk score distribution plot showed the distribution of high-risk and low-risk in
the testing cohorts (E) and overall cohorts (K); Scatter plot showed the correlation between the survival
status and risk score in the testing cohorts (F) and overall cohorts (L).

Full-size DOI: 10.7717/peerj.14506/fig-3

Construction and evaluation of the prognostic nomogram
To determine whether the risk score was an independent prognostic factor in patients
with ccRCC, univariate and multivariate Cox regression analyses were performed using
clinical characteristics of the patients and their risk scores. The results demonstrated that
the risk score was an independent prognostic factor (P < 0.05) (Figs. 6A and 6B). Then,
using the clinicopathological characteristics, including age, grade, stage and risk score, the
nomogramwas constructed using the rms package in R to predict the 1-, 3-, 5-, and 10-year
OS of patients with ccRCC (Fig. 6C). The results of the multivariate ROC curve showed
that the 5-year AUC value of nomogram was 0.788, which was higher than that of the age
(0.557), grade (0.675), and stage (0.725), indicating that the nomogram had the ability of
accurate prediction for survival outcomes of ccRCC (Fig. 6D). The time-dependent AUC
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Figure 4 PCA analysis and survival analysis of ccRCC patients stratified by different clinicopathological features. PCA analysis for the entire
gene expression (A), Ferroptosis genes (B), differentially expressed ferroptosis-related lncRNAs (C), and seven FRlncRNAs risk models (D) in high
and low risk groups in ccRCC patients. Kaplan–Meier curves (D) indicated the survival outcomes of high- and low-risk ccRCC patients stratified ac-
cording to the age (<=60 years vs.>60 years), grade (Grade 1–2 vs. Grade 3-4), gender (Male vs. Female), stage (Stage I–II vs. Stage III–IV), T (T1-2
vs. T3-4), M (M1 vs.M0), respectively (all p< 0.01).

Full-size DOI: 10.7717/peerj.14506/fig-4

analysis showed that the prognostic value of the nomogram was significantly higher than
that of age, stage, and grade over a time span of 1 to 10 years (Fig. 6E).

We used the calibration curve to observe whether the actual prognostic value was
consistent with the predicted value of the nomogram and found that the calibration curves
of 1-, 3-, 5-, and 10-year survival rates were consistent with the nomogram (Fig. 6F).
The DCA curves also showed that the nomogram had a favorable prognostic effect and a
better clinical value than stage (Fig. 6G). The clinical influences of the risk score for ccRCC
patients in the training, and testing cohorts are showed in Fig. S3.

Functional enrichment analysis of the risk signature
To explore the biological functions associated with the risk signature, the differentially
expressed genes between the high- and low-risk groups were used to perform GO and
KEGG analysis. GO analysis consisted of molecular function (MF) analysis mainly
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Figure 5 Relationships between the risk scores and clinicopathological features. (A) Heatmap showing
the FerLncRNA prognostic signature and clinicopathological features of the low- and high-risk patients
with ccRCC. Color codes are used to indicate different clinicopathological parameters and risk levels. (B)
Correlation analyses of the FerLncRNA prognostic signature with the clinicopathological characteristics
of the patients with ccRCC according to the grade, stage, M, T, and survival status, respectively (all P <
0.001).

Full-size DOI: 10.7717/peerj.14506/fig-5

including antigen biding, immunoglobulin receptor binding; cellular component (CC)
analysis mainly containing immunoglobulin complex, external side of plasma membrance;
biological process (BP) analysis mainly including B cell receptor signaling pathway,
complement activation, and phagocytosis (Fig. 7A). The KEGG pathway enrichment
analysis displayed that cytokine receptor interaction, IL-17 signaling pathway, and NF-
kappa B signaling pathway were enriched (Fig. 7B). The ‘‘pathway-gene clustering’’ for GO
(Fig. 7C) and KEGG enrichment analysis (Fig. 7D) were plotted.

Construction of a lncRNA–mRNA coexpression network
We first explored the correlation between the seven FerLncRNAs, Fig. 8A shows thatmost of
our FerLncRNAs are positively correlated with each other. There are 28 ferroptosis-related
genes associated with seven FerLncRNAs. Figure 8B Sanky diagram indicates that there
is a wide and complex correlation between them. To explore the potential roles of the
seven FerLncRNAs in ccRCC, a lncRNA–mRNA coexpression network that contained 35
lncRNA–mRNA pairs was constructed using Cytoscape (Fig. 8C). The correlation of seven
FerLncRNAs and 28 FRGs were plotted (Fig. 8D).

External verification of the major genes
By inquiring the relevant literatures and online database (Meng, Shao & Feng, 2021; Jiang
et al., 2021b; Hu et al., 2020; Zhou et al., 2020), we decided to select four FRlncRNAs
(LINC00894, LINC01426, PVT1, and DUXAP8) for further investigation. In ICGC
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Figure 6 Identification of independent prognostic variables and nomogram construction. (A) Univariate Cox survival analysis showed that
FerLncRNA signature and other clinical factors (age, gender, grade, stage, T, M, and N) were prognosis-related variables in overall cohorts. (B) Mul-
tivariate Cox survival analysis showed the FerLncRNA signature was an independent prognostic factor, as well as age, grade, and stage, T in over-
all cohorts. (C) Prognostic nomogram for predicting 1-, 3-, 5-, and 10-year OS of patients with ccRCC. (D) Multivariate 5-year ROC curve showed
predictive accuracy of the nomogram was better to other clinicopathological variates. (E) Time-dependent ROC curves to compare AUC values of
the nomograms and other clinical factors within a time range from 1 to 10 years. (F) Calibration curves of nomogram displayed the concordance be-
tween predicted and observed 1-, 3-, 5-, and 10-year OS. (G) DCA curves for the nomogram and stage.

Full-size DOI: 10.7717/peerj.14506/fig-6

database, the expression of LINC00894, LINC01426, PVT1, and DUXAP8 were obviously
elevated in ccRCC compared with normal kidney tissues (Figs. 9A–9D, respectively, all
P < 0.05). The expression trends were also observed as to LINC00894, LINC01426, and
PVT1 which were further validated with ccRCC cohorts from GEO database (GSE15641,
GSE46699, GSE40435, Figs. 9E–9G, respectively, all P < 0.01).

Further, we used two databases (GEPIA and K-M plotter) to explore four FRlncRNAs
including expression levels, correlation with stage, and survival results. The expression
levels of four FRlncRNAs were similar as validated by ICGC and GEO databases (Figs.
9H–9K). With the exception of LINC00894 (Fig. 9L), the expression levels of LINC01426,
PVT1, DUXAP8 increased gradually with the increase of stages (Figs. 9M–9O, respectively,
all P < 0.05), suggesting these FRlncRNAs were correlated with ccRCC progression. High
expression levels of four FRlncRNAs were related to worse OS (Figs. 9P–9S, all P < 0.05).
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Figure 7 Functional enrichment analysis of seven risk lncRNAs. (A) GO analysis including biological
process (BP), cellular component (CC), and molecular function (MF); (B) KEGG pathway enrichment
analysis. (C) Circos plot of the GO enrichment results. (D) Circos plot of the KEGG pathway enrichment
results.

Full-size DOI: 10.7717/peerj.14506/fig-7

Similar results were also obtained in 530 ccRCC patients from the K-M plotter database
(Figs. 9T–9W, all P < 0.01).

In vitro experimental verification of the major genes
The expression levels of four FRlncRNAs were verified by qRT- PCR in the normal and
tumor cells (Fig. 10, Table S2). The results showed that the overall trend in the expression
levels of all four FRlncRNAs increased obviously in ccRCC cell lines (Caki-1, and 786-O)
compared with normal renal proximal tubule epithelial cells (HK-2), which are consistent
with our previous bioinformatics analysis based on public database.

Immune landscape of the ccRCC microenvironment
Functional enrichment analysis suggested that a number of biological functions associated
with the FerLncRNAs were involved in immune responses. Further, based on the results
of immunotyping of pancancer in the literature (Thorsson et al., 2018), we compared the
relationship between risk score and immunotyping of ccRCC, and found that there were
significant differences between the existing immune subtypes C1, C2, C3, and C6 and risk
score (Fig. 11A). Therefore, we consider that there is a potential correlation between our
risk score and the immune infiltration response of ccRCC.

We further investigated the correlation of the risk score with the immune landscape of
the ccRCC microenvironment. The high-risk group showed significantly higher immune,
and ESTIMATE scores than those in the low-risk group (Fig. 11B). The heatmap of

Ju et al. (2022), PeerJ, DOI 10.7717/peerj.14506 15/30

https://peerj.com
https://doi.org/10.7717/peerj.14506/fig-7
http://dx.doi.org/10.7717/peerj.14506#supp-5
http://dx.doi.org/10.7717/peerj.14506


D

CA

B

Figure 8 Co-expression network of the FRlncRNAs and FRGs. (A) Circos plot showed the interaction
relationship between seven FRlncRNAs; (B) Sankey diagram showing the degree of connection between
the FerLncRNAs and ferroptosis-related genes. (C) Diagram of the FerLncRNA–mRNA interaction net-
work. (D) Boxplot showed the relationship between seven FRlncRNAs and 28 FRGs.

Full-size DOI: 10.7717/peerj.14506/fig-8

immune responses based on the TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC algorithms is shown in Fig. 11C; Based on this analysis,
different algorithms indicated considerable differences between the two groups in terms of
their immune infiltration functions. These findings fully confirmed that our FerLncRNA
signature was strongly related to immune cell infiltration in ccRCC.

By ssGSEA, significant differences were observed between the high- and low-risk groups
in terms of immune cells, including eosinophil, immature dendritic cell, mast cell, etc (Fig.
11D, all P < 0.05). Given the importance of checkpoint inhibitor-based immunotherapies,
we further explored the differences in the expression of immune checkpoints between the
two groups. Substantial differences were found in the expression of CD80, CD28, CTLA4,
IDO2, PDCD1, and many other important indicators between the two groups of patients,
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Figure 9 Verification of expression and prognosis of four FRlncRNAs from the ICGC, GEO, GEPIA and K-M Plotter databases. The expres-
sion levels of four FRlncRNAs in ICGC database (A–D); The expression levels of LINC00894, LINC01426, and PVT1 in GSE15641, GSE46699, and
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nearly all these checkpoints were elevated in high-risk group (Fig. 11E, all P < 0.05).
These results suggest that our risk score may have a potential correlation with the patient’s
response to immunotherapy.

Predicting sensitivity of chemotherapy and response to
immunotherapy in patients with ccRCC
We evaluated the relationship between the risk signature and the sensitivity to
chemotherapy and targeted therapy drugs for ccRCC patients by the pRRophetic R
package. Our results showed that, a significant difference was found between the two risk
subgroups in the estimated IC50 values of 76 types of chemotherapy agents (including
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Etoposide, 5-Fluorouracil, Sorafenib, AKR inhibitor VIII, et al. all p< 0.05, Table 2).
The IC50 values of DMOG, AKT inhibitor VIII, Ruxolitinib, Lapatinib, and Rapamycin
were obviously lower in samples of the low-risk group than in those of the high-risk
group (Table 2). However, interestingly, there are still 43 drugs with low expression of
IC50 in the high-risk group, the high-risk group demonstrated much higher sensitivity
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Figure 12 Predicting response to immunotherapy and sensitivity of chemotherapy in patients with
ccRCC. (A) Differences in drug sensitivity between the high-risk and low-risk groups based on IC50 val-
ues of GSK429286A, Tubastatin A, MS-275, Sorafenib, VX-680, OSU-03012, Vinorelbine, Etoposide, and
5-Fluorouracil between risk score and IC50 values. (B) TIDE score difference in high and low risk groups.
(C) The differences in response results to immunotherapy between low-risk and high-risk groups by Im-
muCellAI algorithm; (D) The scatter plot shows the correlation between immunotherapy responsiveness
and risk score in ccRCC patients.

Full-size DOI: 10.7717/peerj.14506/fig-12

to the ROCK inhibitor (GSK429286A), HDAC inhibitor (Tubastatin A, MS-275), Raf
inhibitor (Sorafenib), Aurora kinase inhibitor (VX-680), PDK-1 inhibitor (OSU-03012),
Vinorelbine, Etoposide, 5-Fluorouracil than those of the low risk group (Fig. 12A). These
results indicated that the risk score had potential predictive significance for chemotherapy
and targeted therapy.

Finally, we evaluated the potential immunotherapy response in each patient by TIDE
and ImmuCellAI algorithms. The results demonstrated that, patients in low-risk group
were has better immunotherapy response (Fig. 12B), low-risk group patients were more
likely to respond to immune checkpoint blockade (25%) than were patients in the high-risk
group (10%) (Fig. 12C). In addition, the risk score was lower in the responders than in the
non-responders (Fig. 12D). Taken together, these results indicated that the prognostic risk
signature could predict the potential response to immunotherapy in ccRCC patients.
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Table 2 Risk score and chemotherapy drugs sensitivity in ccRCC patients.

Drug Correlation
Coefficient

P-value for
correlation

IC50 value (median± SD) P-value for
sensitivityLow risk

group
High risk
group

GSK429286A −0.4116847 9.03E−23 5.202± 0.593 4.873± 0.81 2.75E−15
Pyrimethamine −0.4008079 1.22E−21 4.282± 0.925 3.537± 1.098 5.02E−15
Tubastatin A −0.3752999 7.17E−19 4.841± 0.655 4.487± 0.983 1.27E−12
GNF-2 −0.3697642 1.74E−18 2.509± 0.212 2.381± 0.277 2.36E−11
OSU-03012 −0.3339629 3.60E−15 2.148± 0.87 1.739± 0.957 1.02E−09
AUY922 −0.3162495 1.11E−13 −3.092± 0.575 −3.337± 0.566 3.26E−10
BI-2536 −0.3140472 1.67E−13 −2.082± 0.534 −2.324± 0.618 6.02E−08
YM155 −0.299257 2.41E−12 −1.343± 6.914 −3.863± 6.499 4.06E−07
MS-275 −0.2928415 8.04E−12 1.669± 1.596 0.922± 1.778 9.92E−08
FTI-277 −0.2830392 3.80E−11 2.161± 0.229 2.048± 0.286 2.43E−09
CGP-60474 −0.2801646 6.08E−11 −2.236± 0.752 −2.437± 0.688 1.05E−07
WZ3105 −0.2796805 9.98E−11 1.393± 1.891 0.666± 2.211 2.43E−06
Vinorelbine −0.2763082 1.13E−10 −3.305± 1.291 −3.819± 1.425 1.45E−06
LAQ824 −0.272809 1.98E−10 −2.507± 0.854 −2.854± 0.942 3.77E−07
BMS-754807 −0.2660241 5.69E−10 0.838± 0.636 0.546± 0.762 1.88E−07
Phenformin −0.2656272 6.05E−10 7.963± 0.91 7.547± 1.068 2.32E−06
GW-2580 −0.2635171 1.25E−09 5.759± 0.924 5.502± 1.334 2.09E−06
NSC-207895 −0.2633884 8.52E−10 4.27± 0.915 3.947± 0.989 1.34E−05
Zibotentan −0.2611228 1.20E−09 5.567± 0.209 5.478± 0.219 5.62E−07
Salubrinal −0.2593582 2.01E−09 4.363± 1.25 3.719± 1.492 7.17E−06
CP466722 −0.2555132 2.76E−09 3.095± 1.137 2.625± 1.333 3.18E−06
NG-25 −0.2477181 8.52E−09 3.007± 0.845 2.73± 1.088 1.07E−05
JNK-9L −0.2440906 1.42E−08 −0.144± 0.531 −0.34± 0.6 1.10E−05
JW-7-24-1 −0.2338737 5.75E−08 1.775± 0.72 1.479± 0.903 6.94E−06
PHA-665752 −0.2262784 1.56E−07 2.864± 0.212 2.798± 0.271 6.67E−06
JQ12 −0.2214814 2.88E−07 1.688± 1.216 1.353± 1.331 2.88E−05
A-443654 −0.2167294 5.21E−07 −0.803± 0.312 −0.871± 0.366 0.00069563
Etoposide −0.2154125 6.12E−07 1.737± 0.967 1.368± 1.227 3.73E−05
Lisitinib −0.2140062 7.45E−07 2.292± 0.59 2.001± 0.836 1.15E−06
Mitomycin C −0.198886 4.30E−06 −0.598± 0.849 −0.928± 0.934 9.40E−06
5-Fluorouracil −0.1917897 9.45E−06 3.674± 1.028 3.368± 1.114 6.08E−06
KIN001-135 −0.1808101 3.03E−05 3.889± 0.253 3.793± 0.325 0.00061634
Doxorubicin −0.1787203 3.75E−05 −1.719± 0.627 −1.916± 0.81 0.00113553
AZ628 −0.1781504 0.00029364 5.71± 2.579 4.896± 2.837 0.00297656
TAK-715 −0.1702494 0.00010176 4.657± 1.055 4.349± 1.277 0.00130195
Crizotinib −0.1637402 0.00030632 3.094± 0.88 2.851± 1.197 0.01034253
LY317615 −0.160018 0.0002287 3.346± 0.612 3.082± 0.679 1.57E−05
AS605240 −0.1598432 0.00028584 3.831± 1.434 3.449± 1.679 0.00634062
Sorafenib −0.1433182 0.00118607 2.799± 1.447 2.534± 1.68 0.02333714

(continued on next page)
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Table 2 (continued)

Drug Correlation
Coefficient

P-value for
correlation

IC50 value (median± SD) P-value for
sensitivityLow risk

group
High risk
group

CP724714 −0.1393836 0.00150345 4.617± 0.785 4.516± 0.91 0.01613482
TL-1-85 −0.1369686 0.00170886 3.66± 1.051 3.47± 1.234 0.00884412
VX-680 −0.1223163 0.00496696 1.107± 0.813 0.936± 0.998 0.01145153
GW843682X −0.1101968 0.01143801 −2.886± 1.025 −2.965± 1.119 0.02462889
GSK1904529A 0.10348973 0.01758529 2.261± 0.283 2.287± 0.289 0.02385087
CGP-082996 0.12168176 0.00532862 1.451± 3.49 1.893± 3.837 0.04197339
Dasatinib 0.136895 0.0018856 −0.708± 3.034 0.201± 3.198 0.01358105
Z-LLNle-CHO 0.13805049 0.00150446 0.263± 1.627 0.403± 1.507 0.01753678
Rapamycin 0.15665587 0.00031024 −2.749± 1.604 −2.523± 1.713 0.00827571
Lapatinib 0.15866254 0.0002588 2.268± 0.832 2.431± 0.835 0.00580935
Shikonin 0.16179519 0.00019418 −0.997± 3.32 −0.591± 3.634 0.00529048
XMD8-85 0.16653263 0.00014891 0.466± 8.166 1.222± 8.87 0.00678214
Ruxolitinib 0.17062802 8.53E−05 3.906± 0.472 4.039± 0.556 0.0114337
Midostaurin 0.17622863 4.82E−05 −0.858± 2.128 −0.446± 2.277 0.00351609
BX-912 0.177726 4.15E−05 2.573± 1.062 2.858± 1.306 0.00592782
Obatoclax Mesylate 0.18180522 2.73E−05 −1.836± 2.237 −1.316± 2.363 0.00139064
GSK-650394 0.18184426 2.72E−05 3.063± 0.854 3.357± 1.044 0.00263797
KIN001-102 0.18465183 2.03E−05 2.466± 0.682 2.636± 0.839 0.00197243
Bryostatin 1 0.18612326 2.38E−05 −3.542± 1.523 −3.184± 1.709 0.00529447
XL-184 0.18723462 1.54E−05 2.219± 1.298 2.493± 1.425 0.00124207
WZ-1-84 0.1894432 1.27E−05 3.504± 1.102 3.763± 1.103 0.00109396
QS11 0.19118071 1.01E−05 2.886± 0.968 3.157± 1.181 0.00151151
Bleomycin 0.19127995 1.02E−05 0.006± 3.981 0.776± 4.472 0.00150329
AS601245 0.1931847 8.11E−06 1.962± 0.409 2.066± 0.438 0.00075864
CMK 0.19339315 7.93E−06 1.154± 2.384 1.664± 2.546 0.00048235
Parthenolide 0.19787401 5.13E−06 2.076± 1.924 2.608± 2.121 0.00108445
Saracatinib 0.20334878 9.68E−06 1.193± 2.263 2.109± 2.329 0.00163244
NSC-87877 0.2054239 3.32E−06 4.11± 1.689 4.579± 1.875 0.00287139
FR-180204 0.2073988 1.61E−06 4.913± 0.32 4.971± 0.349 0.00070296
Pazopanib 0.20879199 1.36E−06 2.636± 1.269 2.982± 1.427 0.00019755
FMK 0.21931092 3.78E−07 4.629± 0.954 4.927± 1.068 0.00014473
XMD14-99 0.22055458 7.39E−07 3.562± 1.773 4.14± 1.951 0.00092496
CAL-101 0.2394262 3.25E−08 3.432± 1.979 4.083± 2.134 5.39E−05
Thapsigargin 0.24828123 7.87E−09 −5.281± 3.865 −4.504± 4.747 4.48E−06
ZSTK474 0.25063554 5.61E−09 0.436± 1.358 0.964± 1.538 1.49E−05
AKT inhibitor VIII 0.2598575 1.45E−09 2.277± 0.286 2.367± 0.286 1.41E−07
DMOG 0.27301586 1.91E−10 5.339± 1.995 6.165± 2.518 5.66E−07
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DISCUSSION
Ferroptosis is a nonapoptotic form of programmed cell death. The main causes of
ferroptosis are iron-dependent accumulation of reactive oxygen species (ROS) and
the consumption of plasma membrane polyunsaturated fatty acids. A normal nucleus,
increased membrane density, a ruptured outer membrane, and atrophic or deficient
mitochondria are morphological features of cellular ferroptosis (Jiang et al., 2021a). When
the concentration of ROS exceeds the elimination capacity of the antioxidant system, ROS
can oxidize unsaturated fatty acids in the cell membrane to form lipid peroxides, which
can damage the structure and function of cells directly or indirectly (Xie & Guo, 2021).
In recent years, the deregulation of ferroptosis was associated with numerous human
pathologies, including cancer (Ganini et al., 2022). Ferroptosis can promote tumorigenesis
and cancer progression by inducing genemutations and epithelial–mesenchymal transition
and implicating other mechanisms (Tang et al., 2021). It is reported that kidney cancer
shows high susceptibility to ferroptosis (Ganini et al., 2022; Chen et al., 2022c). As a result,
ferroptosis-related biomarkers may be useful as both diagnostic and therapeutic targets
for ccRCC. An in-depth understanding of these biomarkers is expected to provide a
breakthrough in the molecular mechanism of ferroptosis-related ccRCC initiation and
development.

In recent years, it has become clear that lncRNAs play a role in cell differentiation,
cell cycle regulation, stem cell pluripotency, and the maintenance of various biological
processes, such as nerve growth differentiation and tumorigenesis (Fang & Fullwood, 2016).
lncRNAs play complex roles in oncogenesis as oncogenes and tumor repressors (Goodall
& Wickramasinghe, 2021). lncRNAs localize to chromatin, interact with proteins and
target RNAs, and promote cancer phenotypes by forming proliferation circuits, tumor
suppressor circuits, viability circuits, motility circuits, and cross-talks between different
mechanisms (Fang & Fullwood, 2016; Schmitt & Chang, 2016). Many lncRNAs have been
implicated in the occurrence and development of urological tumors (Zuo et al., 2022),
and some of them are involved in the regulation of ferroptosis, such as in bladder cancer,
lncRNA RP11-89 could induce tumorigenesis and reduce the accumulation of cellular iron
by sponging the miR-129-5p/PROM2 pathway, thus leading to ferroptosis inhibition (Luo
et al., 2021); in prostate cancer, lncRNA OIP5-AS1 could act as a ceRNA that sponges
miR-128-3p to increase the level of SLC7A11 (Zhang et al., 2021), lncRNA PCAT1 could
be activated by TFAP2C to suppress ferroptosis by interacting with c-Myc (Jiang et al.,
2022); in ccRCC, some ferroptosis-associated lncRNAs (such as LUCAT1, LINC02027,
LINC00460, etc.) could become prognostic signatures (Han et al., 2022; Xing et al., 2021;
Zhou et al., 2022).

Our research was based on the screening of TCGA data for FRG-related lncRNAs to
find differentially expressed lncRNAs that could be used for the prognosis of patients with
ccRCC. Survival analysis allowed the construction of a seven-lncRNA-based prediction
model that could strongly predict the prognosis of patients with ccRCC. We selected
four lncRNAs (LINC00894, LINC01426, PVT1, and DUXAP8) for further investigation
by ICGC, GEO, GEPIA, K-M plotter databases, and qRT-PCR. Currently, LINC00894,
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LINC01426, PVT1, and DUXAP8 have been reported to be related to oncogenesis and
development. LINC00894 enhances cell proliferation and invasion by bindingwithmiR-429
to mediate ZEB1 expression in breast cancer (Meng, Shao & Feng, 2021); what’s more, in
thyroid cancer, its increased expression reduces the oncogenic properties by sponging
let-7e−5p to promote TIA-1 expression (Chen et al., 2022a). LINC01426 modulates
CTBP1/miR-423-5p/FOXM1 axis via interacting with IGF2BP1 to aggravate ccRCC
progression (Jiang et al., 2021b), it also aggravates the malignant progression through
miR-661/Mdm2 axis in glioma (Shu et al., 2022), it serves as a prognostic indicator in
lung adenocarcinoma by triggering growth and metastasis (Deng et al., 2022), what’s
more, in a recently reported study on ferroptosis-related lncRNAs of glioma, LINC01426
was identified to be related to ferroptosis, its knockdown could significantly increase in
the Fe2+ levels and the erastin-induced ROS levels in glioma cells (Huang et al., 2022).
LncRNA DUXAP8 acts as an oncogene in most tumors, its abnormal overexpression is
associated with the proliferation, invasion, migration, anti-autophagy, and poor prognosis
of tumors (Wang et al., 2022a; Wang et al., 2022b), it may act as a potential therapeutic
target for cancer (Wang et al., 2022b); in a research on identification of necroptosis-related
lncRNAs in hepatocellular carcinoma, DUXAP8 was identified as a prognostic lncRNA
and related to patients’ prognosis (Chen et al., 2022b); In addition to our research, other
studies have also found that it is involved in the process of ferroptosis in tumor, such
as: it can act with ferroptosis-associated gene FANCD2 to form DUXAP8-miR-29c-
FANCD2 axe in hepatocellular carcinoma (Yang et al., 2022), it was also identified as
one of ferroptosis-related lncRNAs in kidney carcinoma (Xing et al., 2021). Similar to
DUXAP8, lncRNA PVT1 was considered as involved in the ferroptosis progress, it may
regulate ferroptosis through miR-214-mediated TFR1 and TP53 expression (Lu, Xu &
Lu, 2020), it was identified as one of the ferroptosis-related lncRNAs to construct a panel
for predicting tumor progression, microenvironment (He et al., 2021), and radiotherapy
response (Zheng et al., 2021) in glioma; in liver cancer, PVT1 is involved in the regulatory
mechanism of lncPVT1/miR-214-3p/GPX4 axis and plays a role in ketamine suppressing
the viability of liver cancer cells and inducing ferroptosis.

Studies on the other lncRNAs also proved their functions in oncogenesis, especially in
the ferroptosis process, such as knockdown of lncRNA PELATON enhanced sensitivity to
ferroptosis inducers to inhibit cell proliferation and invasion in glioblastoma cells (Fu et al.,
2022); LINC02609 was positively correlated with late stage, grade, and distant metastasis
in ccRCC (Su et al., 2021), and associated with OS in soft tissue sarcoma (He et al., 2017),
what’s more, other similar research also identified LINC02609 as ferroptosis-related
lncRNA in kidney carcinoma (Han et al., 2022; Xing et al., 2021; Bai et al., 2022; Shu et al.,
2021). Further research on the these lncRNAs, especially how these lncRNAs participate in
the process of ferroptosis, can provide new insights for revealing the mechanism of renal
cell carcinoma at the molecular level.With the in-depth study of tumor immunology and
molecular biology, immunotherapy provides a new perspective for tumor treatment. At
present, the immune checkpoint inhibitors used to treat advanced renal cell carcinoma, such
as Keytruda and Opdivo, can enhance the immune response against renal cell carcinoma
by blocking PD-1. However, in contrast to most other types of anti-PD-1 responsive
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solid tumors, a high infiltration by CD8+ T cells in ccRCC patients has been previously
associated with a worse prognosis (Fridman et al., 2017; Braun et al., 2020). This is different
from the common paradigm that the tumor is infiltrated by a large number of immune
cells, forming an ‘‘infiltrated’’ or ‘‘hot’’ environment in the tumor, which will better
respond to PD-1 blockade (Braun et al., 2020; Chen & Mellman, 2017). This result was also
observed in our study, that is, the prognosis of patients in the high-risk group was poor,
but their immune function and immune checkpoint gene expression were increased, the
predictive immunotherapy response by TIDE and ImmuCellAI showed that the low-risk
groups patients could be benefited. Furthermore, by with the pRRophetic algorithm, we
identified 76 types of chemotherapy agents which could be useful in treatment of ccRCC
patients.

There are some limitations in this study. First, our research was based on retrospective
data available in the TCGA public database, this FerLncRNA prediction model and its
clinical utility need to be further verified using multicenter, prospective, real-world data.
Second, our research only revealed the relationship between FerLncRNAs and the TIME,
while potential mechanisms and specific clinical applications need to be further explored
experimentally.
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