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ABSTRACT

Background: Beauveria are entomopathogenic fungi of a broad range of arthropod
pests. Many strains of Beauveria have been developed and marketed as biopesticides.
Beauveria species are well-suited as the active ingredient within biopesticides because
of their ease of mass production, ability to kill a wide range of pest species,
consistency in different conditions, and safety with respect to human health.
However, the efficacy of these biopesticides can be variable under field conditions.
Two under-researched areas, which may limit the deployment of Beauveria-based
biopesticides, are the type and amount of insecticidal compounds produced by these
fungi and the influence of diet on the susceptibility of specific insect pests to these
entomopathogens.

Methods: To understand and remedy this weakness, we investigated the effect of
insect diet and Beauveria-derived toxins on the susceptibility of diamondback moth
larvae to Beauveria infection. Two New Zealand-derived fungal isolates,

B. pseudobassiana 112 Damo and B. bassiana CTL20, previously identified with high
virulence towards diamondback moth larvae, were selected for this study. Larvae of
diamondback moth were fed on four different plant diets, based on different types of
Brassicaceae, namely broccoli, cabbage, cauliflower, and radish, before their
susceptibility to the two isolates of Beauveria was assessed. A second experiment
assessed secondary metabolites produced from three genetically diverse isolates of
Beauveria for their virulence towards diamondback moth larvae.

Results: Diamondback moth larvae fed on broccoli were more susceptible to
infection by B. pseudobassiana while larvae fed on radish were more susceptible to
infection by B. bassiana. Furthermore, the supernatant from an isolate of

B. pseudobassiana resulted in 55% and 65% mortality for half and full-strength
culture filtrates, respectively, while the filtrates from two other Beauveria isolates,
including a B. bassiana isolate, killed less than 50% of larvae. This study
demonstrated different levels of susceptibility of the insects raised on different plant
diets and the potential use of metabolites produced by Beauveria isolates in addition
to their conidia.
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INTRODUCTION

The entomopathogenic fungal genus Beauveria has been, and continues to be, extensively
utilized for the development of biopesticides for insect pest control with more
bioinsecticides based on this genus than any other fungal genera (Faria ¢ Wraight, 2007;
Mascarin & Jaronski, 2016). Beauveria species are well-suited as the active ingredient
within biopesticides due to their ease of mass production, ability to kill a wide range of pest
species, consistency in different conditions, and safety with respect to human health
(Zimmermann, 2007). However, there are still factors limiting the widespread adoption of
these fungal-based biopesticides, including slowness to kill target pests, high cost
associated with the solid-state production of viable propagules, and variability in
performance under some field conditions (Glare et al., 2012; Wraight et al., 2010).

Two under-researched areas, which may limit the deployment of Beauveria-based
biopesticides, are the type and amount of insecticidal compounds produced by these fungi
and the influence of diet on the susceptibility of specific insect pests to these
entomopathogens.

Beauveria are typically entomopathogenic fungi and their infection cycle, via the four
main steps of adhesion, germination, penetration, and dissemination is well understood
(for a detailed review see Dannon et al., 2020). Briefly, conidia of the fungus arrive on
susceptible hosts and germinate. An appressorium forms and aided with hydrolytic
enzymes, uses mechanical pressure to penetrate all cuticle layers until it reaches the host’s
haemolymph. A morphogenetic change then occurs whereby filamentous growth ceases
and single cells are produced that colonize the host’s internal tissues. The fungus can also
produce toxic metabolites that help to overcome the insect’s immune defense mechanisms
leading to insect death (Dannon et al., 2020). Further metabolites are produced once the
insect dies to inhibit bacterial competition within the insect cadaver before the fungus
sporulates on the mummified cadaver of its host, thus disseminating its spores. Some
Beauveria strains produce several insecticidal metabolites within the host increasing the
speed of the infection process ( Hajek ¢ St. Leger, 1994).

A great deal of strain variation exists within species of these fungal genera with respect to
the amounts and types of toxins produced, including secondary metabolites,
cuticle-degrading enzymes, and toxic proteins (Ortiz-Urquiza et al., 2010). For example, in
vitro studies investigating the toxicological properties of B. bassiana and B. pseudobassiana-
derived metabolites revealed that these fungi could produce different amounts of certain
metabolite at a range of concentrations depending on the type of media they were
previously cultured on (Berestetskiy et al., 2018; Wang et al., 2020). Therefore, it is likely
that genetically distinct isolates of Beauveria may kill an insect faster if they are able to
produce one or more lethal compound(s) at a relatively high concentration to overcome the
host’s immune responses.
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The current study therefore investigated the toxicity of culture filtrates produced from
three genetically diverse strains of Beauveria previously identified as highly bioactive
towards Plutella xylostella (diamondback moth; DBM) larvae (Soth et al., 2022). The aim
was to identify a Beauveria strain that could produce high concentrations of several insect
toxins with the rationale that this strain would kill DBM more quickly than less bioactive
fungal strains.

Diet may play a significant role in the health and fitness of insect pests. Previous studies
showed diets affect susceptibility of insect pests to infection by Beauveria fungi (Santiago-
Alvarez et al., 2006; Zafar et al., 2016; Kangassalo et al., 2015). Members of the Brassicaceae
(commonly referred to as the mustard or crucifer family), which includes important crops
such as Brassica napus subsp. napus (rapeseed), B. oleracea (e.g., broccoli, cabbage and
cauliflower), B. rapa (e.g., turnip) and Raphanus sativus (radish), produce glucosinolates
within their vegetative organs and seed (Ishida et al., 2014). Glucosinolates are a large
group of plant-derived secondary metabolites, which contain sulphur and nitrogen, that
can impart a bitter flavor when eaten (Barba et al., 2016). These metabolites likely function
as a plant defense against phytopathogens and invertebrate pests (Neugart, Hanschen ¢
Schreiner, 2020) as they are released when the plant is damaged (e.g., by chewing or
cutting) (Bekaert et al., 2012; Bidart-Bouzat & Kliebenstein, 2008; Hopkins, van Dam & van
Loon, 2009; Santolamazza-Carbone et al., 2016). These pungent compounds can act
directly as an invertebrate repellent and an antifeedant (Santolamazza-Carbone et al,
2016), and indirectly by attracting parasitoids that will feed on invertebrate pests (Hopkins,
van Dam ¢ van Loon, 2009). Species of Brassicaceae have co-evolved with several
invertebrate pests over many millions of years in an arms-race (Edger et al., 2015).

For example, DBM has developed biochemical adaptations to glucosinolates that allow
these insects to feed freely on plants containing these pungent compounds (Ratzka et al.,
2002). The concentration and type of glucosinolate are largely responsible for determining
the plant’s susceptibility to invertebrate attack (Robin et al., 2017; Santolamazza-Carbone
et al., 2014). No study has investigated the effect of these compounds on the susceptibility
of these pests to entomopathogenic fungi, such as species of Beauveria.

MATERIALS AND METHODS

Insect diet preparation
Two New Zealand-derived fungal isolates, B. pseudobassiana 112 Damo and B. bassiana
CTL20, previously identified with high virulence towards DBM larvae (Soth et al., 2022),
were selected for this study. The isolates were sourced from the culture collection held at
the Bio-Protection Research Centre (BPRC), Lincoln University, New Zealand.
The isolates were maintained as axenic cultures on PDA (Thermo Fisher Scientific,
Waltham, MA, USA; Oxoid Ltd., Basingstoke, UK) at 22 °C until required. The harvest
and preparation methods for Beauveria conidia were previously described in Soth et al.
(2022).

Broccoli, cv. de Cicco, cauliflower, cv. All Seasons; and radish, cv. Red Cherry
(McGregor’s, AHM Ltd., Auckland, New Zealand); and cabbage, cv. Arisos NS (South
Pacific Seeds Ltd., Pukekohe, New Zealand) were used in this study. For each of the four
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cultivars, twenty four 1L pots were filled with a mixture of 400 kg of potting mix + 100 kg
of pumice + 500 g of agricultural lime + 500 g of Hydraflo + 1,500 g of Osmocote Exact,
Standard 3-4M (16-3.9-10+1.2 Mg+TE) (Scott’s Osmocote®). Ten seeds were then sown
per pot. Plants were grown in a glasshouse (average temperature during the experiment
was 23 = 5 °C) and watered twice a day for 6 weeks before the plants were transferred to a
controlled temperature room set at 25 + 2 °C. Four plants of each cultivar, from four
different pots, were randomly selected for glucosinolate analysis. Glucosinolates were
extracted using the method described by Doheny-Adams et al. (2017) while analysis was
undertaken according to the procedure of Mawlong et al. (2017). Briefly, extracted
solutions from four young leaves (the third leaf counted from the bud) and four old leaves
(the sixth leaf counted from the bud) per plant were used for glucosinolate content
comparison while a spectrophotometer (GENESYS™ 10 Series, Thermo Fisher Scientific
Corp., Singapore) was used for glucosinolate analysis. The linear regression involving
sinigrin standard solutions was described by Hu et al. (2010).

Five pots containing 10 plants each were transferred to a cage made of fibre net (mesh
size 1 mm x Imm). A total of 12 cages were used for these two assays (four cages for colony
establishment, four cages for the first assay, and four cages for the second assay). Around
100 newly emerged, active DBM moths were collected and the subsequent DBM larvae
were fed on 6-week-old cabbage cv. Arisos NS and kept within a controlled temperature
room (25 + 2 °C) with a 12:12 day: night light period. The next generation of DBM larvae
were maintained on the plant species selected for the experiments until they developed into
adults. These adult moths were transferred to the same plant cultivar to start new colonies.
Third instar larvae hatching from the second (first assay) and third generations (second
assay) were collected from plants belonging to the four different plant species.

Supernatant preparation

Three genetically diverse isolates of Beauveria (B. pseudobassiana FRhp, B. pseudobassiana
FW Mana, and B. bassiana CTA20) were selected from the BPRC culture collection
according to their previous pathogenicity to DBM larvae (Soth, 2021). B. pseudobassiana
FW Mana had previously shown a faster DBM Kkill rate than other related strains but was
slow to sporulate on DBM cadavers, indicating potential toxin involvement due to
incomplete colonization of the cadaver. Isolates B. pseudobassiana FRhp (which showed
almost the same speed of kill and percentage sporulation on cadavers as FW Mana) and
B. bassiana CTA20 (which killed slower but had a higher rate of sporulation on cadavers)
were used for comparison. The three Beauveria isolates were cultured on PDA (Thermo
Fisher Scientific, Waltham, MA, USA; Oxoid Ltd., Basingstoke, UK) at 23 + 1 °C 12:12 (D:
L) until use.

Conidial suspensions of the selected Beauveria isolates were prepared as described
earlier. One hundred microliters of each conidial suspension were inoculated into 100 ml
of PDB within a 250 ml Erlenmeyer flask. Flasks were incubated at 24 + 1 °C on an
orbital shaker (Amerex Instruments, Inc, Concord, CA, USA) set at 150 rpm under a
photoperiod of 12:12 D/L for 7 days. The subsequent suspension was filtered via a
pre-sterilized vacuum-driven disposable filtration system (0.22 um, Millipore, Express™
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PLUS, Stericup and Steritop, Darmstadt, Germany) to remove fungal mycelium.

The resulting culture filtrates were kept at 4 °C until use. Full-strength culture filtrates were
diluted with 0.01% Triton™ X-100 50:50 to obtain half-strength solutions. Third instar
DBM larvae were used in all bioassays. These larvae were obtained from a laboratory
colony maintained at 25 + 2 °C, 12:12 D/L and fed on cabbage leaves cv. Arisos NS at the
BPRC.

Bioassay protocols

Bioassay procedures including Petri dish preparation, spraying methods, incubation
conditions, larval mortality assessment, and mycosed cadaver assessment were previously
described in Soth et al. (2022). Additionally, for the supernatant assay, the spray program
was from half to full strength, and the incubation trays did not require covering with
plastic bags to prevent moisture loss. Assay experiments were carried out twice. Petri
dishes on trays within the incubator were randomized every day (Fig. S1).

Statistical analysis

Genstat 20th Edition was used to analyze the glucosinolate data using ANOVA (Genstat
Committee, 2021). For estimation of LCsy, the total mortalities were calculated using Probit
analysis (Finney, 1971), using the logl0 of the doses, and the logistic model. Control
mortality was estimated, with separate LCs, and slope parameters for each species and
isolate. This was done by fitting separately to each species by isolate combination with the
control included: the command as implemented requires a separate control for each
species by isolate combination to allow all treatments to be analyzed simultaneously. Less
than 20% mortality in the control treatment was acceptable (Glare et al., 2008), or
otherwise, the assay was repeated. Abbott’s formula was used to correct for the control
mortality (Abbott, 1925). For both trials, the total mortality for each replicate of each
treatment was calculated. The final percentage mortalities were analyzed using a binomial
generalized linear model with a logit link (McCullagh ¢ Nelder, 1989). The median lethal
time (LT5o) was estimated for each treatment using the Kaplan-Meier approach
(Kalbfleisch ¢ Prentice, 2011).

RESULTS

Insect diet assay

The total glucosinolate content from young leaves of the four plant species did not differ
significantly (F; 3 = 2.22, p = 0.156). However, from old leaves, radish contained a higher
(F53 =15.30, p <.001) glucosinolate content than the other three species. Only cabbage and
radish differed significantly (F; 3 = 6.85, p = 0.011) with respect to average (old and young
leaves) glucosinolate content (Table 1).

There were no significant differences (F, 3 = 1.77, p = 0.191) among the mortality rates
of larvae fed on the four species of Brassicaceae for either of the Beauveria strains at the
medium or high application rates (Table 2). There were no significant differences among
the mortality of DBM across the four Brassicaceae species at the low application rate for
112 Damo. However, there were significant differences observed at the low application rate
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Table 1 Mean glucosinolate content (+SE) of young and old leaves of four Brassicaceae species.

Mean + SE (mg/mL)

Species Young leaves Old leaves Average
Broccoli 0.24 + 0.068 0.26 = 0.010a 0.25 + 0.039ab
Cabbage 0.19 £+ 0.043 0.21 £ 0.007a 0.20 £ 0.025a
Cauliflower 0.25 + 0.059 0.24 + 0.023a 0.25 + 0.041ab
Radish 0.30 = 0.057 0.32 £ 0.025b 0.31 + 0.041b
Fs 3 222 15.30 6.85
p-value 0.156 <0.001 0.011

Note:

Values followed by the same letter are not significantly different (p > 0.05) according to Tukey’s honestly significant
difference (HSD) test.

Table 2 Mortality (% + SE) of diamondback moth (DBM) larvae fed on different species of Brassicaceae after correcting for control mortality
using Abbott’s formula caused by spraying conidia of both Beauveria pseudobassiana isolate 112 Damo and Beauveria bassiana isolate CTL20.

Species and isolate code

Mean larval mortality at different conidial application rates (conidia/spray)

Species Low (6 x 10*) Medium (6 x 10°) High (6 x 107)
B. pseudobassiana 112 Damo Broccoli 78 £ 7.00 94 £ 5.55 100 + 0.00
B. pseudobassiana 112 Damo Cabbage 40 + 5.00 100 + 0.00 100 + 0.00
B. pseudobassiana 112 Damo Cauliflower 61 £ 6.00 94 + 5.55 100 + 0.00
B. pseudobassiana 112 Damo Radish 56 + 5.00 94 + 5.55 100 + 0.00
F, 5 6.01 1.00 NA
p-value 0.087 0.500 NA
B. bassiana CTL20 Broccoli 33 £ 11.00 83 £ 4.00 94 + 6.00
B. bassiana CTL20 Cabbage 45 £ 5.55 94 + 6.00 94 + 6.00
B. bassiana CTL20 Cauliflower 39 £ 4.00 100 + 0.00 100 + 0.00
B. bassiana CTL20 Radish 61 = 3.00 100 + 0.00 100 + 0.00
F, 3 9.22 8.03 1.00
p-value 0.050 0.060 0.500

for isolate CLT20 which killed more DBM larvae fed on radish compared to those fed on
broccoli (Table 2).

There were no significant (F,; = 1.21, p = 0.428) differences among the estimated
application rates of isolate 112 Damo to reach an LCs, of DMB larvae fed on the different
Brassicaceae species (Fig. 1). There were, however, significant differences with respect to
isolate CLT20 that required a significantly higher rate of application to reach the LC5, with
DBM fed on cabbage and broccoli compared to larvae fed on radish (Fig. 1).

Larvae raised on broccoli, cauliflower, and radish reached the LTs, in less than 7 days at
the low application rate, while for those on cabbage, took longer. At the medium
application rate, larvae fed on cabbage and cauliflower took less than 3 days to achieve
LTs0, and for those on broccoli and radish, took less than 4 days to reach 50% mortality.
Larvae fed on all four species of Brassicaceae had 50% mortality after around 2 days at the
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Figure 1 Estimated application rate of Beauveria pseudobassiana isolate 112 Damo and Beauveria
bassiana isolate CTL20 required to kill 50% of DBM larvae fed on four different species of
Brassicaceae. Error bars are 95% confidence limits. Full-size k4] DOT: 10.7717/peerj.14491/fig-1

high application rate (Fig. 2). There was no statistical difference among the four species of
Brassicaceae (F,3 = 2.21, p = 0.120).

For isolate CTL20, only larvae raised on cabbage and radish achieved LT, within 7 days
at the low application rate. Within the group, there were significant differences between
radish and cauliflower (F, ; = 24.54, p < 0.001). LT5, took less than 5 days at the medium
application rate and less than 4 days at the high application rate across all four brassicas
(Fig. 2). There was no significant difference among the four species of Brassicaceae at the
medium (F, ; = 1.49, p = 0.353) and the high application rates (F,; = 0.45, p = 0.772).

Percentage of cadavers that supported sporulation

The percentage of cadavers that supported sporulation of isolate 112 Damo was statistically
significantly different at the low application rate among larval diets (F,; = 19.08,

p = 0.007). Cadavers of larvae fed on broccoli and radish supported less sporulation than
those raised on cabbage and cauliflower, while those raised on cabbage supported more
sporulation than those raised on cauliflower. There were no significant differences within
the four species of Brassicaceae at the medium and high rates (Fig. 3A). Percentage
sporulation results for isolate CTL20 did not differ significantly among all rates and the
four varieties of Brassicaceae (Fig. 3B).

Supernatant assay

Application of the filtered supernatants from the three Beauveria isolates, at the two
different concentrations (half and full-strength), resulted in 20% to 65% mortality of DBM
larvae within 7 days post-treatment. The application of B. pseudobassiana FW Mana
supernatant resulted in higher mortality of DBM than the other two isolates at both
concentrations. At the half-strength, B. pseudobassiana FW Mana killed 35% and 20%
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brassicas treated with three rates of Beauveria pseudobassiana isolate 112 Damo (A) and
Beauveria bassiana isolate CTL20 (B). Full-size K&l DOT: 10.7717/peerj.14491/fig-3

more DBM larvae than isolates B. pseudobassiana FRhp and B. bassiana CTA20,
respectively, which was statistically significant (F,, = 71.75, p < 0.003). At the full-strength,
B. pseudobassiana FW Mana killed 25% more DMB larvae than both FRhp and CTA?20,
which was also statistically significant (F,, = 113.56, p < 0.001) (Fig. 4).

The median time to die could not be estimated in all but two cases (both doses for FW
Mana, with medians of 7 and 6 days), and the upper confidence limit could not be
estimated for any case using Kaplan-Meier estimates. This is because the final percentage
of dead larvae was below 50% for all except FW Mana.

DISCUSSION

In this study, we examined two areas of research that will advance the deployment of
Beauveria-based biopesticides, namely the effect of insect diet and the use of culture
filtrates produced by these fungi. We utilized two previously identified highly virulent
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isolates of Beauveria (Soth, 2021) and studied the effect of diet on the mortality of DBM, an
important agricultural pest. In this study, radish had a higher glucosinolate content than
broccoli, cabbage, and cauliflower, but only from old leaves. Insect-resistant properties of
Brassicaceae species are related to the glucosinolate metabolites rather than the total
amount of glucosinolates in the plant (Robin et al., 2017; Santolamazza-Carbone et al.,
2014; Sarosh et al., 2010). At least 120 of these metabolites have been reported in many
members of the Brassicaceae family (Fahey, Zalcmann ¢ Talalay, 2001). Among these 120
metabolites, three hydrolysis compounds, isothiocyanates, thiocyanates, and nitriles, are
known to play a significant role in plant protection against herbivores (Halkier ¢
Gershenzon, 2006).

For the four Brassicaceae species assessed within the current study, radish had a higher
glucosinolate content than cabbage. However, previous Korean studies on glucosinolate
content of eight Brassicaceae species, found that cauliflower and radish contained lower
quantities of glucosinolates than the others (Hwang et al., 2019; Kim, Seo ¢» Ha, 2020). This
difference in results may be explained by cultivar differences or environmental effects.
For example, several studies have shown that cultivars of cabbage can exhibit significantly
different amounts of glucosinolates (Hamilton et al., 2005; Robin et al., 2017, 2016).

The New Zealand cultivars used in the present study differed from those used in South
Korea (Hwang et al., 2019; Kim, Seo ¢ Ha, 2020). Additionally, brassica crops produced
more glucosinolates in response to abiotic stresses and the damage by herbivorous pests,
including DBM (Antonious, Bomford ¢ Vincelli, 2009). This study showed the age of plant
could also influence glucosinolate content.

The susceptibility differed for B. bassiana CTL20, which produced higher mortality of
DBM larvae raised on radish at the low application rate, while the two higher rates showed
no increase in DBM mortality among the four Brassicaceae species used in this study.
DBM larvae fed on this high glucosinolate brassica were more susceptible than those fed on
a low glucosinolate brassica to the isolate B. bassiana CTL20. A previous study on food
utilization and consumption of DBM using eight cultivars of cabbage showed no
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relationship between low and high glucosinolate groups (Karmakar, Pal ¢» Chakraborty,
2021), indicating that DBM can feed on high and low glucosinolate plants without adverse
effects on health fitness. However, another study showed that cabbage cultivars containing
low glucosinolates were more susceptible to DBM larvae than those containing higher
glucosinolates (Robin et al., 2017). The result for B. bassiana CTL20 in this study showed
that infection by this fungal isolate might be related to glucosinolate content, as DBM
larvae fed on a higher glucosinolate containing-brassica were more susceptible to fungal
infection than those raised on lower glucosinolate plants. This result aligned with previous
results that found high glucosinolate containing-plants caused larvae to be more
vulnerable to the infection by insect pathogens (Hopkins, van Dam ¢ van Loon, 2009;
Robin et al., 2017; Santolamazza-Carbone et al., 2016). As previously noted the total
amount of glucosinolates did not determine plant responses to DBM damage, but rather it
was some specific glucosinolates (Robin et al., 2017). In this regard, although radish had a
higher quantity of glucosinolates, differences may be due to specific compounds rather
than the total. Further work is required to determine which glucosinolates are present in
this radish cultivar. Therefore, further work would aim to identify the types of secondary
metabolites produced by these species of Brassicaceae.

The percentage of DBM cadavers that supported sporulation from B. pseudobassiana
112 Damo applied at a low application rate to the DBM larvae for the four diets differed
significantly. No difference was found for B. bassiana CTL20 among larvae fed on the four
Brassicaceae species. Glucosinolate metabolites may inhibit the growth of fungi (Teng
et al., 2021). These metabolites may have reduced the percentage sporulation of isolate
B. pseudobassiana 112 Damo on infected cadavers. Three-way interactions among plants,
arthropods, and entomopathogenic fungi contribute significantly to the development of
each dimension (Biere ¢» Tack, 2013). For example, the production of newly formed
conidia of B. bassiana was considerably higher on cadavers of sweet potato whitefly fed on
melon than on cotton (Santiago-Alvarez et al., 2006). A mixture of leaf extract using two
brassicas in a cultivating medium improved the radial growth of Beauveria isolates
compared to the control (Cerritos-Garcia et al., 2021). At the low application rate, the
percentage of cadavers supporting sporulation of isolate B. pseudobassiana 112 Damo was
greater on DBM fed on cabbage and cauliflower than on broccoli and radish. It is possible
that glucosinolate causes modifications to the microbiome of the insect stomach, and these
modifications increase the larvae’s resistance to fungus infection. Because too many
conidia overwhelm the insect defenses too fast, this priming impact on insect defenses only
becomes apparent when low concentrations of conidia are administered (Sontowski et al.,
2022). An efficacy assessment of B. bassiana in controlling two-spotted spider mite on five
species of plants found mortality was high on beans and cucumber, but conidia viability
was the same, as was persistence (Gatarayiha, Laing ¢ Miller, 2010). This finding was
similar to isolate B. bassiana CTL20 that showed a significant difference in mortality
among the larvae from the four brassicas tested. Consideration could be given to using
isolates, such as B. pseudobassiana 112 Damo, to control DBM larvae damage on broccoli
and cabbage, and isolates such as B. bassiana CTL20 to control DBM larvae damage on
cauliflower and radish because they require a lower application rate and shorter time to

Soth et al. (2022), PeerdJ, DOI 10.7717/peerj.14491 10/18


http://dx.doi.org/10.7717/peerj.14491
https://peerj.com/

Peer/

death than reported for previous studies (Batta et al., 2010; Furlong, 2004; Kirubakaran
et al., 2014; Medo et al., 2021; Nithya et al., 2019). Another technique to improve DBM
control could be integrated fungal application with natural insecticides based on
glucosinolate metabolites. Some glucosinolate profiles, particularly isothiocyanates,
improved toxicity to brassica specialists, P. xylostella (DBM) and Pieris rapae (White
cabbage butterfly) through myrosinase activities (Agrawal ¢» Kurashige, 2003; Li et al.,
2000). Thus, a biopesticide based on isothiocyanates may be potentially incorporated with
a fungal spray to optimize the application.

The extracted actives assay showed that the culture filtrates of B. pseudobassiana FW
Mana achieved higher mortality for DMB larvae than previously published studies using
extractions. For example, culture filtrates of B. bassiana Bb-2 from China achieved
accumulative mortality for DBM larvae of only 37% (Gao, Hu ¢ Wang, 2012), which was
similar to that from the use of supernatant from B. bassiana CTA20 in the current study.
This current result is the first report to show that filtered supernatant of an isolate of
B. pseudobassiana killed more DBM larvae than did a B. bassiana isolate. A study
investigating the insecticidal activity of B. pseudobassiana and B. bassiana towards
Spodoptera littoralis (cotton leafworm) identified fungal isolates that achieved mortalities
of up to 67%, while one of the B. bassiana isolates did not kill any insects (Resquin-Romero,
Garrido-Jurado ¢ Quesada-Moraga, 2016). Herein, at least one isolate of
B. pseudobassiana produced a higher amount of insecticidal toxins, secondary metabolites
and/or with activity enzymes against DBM larvae than B. bassiana.

Investigation of the insecticidal activity of B. bassiana towards green peach aphid
(Myzus persicae) showed that the chosen isolates achieved 15% to 79% aphid mortality
(Kim et al., 2013). A recent study using supernatants of B. bassiana against M. persicae
found mortality of between 30% and 70% when extracting from different media and at
different fermentation times (Cheong et al., 2020). In another study, aphid mortality was
higher than DBM mortality, which was up to 48% using the filtrated supernatant of
B. bassiana Bb-2 (Gao, Hu & Wang, 2012). Beauveria metabolites may only have a mode of
action through the digestive pathway, and DBM larvae can develop resistance to many
insecticidal compounds. In New Zealand, a biopesticide producing company showed that a
combination of insect toxins and conidia within a spray led to optimization of efficacy
(Glare & O’Callaghan, 2019). Thus, the application of B. pseudobassiana FW Mana may
also be improved in this manner. B. pseudobassiana could kill DBM larvae through insect
toxins more effectively than the B. bassiana isolates tested. Previously, an assessment of
toxin profiles between these two species revealed differences (Wang et al., 2020), some of
which may assist in overcoming the immune system of a particular insect. Two enzymes,
chitinase and protease, have been found to have dual functions: aiding fungal infection and
toxicity to some insects (Kim et al., 2013; Montesinos-Matias et al., 2011). However, a study
showed no correlation between their production and mortality, and the enzymes did not
affect the fungal ability to kill the green peach aphid with metabolites from an isolate of
B. bassiana (Cheong et al., 2020). The aphicidal compounds have yet to be identified.

The median lethal time (LTs,) of the supernatant from the three isolates ranged from
5.4 to 13.12 days, with only FW Mana achieving an LT5, within 7 days (5.4 days for full-
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strength, 6.42 days for half-strength). Previously, DBM mortality was 27% and 36% for 1
and 2 days after spraying, respectively, when testing with toxins of B. bassiana Bb-2 (Gao,
Hu & Wang, 2012). At 25 °C, LT5, was longer than 7 days when testing extracted toxins of
two B. bassiana isolates against Spodoptera litura (Herlinda et al., 2020). When using
extracted supernatant of B. bassiana isolates on green peach aphid, mortality reached
78.6% within 2.7 days after treatment for the most effective isolate, while the less effective
isolates required 9.8 days (Kim et al., 2013). When using crude protein extracted from

I. fumosorosea to assay on DBM, the LTs, was 6 days post-treatment but earlier with a
protein concentration, which may enhance the antifeedant characteristic (Freed et al.,
2012). Spraying S. littoralis using extracted supernatant of a B. pseudobassiana isolate
achieved LT, by day 4 after treatment, while a B. bassiana isolate had no effect
(Resquin-Romero, Garrido-Jurado ¢ Quesada-Moraga, 2016). However, the study found
promising results when combining both conidia and extracted toxins in the spray, giving
100% mortality within four to 5 days after application.

CONCLUSIONS

Conidia are generally the most infective propagules from entomopathogenic fungi and
most Beauveria-based biopesticides are based on the asexual, non-motile conidia.
Beauveria conidia can germinate directly on a target insect, with the resulting germ tube
able to directly penetrate the insect’s protective cuticle before the fungus colonizes and kills
the host. This process is therefore not reliant on the target pest ingesting the active
ingredient of the pesticide (e.g., propagules of the fungal entomopathogen) as is the case
with many systemic chemical insecticides (Chandler, 2017). Isolate B. pseudobassiana 112
Damo and B. bassiana CTL20 showed different effects on DBM larvae when fed on
different diets. When feeding on broccoli and cabbage, DBM larvae were more susceptible
to infection by isolate B. pseudobassiana 112 Damo. Conversely, those larvae raised on
cauliflower and radish were more vulnerable to infection by isolate B. bassiana CTL20.
The use of these two isolates should consider their performance based on glucosinolate
contents of each Brassicaceae variety (if lower, apply B. pseudobassiana 112 Damo, if
higher, apply B. bassiana CTL20). This study showed the potential of Beauveria toxins to
assist the control of DBM. The isolate B. pseudobassiana FW Mana is the most suitable
candidate for managing this insect using extracted toxins. Testing of FW Mana isolate
toxin on other insect pests and under diverse conditions will be necessary to confirm
the toxin efficacy and consistency, as well as non-host safety. Combining conidia and
extracted toxins of the same isolates may potentially give an additional effect or synergistic
response for DBM control.
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