In vitro and *in silico* evaluations of actinomycin X₂ and actinomycin D as potent anti-tuberculosis agents

Production of Actinomycins

BACKGROUND

Multidrug-resistant tuberculosis

(MDR-TB) is one of the world's most devastating contagious diseases and is caused by the *MDR-Mycobacterium tuberculosis* (MDR-Mtb) bacteria. It is essential to identify novel anti-TB drug candidates and target proteins to treat MDR-TB.

Purification of Actinomycins

Purified Actinomycin Extract

METHODS

In vitro and *in silico* studies were used to investigate the anti-TB potential of two newly sourced actinomycins, actinomycin-X₂ Structure Elucidation of Actinomycins

Chromophore

B-Ring

a-Ring

R = O: Actinomycin X₂ R = H: Actinomycin D

(act-X₂) and actinomycin-D (act-D), from the *Streptomyces smyrnaeus* strain UKAQ_23 (isolated from the Jubail industrial city of Saudi Arabia).

RESULTS

Our results suggest that both actinomycins X₂ and D are highly potent anti-TB drug candidates.

CONCLUSION

Our results show that act-X₂ is better able to antagonistically interact with the protein kinase PknB target than act-D, and thus has more potential as a new anti-TB drug candidate.

In vitro and in silico evaluations of actinomycin X2 and actinomycin D as potent anti-tuberculosis agents PeerJ 11:e14502 DOI: 10.7717/peerj.14502 https://peerj.com/articles/14502 This is an open access graphic distributed under the terms of the Creative Commons Attribution License.

