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ABSTRACT
Background. The severe form of COVID-19 can cause a dysregulated host immune
syndrome that might lead patients to death. To understand the underlying immune
mechanisms that contribute to COVID-19 disease we have examined 28 different
biomarkers in two cohorts of COVID-19 patients, aiming to systematically capture,
quantify, and algorithmize how immune signals might be associated to the clinical
outcome of COVID-19 patients.
Methods. The longitudinal concentration of 28 biomarkers of 95 COVID-19 patients
was measured. We performed a dimensionality reduction analysis to determine
meaningful biomarkers for explaining the data variability. The biomarkers were used
as input of artificial neural network, random forest, classification and regression trees,
k-nearest neighbors and support vector machines. Two different clinical cohorts were
used to grant validity to the findings.
Results. We benchmarked the classification capacity of two COVID-19 clinicals
studies with different models and found that artificial neural networks was the best
classifier. From it, we could employ different sets of biomarkers to predict the clinical
outcome of COVID-19 patients. First, all the biomarkers available yielded a satisfactory
classification.Next, we assessed the prediction capacity of each protein separated.With a
reduced set of biomarkers, our model presented 94% accuracy, 96.6% precision, 91.6%
recall, and 95% of specificity upon the testing data. We used the same model to predict
83% and 87% (recovered and deceased) of unseen data, granting validity to the results
obtained.
Conclusions. In this work, using state-of-the-art computational techniques, we
systematically identified an optimal set of biomarkers that are related to a prediction
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capacity of COVID-19 patients. The screening of such biomarkers might assist in
understanding the underlying immune response towards inflammatory diseases.

Subjects Bioinformatics, Immunology, Data Mining and Machine Learning, COVID-19
Keywords Biomarkers, Artificial Neural Networks, Classification, Immunology, Deep learning

INTRODUCTION
By the end of 2019, a respiratory virus started to alert health authorities by inflicting its
victims with a severe acute respiratory syndrome, namely coronavirus disease (COVID-19).
In little time, a global pandemic was declared by the World Health Organization (He, Deng
& Li, 2020), which has caused health authorities and scientists to apply unmeasurable
efforts to understand the intricacies of the novel disease. The virus has caused millions of
deaths, hospitalizations, and infections at alarming rates. The harsh effects caused by the
virus still pose a threat even more than two years after the initial onset of the pandemic.
Factors such as the novelty of the virus, its high potential for transmission, and mutations
find a considerable share of humankind prone to be infected.

The host response to diseases such as COVID-19 generates immune signals that might
be used to explain or predict the severity of the disease (Liu & Hill, 2020; Yang et al.,
2020). A group of cytokines, chemokines and other biomarkers was previously reported
(Bermejo-Martin et al., 2020) as good indicators of the unbalanced host immune response
caused by inflammatory diseases such as COVID-19. For instance, tumor necrosis
factor (TNF) is a cytokine that is involved several cell signalling events, being a major
regulator of inflammatory responses (Jang et al., 2021). Next, CCL2 is a chemokine that
is actively involved in immune processes, promoting the recruitment of immune cells
to the inflammatory site. Moreover, IL10 may play a central role in regulating cytokine
storms, given that this protein has anti-inflammatory properties (Iyer & Cheng, 2012).
Also, the biomarkers MPO, SPD, ICAM, LIPO, VCAM, GMCSF, and VEGFC are all
markers of vascular tissue damage (Zhao et al., 2014; Kong et al., 2018), which might also
indicate viral escape in the bloodstream as a result of severe manifestations of COVID-19
(Bermejo-Martin et al., 2020).

However, promoting the evaluation of certain immune proteins for predicting the
clinical outcome of a patient is not as straightforward as it may seem; in fact, inflammatory
patterns are very rapid and may change over time, increasing quickly in the first stages of
infection and decreasing during the recovery stage (Wang et al., 2020). Furthermore, many
cytokines/chemokines belong to complex pathways of interactions such as the interleukin
6 trans-signaling reported by (Scheller et al., 2011), which requires the analysis of each
biomarker together with its interactants, requiring complex mathematical approaches to
link biomarkers with the clinical pathway of patients.

Therefore, an extensive calculation approach is required so it can encompass the
non-linear pathway of inflammatory markers in COVID-19. An example of a tool that
has successfully been employed in assisting clinical decision making is artificial neural
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networks (ANNs) (Shahid, Rappon & Berta, 2019). The ability to classify data found in
these algorithms enables that the weighted sum of n given inputs be explored to derive a
classificatory path between pre-defined classes (Russell & Norvig, 2021). The mathematical
robustness of such a method has succeeded in assisting clinical decision making in a
plethora of areas, including health informatics (Andreu-Perez et al., 2015; Ravi et al., 2017).

Standalone analyses of biomarkers’ concentration have been identified as good predictors
of severity as they succeed in capturing a dysbalanced host immune response. For example,
sepsis and septic shock syndromes may cause hypoxia due to tissue hypoperfusion;
then a transcription factor protein (i.e., hypoxia inducible factor 1-alpha) might trigger
immune cells, which tend to upregulate the expression of PDL1 and VEGFC (Cao et
al., 2009; Noman et al., 2014). Moreover, high serum levels of TNF-a were observed
as a good predictor of fatality in critically ill sepsis patients (Yousef & Suliman, 2013).
Additionally, high levels of ICAM1 were found to be a good predictor of severity in sepsis
from bacterial and viral sources, as the biomarker is upregulated in endothelial injury
(Kaur etal , 2021). Notwithstanding, the use of multiple biomarkers has not yet been
employed as characterizers of severity of disease as the addition of novel input variables
scalarly contribute to more complex statistical analysis, rendering mechanistic statistics as
non-viable approaches and potentially requiring the aid of machine learning to achieve
better predictability (Martinez et al., 2022).

In the present study, we hypothesize that the non-linear relationship of a consortium
of immune biomarkers can be used to represent an unbalanced immune response among
COVID-19 patients. We aim to obtain an optimal set of biomarkers to serve as input to
classificatorymodels, providing an inexpensive and fast in-silicomodel for selecting proteins
that play a key role in explaining the inflammatory pattern of COVID-19 patients.

MATERIALS & METHODS
Train/test dataset
One clinical cohort of COVID-19 ICU patients was considered for training/testing the
model. This study took place in Cleveland, USA. Patients were enrolled from March 2020
to May 2020. Patients were hospitalized either because they were potential candidates for
mechanical ventilation and/or because they were judged to be in an unstable condition
requiring intensive medical or nursing care. This cohort was composed of 45 patients.
The patients had longitudinal samplings on their biomarkers consisting of multiple
time points (first day of admission, fifth day, eighth day, eleventh day, and 15th day)
unevenly spread. All the samples associated with each patient were averaged and associated
with a clinical outcome, i.e., deceased or recovered. A panel of biomarkers that flag a
potential dysregulated immune response was systematically put together (Material S1) and
profiled using the Ella Simple Plex Immunoassay (San Jose, CA, USA). The biomarkers
used were as follows: Intercellular Adhesion Molecule 1 (ICAM-1), Lipocalin-2 (LIPO),
Myeloperoxidase (MPO), Vascular Cell Adhesion Molecule 1 (VCAM-1), D-Dimer,
E-selectin (E-SEL), Ferritin, Surfactant Protein (SP-D), Programmed Death-Ligand 1
(PDL1), Granulocyte Colony-Stimulating Factor (G-CSF), Interleukin 1 beta (IL-1b),
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Vascular Endothelial Growth Factor C (VEGFC), Angiopoietin 2 (ANG2), C −X −C
Motif Chemokine Ligand 10 (CXCL10), Granulocyte Macrophage Colony-Stimulating
Factor (GM-CSF), Interleukin 10 (IL-10), Interleukin 17 (IL-17A), Interleukin 1 receptor
antagonist (IL-1ra), Interleukin 6 (IL-6), Interleukin 7 (IL-7), C-C Chemokine Ligand
2 (CCL2), Granzyme B (GRANB), Interferon gamma (IFNg), Interleukin 12 (IL-12),
Interleukin 15 (IL-15), Interleukin 2 (IL-2), Interleukin 4 (IL-4), and Tumor Necrosis
Factor-alpha (TNF- α). The train/test dataset is available in Material S2.

Validation dataset
A second clinical cohort of ICU COVID-19 patients was considered for validating the
model. This cohort took place in Dublin, Ireland. Patients (n= 50) were recruited from
September 2020 to March 2021. The patients were binarized to 30 recovered and 20
deceased. We have opted to use these patients to validate the model because all patients
were critically admitted to the ICU. This cohort was composed of the same 28 biomarkers of
the training/testing cohort that were quantified through the same Simple Plex Immunoassay
(San Jose, CA, USA). The patients were sampled during their ICU admission (1st day),
day three, and 14 days later. The concentration of the available samples was averaged so
each patient had one unique value per biomarker. The validation dataset is available in
Material S3.

Dimensionality reduction
The two clinical cohorts employed in this study have concentration levels of 28 biomarkers.
It has been reported that a dataset with many dimensions will eventually decrease the
performance of a given machine learning algorithm or might produce biased results as
the fitting curve is too complex (Taylor, 2019). To reduce the number of variables to
characterize a patient, a principal component analysis (PCA) was achieved through the
prcomp function implemented in the R stats package (version 4.1.2). The loading scores of
the principal components 1 and 2 were obtained in the $ rotation element that a prcomp
object has. The R code (R version 4.1.2) used for reducing the dimensions of the cohorts
of this study is found at http://dx.doi.org/10.5281/zenodo.6643238.

Classification
We have benchmarked five algorithms for classifying the patients from the train/test and
validation datasets according to their labels (i.e., 0 deceased and 1 recovered, included
in Material S2 and Material S3): support vector machines (SVMs), random forest (RF),
classification and regression trees (CART), k-nearest neighbors (KNN), XGBoost, and
ANNs. The feasibility of the classification of each algorithm was measured through the
accuracy metric upon a 5-fold cross validation dataset. The SVM, RF, CART, and KNN
were built in R and the script is available at https://github.com/gustavsganzerla/covid-
biomarker/blob/main/different_classif-models.R. The XGBoost classifier was built in
Python with the XGBClassifier library (version 1.4.0) and is available at https://github.
com/gustavsganzerla/covid-biomarker/blob/main/xgboost_biomarkers_COVID.ipynb.

A deep learning instance of ANNs was used. The ANN simulations took place in
the Python language through the TensorFlow library in its version 2.8.0. To scale the
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entry data under the same magnitude, a normalization process was conducted through
the StandardScaler function found in the sklearn.preprocessing library. To validate the
simulation process, a cross-validation process was considered, where k =5. This method
involves reserving 4/5 of the dataset for the training process and the remaining 1/5 for
testing. Then, the process is repeated k times so every data point is covered both in training
and testing. The training data consists of 80% of the data.

The ANNs were trained, tested, and validated (the latter with external data to grant
generalization capacity to the model). To assess a binary prediction, a confusion matrix was
built. Deceased patients have the 0 label while recovered patients have 1. This representation
of the classification assigns a prediction to a: (i) True Positive (TP), i.e., patients who
survived and the model classified as survivors, (ii) True Negative (TN), i.e., patients who
deceased and themodel indicated so, (iii) False Positive (FP), patients who actually died and
the model indicated they survived, and iv) False Negative (FN), i.e., patients who survived
and the model indicated they died. The assessment of the model involves calculating the
following performance metrics.

Accuracy, which measures the number of correct predictions in the whole dataset; its
calculation is achieved by Eq. (1).

Accuracy =
(TP+TN )

(TP+TN +FP+FN )
. (1)

Precision, which measures the ratio between the TPs among all the positives, its calculation
is achieved by Eq. (2).

Precision=
TP

(TP+FP)
. (2)

Recall, which measures the percentage of the model identifying TPs; Eq. (3) calculates
it.

Recall =
TP

(TP+FN )
. (3)

Finally, the specificity metric calculates the detection rate of TNs throughout the entire
dataset. It is obtained through Eq. (4).

Specificity =
TN

(TN +FP)
(4)

Next, the model had its recall and specificity scores assessed to obtain the Receiver
Operator Characteristic (ROC) curves, which measured the trade-off between recall and
specificity following different thresholds applied to the outcome of the sigmoidal function
used in the output neuron. The default threshold value (0.5) was preserved in all instances
of the ANN simulation. A second instance of the classification procedure was achieved
by isolating the sex of the patients. The Python code that implemented all the ANNs
simulations in this study is available at https://github.com/gustavsganzerla/covid-biomarker.

Ethics approval
The training/testing cohort obtained an Institutional Review Board (IRB) Approval from
MetroHealth Medical Center in Cleveland, Ohio IRB 20-00198 on March 25, 2020.
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A B
Biomarker Loading score

VCAM.1 0.318
TNF-α
 0.317
ICAM.1 0.301
PDL.1 0.300

ANG 0.2 0.298
E.SEL 0.261
LIPO 0.245
IL.10 0.217

Ferritin 0.217
MPO 0.217

VEGF.C 0.206
CCL2 0.202
G.CSF 0.191
IL.1ra 0.167

CXCL10 0.146
IL.17 0.136
IL.1b 0.123
IL.15 0.119
IL.12 0.104

GRANB 0.099
GM.CSF 0.085

SP.D 0.080
IL.4 0.040
IFNg 0.030

D.Dimer 0.020
IL.2 0.015
IL.6 0.006
IL.7 0.002

Principal Component 1

Biomarker Loading score
CXCL10 0.333
G.CSF 0.267
IFNg 0.261
CCL2 0.257
IL.10 0.255
E.SEL 0.243
IL.2 0.232

VEGF.C 0.232
Ferritin 0.219
GRANB 0.216
TNF-α
 0.213
PDL.1 0.205
IL.1r 0.198
IL.7 0.197

VCAM.1 0.184
IL.15 0.175
MPO 0.168
SP.D 0.138

D.Dimer 0.131
IL.17 0.117
IL.6 0.110

ANG 0.2 0.101
ICAM.1 0.096

GM.CSF 0.080
LIPO 0.072
IL.4 0.034
IL.1b 0.022
IL.12 0.004

Principal Component 2

Figure 1 Principal component analysis to reduce the dimensionality in the train/test cohort¡. In (A),
we plot the contribution of each variable to the Principal Component (PC) 1 and PC2, (these are respon-
sible for 21.5% and 14.7% of the variance of PC1 and PC2, respectively). In (B), we targeted PC1 and PC2
and their eigenvalues. Then, we decreasingly sorted the loading scores of these two components and ex-
tracted the name of each variable. Therefore, the biomarkers indicated in (B) are–in decrescent order–the
proportion that each variable has in computing the variance of PC1, and PC2.

Full-size DOI: 10.7717/peerj.14487/fig-1

The validation cohort obtained an IRB Approval from SJH/TUH Joint Research Ethics
Committee and The Health Research Consent Declaration Committee (HRCDC) under
the register REC: 2020-05 List 17 on March 2, 2020.

RESULTS
Dimensionality reduction
To reduce the dimensionality of the dataset and consequently have fewer neurons being
used in the input layer, we applied a Principal Component Analysis (PCA). From it, we
selected the first two principal components (PCs) (Fig. 1A); then we measured the loading
score in these two components and extracted the variables that most contributed to explain
the components’ variance (Fig. 1B). PC1 is responsible for 22.7% of the data variance while
PC2 is responsible for15%. We maintained this proportion and selected three biomarkers
from PC1 and two from PC2. Therefore, we report a reduced number of biomarkers that
explains the variability found in the dataset; i.e., VCAM.1, TNF- α, ICAM.1, CXCL10,
G.CSF. In addition, we have also screened the 5 worst-ranking biomarkers by the PCA for
validation purposes (we maintained the same proportion as that used in the 5 best-ranking
PCA biomarkers).

Defining the classification procedure
We selected RF, SVMs, CART, XGBoost, KNN, and ANNs to classify the data. As the
accuracy performance of the first four techniques did not show satisfactory results in
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correctly labeling the train/test and validation cohorts (Material S4), we therefore opted to
use Deep Learning ANNs as the previous models did not show a capacity of generalizing
upon unseen data.

To determine the optimal architecture of ANNs to be used in this work, a series of
parameters were set. First, the input layer of the ANN contains the number of biomarkers
that will be employed to classify patients’ outcomes and nature of infection. Next, we
created different ANNmodels to determine the optimal number of hidden layers and their
number of neurons (Material S5). From that, we opted to use an architecture consisting
of four hidden layers with 20 neurons each, where the neurons are activated by a ReLU
function. The loss function was set to binary cross entropy and the Adam optimizer was
chosen. We allowed the weights of the ANN to be updated 200 epochs; this was found to
be the limit in which the error did not drop any further. Since all the further prediction
steps deal with binary classification, we set one neuron in the output layer; this neuron is
activated by a sigmoid function since it yields a probability (i.e., probability of recovering
or dying).

Classifying patients’ outcome with 28 biomarkers
We predicted the clinical outcome of COVID-19 patients using 28 biomarkers as the input
of the ANNmodel. The results (Fig. 2A) suggest a satisfactory classification of the patients.
We further explored our classification metrics by providing the ROC curve (Fig. 2B) in
which we adjusted the decision threshold obtained as the output by the sigmoidal function
in the output neuron. Lastly, we show in Fig. 2C, the error dropping with increasing
epochs.

An optimal set of biomarkers succeeds in classifying patients’
outcomes
To test the prediction capacity of the biomarkers identified by the PCA, we ran an ANN
with five neurons in the input layer. To validate the prediction power of the ANN with
the PCA biomarkers, we performed two classification procedures with different input sets:
one with the five best-ranking PCA biomarkers (three from PC1 and two from PC2) in
the input layer and a second with the five worst-ranking PCA biomarkers (three from PC1
and two from PC2). In Fig. 3, we show the distinctive classification obtained by both sets
of biomarkers (Fig. 3A). Next, we show the ROC curves for each point in the decision
threshold (Fig. 3B). Finally, in Fig. 3C, we show the error drop rate, during the execution
of both ANNs. We found the ANN trained with the 5-best ranking PCA biomarkers ANN
dropped its error at a significantly different rate than its counterpart (p= 2.2e−16) with
the increase of epochs. In addition, due to the time of enrollment, the patients from the
train/test cohort were likely infected with the Wuhan D614G strain of the virus.

We combined male and female patients of the two cohorts in separate datasets to
assess the classification capacity gender-wise (Table 1). We maintained the same input
biomarkers identified by the PCA analysis. We found that the classification of female
patients outperforms the metrics of male patients despite the accuracy of male patients
being higher than that of females (i.e., 77% vs. 73.66%, respectively).
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Accuracy 94%

Precision 93.2%

Recall 97%

Specificity 90%

A B

C

Figure 2 ANN predicting the patients’ outcome of the train/test cohort by using all biomarkers infor-
mation available.We show the performance metrics for the ANN trained with all biomarkers as input
in (A), the numbers displayed here were obtained with the decision threshold set to 0.5 on the sigmoidal
function implemented in the output neuron, i.e., a given patient is labeled as 1 if they have recovered, oth-
erwise, the patient is assigned with a 0. In (B), we show the variation of the decision threshold from 0 to 1
(increasing every 0.1th interval) in the classificatory task. In (C), we show the error rate, obtained with the
binary cross entropy function implementation, the error was averaged in each instance of the k cross vali-
dation process, totalling 5 times.

Full-size DOI: 10.7717/peerj.14487/fig-2

Table 1 Classification with patients’ sex isolated. The patients from the train/test and validation cohorts
were combined, then, we isolated the female and male patients of each dataset. A classification procedure
through artificial neural networks took place by preserving the architecture used previously. Also, the in-
put of this classification is the biomarkers isolated by the principal component analysis step. Performance
metrics were recorded after 200 learning epochs and the threshold set in the output of the sigmoid func-
tion neuron was set to 0.5.

Male Female

Accuracy (%) 77 73.66
Precision (%) 70 83.11
Recall (%) 75.55 82.33
Specificity (%) 83.50 87.5

The prediction capacity of individual biomarkers
To test the clinical outcome prediction capacity of each biomarker, we ran individual
ANNs with a single neuron as input. In these regards, we observed the ROC curves for each
individual biomarker (Fig. 4) and compared it to how the error dropped after 200 epochs
in the ANN model (Fig. 5). The same biomarkers with satisfactory ROC scores matched
the low error after 200 epochs (Table 2).
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Accuracy 93.5%

Precision 96%

Recall 89%

Specificity 94%

ICAM.1

VCAM.1

CXCL10

G.CSF

TNFα

Accuracy 5%

Precision 61.8%

Recall 73.2%

Specificity 22%

IL.2

IL.6

IL.7

IL.1b

IL.12

A B

C

5 best-ranking PCA

biomarkers

5 worst-ranking PCA 

biomarkers

Figure 3 Two ANN simulations seeking to predict COVID-19 patients outcome based on different sets
of biomarkers. In (A), we show the performance metrics for one ANN trained with the top-five biomark-
ers (green) and another ANN with the least-five biomarkers (gray) from the PCA implemented in 3.3. The
values presented are sigmoidal function output in its threshold 0.5 of the averaged cross validated testing
dataset. In (B), we depict the ROC curve for the two ANNs ranging from 0 to 1 in the decision threshold.
In (C), we show how the error (log 10 y axis) decreased with increasing epochs ( x axis), the error was av-
eraged in each instance of the k cross validation process, totalling five times.

Full-size DOI: 10.7717/peerj.14487/fig-3

The biomarkers that individually showed a satisfactory prediction capacity (balanced
performance metrics) are TNF- α, PDL1, LIPO, ICAM1, and VCAM; from these, TNF- α,
ICAM.1, and VCAM are the main contributors of the PC1 found by the PCA analysis.

Validation of the findings with an external cohort
In order to provide validation to the models previously identified, an external source of
COVID-19 patients. At that time, the circling variant in the British Isles was B.1.1.7. In
Fig. 6A, we assess the generalization capacity of three different classification approaches
explored in this work. From it, the patients were divided into two classes (i.e., recovered
and deceased), and each class was validated with the classification models. Firstly, the
classification with 28 biomarkers only classified the deceased patients correctly. In the
second approach, the five best ranking PCA biomarkers produced a balanced prediction
of the two classes. Finally, the classification with the best individual biomarker (i.e., TNF-
α) also only managed to yield a satisfactory classification of deceased patients. In Fig. 6B,
we isolate the model that well generalized the external data (i.e., five best-ranking PCA
biomarkers) and map the validation data into the ANN’s sigmoid function for which
both deceased and recovered patients were satisfactorily classified. The average function
outcome is 0.42 and 0.61 for deceased and recovered, respectively.

Martinez et al. (2022), PeerJ, DOI 10.7717/peerj.14487 9/20

https://peerj.com
https://doi.org/10.7717/peerj.14487/fig-3
http://dx.doi.org/10.7717/peerj.14487


✩

✩

✩
✩

✩
✩
✩✩

✩

✩

✩ ✩

♦︎♦︎
♦︎
♦︎
♦︎

♦︎

♦︎

♦︎

✩

✩✩✩

✩

✩

✩✩
✩

✩
✩♦︎

♦︎

♦︎

♦︎

♦︎♦︎♦︎

♦︎

♦︎ ♦︎

♦︎

♦︎

♦︎

♦︎

♦︎

♦︎

♦︎ ♦︎
♦︎

✩

✩
✩

✩

✩

✩

✩

✩

✩

✩

✩

♦︎

✩
✩

✩

✩

✩

✩

Figure 4 ROC curves for individual biomarkers. ROC curves were plotted for the prediction capacity of
each biomarker present in the study. The decision threshold was adjusted ranging from 0 to 1 (increasing
every 0.1th interval).

Full-size DOI: 10.7717/peerj.14487/fig-4

DISCUSSION
In this work, we promote a two-sided interpretation of a biomarker analysis, one regarding
the potential use of biomarkers for future streamline diagnosis tests and a second one
revolving around the representation of a dysregulated immune response reflected by
unbalanced biomarkers. The results we obtained enabled the isolation of five immune
biomarkers namely ICAM.1, VCAM.1, G.CSF, CXCL10, and TNF- α. The differentiated
concentration of immune biomarkers is known to play a key role in regulating host response
against pathogens (Yang et al., 2014; Bermejo-Martin et al., 2020; Bowman et al., 2021). We
could employ these flagship proteins as an input of ANNs to separate COVID-19 patients
based on their outcomes (i.e., recovered and deceased).

When we first used SVM, XGBoost, KNN, RF, and CART to classify our data, we
noticed the models obtained did not show a capacity of generalization since they did
not produce balanced accuracy scores in the two clinical cohorts. We then chose a more
robust classifier, i.e., ANN. We show its success by using three different sets of biomarkers:
(i) all the 28 available, (ii) the five best-ranking PCA biomarkers (we also used the five
worst-ranking PCA biomarkers), and (iii) the individual biomarker that better showed
classification capacity, i.e., TNF-α. Within the train/test data, all sets of biomarkers yielded
in a satisfactory discriminant model. However, when we stressed the 28-biomarker and
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Figure 5 Error drop rate for individual biomarkers. The error returned by the binary cross entropy
function decreases providing that more iterations over the training dataset occur.
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Figure 6 External validation of three ANN-based classification rationales.We have performed a vali-
dation process with data not included in the train/test of the ANN. The three classification rationales ex-
plored in this study (i.e., all biomarkers, the best PCA biomarkers, and TNF- α). The validation data was
sliced in two according to the clinical outcome (deceased and recovered) and the results of the classifica-
tion are displayed in (A). In (B), we mapped the average outcome value for the two slices of the valida-
tion dataset into the sigmoid function. The same threshold achieved in the train/test set was preserved, so
the function was divided into the ranges 0 to 0.49 and 0.5 to 1 for deceased and recovered patients, respec-
tively.

Full-size DOI: 10.7717/peerj.14487/fig-6

the TNF-α models with an external set of patients, the ANNs failed to correctly classify
the recovered patients. Notwithstanding, the five best-ranking PCA biomarkers model
was successfully validated, granting a generalization capacity to our model. In fact, the
ability to generalize upon other data has always been a daunting challenge since the early
conceptualization of ML techniques (Leung & Chow, 1999). Next, to determine the five
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Table 2 Individual predictive capacity of 28 biomarkers. Individual ANN simulations took place with a
single neuron in the input layer. The remaining ANN architecture was preserved, matching the other in-
stances employed in this study. The measurements displayed in Table 1 represent the ANN on its 200th
learning epoch.

Error
drop rate

Accuracy Precision Recall Specificity

TNF- α 0.1591 91.77 97.14 89.28 95
PDL.1 0.19144 89.55 90.55 92.14 82.66
LIPO 0.23034 89.77 86.42 99.9 70.33
ICAM.1 0.30968 75.77 79.76 84.57 66.33
VCAM 0.3299 79.55 82.66 87.42 70.33
ANG.2 0.34872 81.33 79.04 93.14 67.33
IL.15 0.37874 73.33 80.33 66.44 81.66
CCL2 0.38888 75.33 78.85 84.28 66.66
IL.10 0.4282 73.33 76.66 86.3 60
IL.1ra 0.42956 74.88 73.92 85.14 63.33
MPO 0.4324 77.77 80.59 88.45 71.33
SP. D 0.47296 67.11 68.25 92.14 34.66
G.CSF 0.49266 61.11 66.78 77.42 36
IL.6 0.50564 59.33 63.01 89.16 15.66
E. Selectin 0.50846 59.55 62.95 74.76 33.66
CXCL10 0.55304 65.55 67.65 85.11 37.66
VEGFC 0.55376 62.88 71.5 81 49.33
Ferritin 0.57496 56.88 63.55 79.14 27
IL.7 0.60488 59.11 60.85 89.33 10
IL.17 0.61002 60.88 64.88 95 20
IL.12 0.61236 55.33 61.33 90 10
GRANB 0.6142 28.44 47.68 60.5 0
IL.4 0.62172 66.33 62.88 99.9 6.6
GM.CSF 0.63154 60.88 60.88 99.9 0
IL.1b 0.63826 53.77 60.77 87.5 10
IL.2 0.63954 55.33 65.33 87.5 20
IFN.g 0.64308 51.11 63.11 45.52 76
D-Dimer 0.66516 48.66 54.66 81.9 0

best-ranking PCA biomarkers as potential candidates for isolation, we compared the
classification capacity brought by them against the five worst-ranking PCA biomarkers.
The results advocate for the five biomarkers to be a good representative of the data variance
captured by the PCA (Gárate-Escamila, Hajjam El Hassani & Andrès, 2020). Finally, by
isolating the patients from the two cohorts by gender, we found that a classification only
with females yielded more satisfactory results.

In terms of their function, the five biomarkers we isolated with the PCA, i.e., ICAM.1,
VCAM.1, G.CSF, CXCL10, and TNF- α, are cytokines/chemokines that mark inflammatory
responses. Such inflammation, in COVID-19, can develop into systemic inflammation
and consequently, fatality (Hartung, 1998; Mukhopadhyay, Hoidal & Mukherjee, 2006;
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Vazirinejad et al., 2014; Müller, 2019; Zhang et al., 2020). The mutual functioning of
VCAM.1 and ICAM.1 have been reported as markers of inflammation in patients with slow
coronary flow (Turhan et al., 2006). Furthermore, CXCL10, TNF- α, and G.CSF have been
found to be positively correlated with morbidity in past respiratory pandemics (McHugh et
al., 2013). Interestingly, the ANN model was able to capture the unbalanced levels of these
biomarkers and use the information to predict whether one recovers or not.

Moreover, our individual biomarkers model succeeded in classifying deceased patients
based on their TNF- α concentration. This biomarker has been observed to disturb the
balance of signaling complexes, potentially resulting in inflammatory cascades (Webster &
Vucic, 2020), and evidence of its being linked with death prediction has also been reported
(Bruunsgaard et al., 2003). ANNs usually function as a black-box classifier, in which
extracting real-world information about the behavior of its variables is not a practical task.
However, with the results we obtained regarding TNF-α, we suggest that off-concentrations
of it might be used to depict the unbalanced immune response of COVID-19 patients.

Machine learning (ML) techniques can solve problems in areas where mechanistic
statistics are not able to. In fact, the mathematical robustness implemented by instances of
ML can explore the complex relationship of several variables in a non-linearway (Bühlmann,
2020). There have also been efforts to predict the clinical outcome of COVID-19 patients
by utilizing simpler (than ANNs) ML approaches, such as logistic regression (Arnold
et al., 2021) and support vector machines (de Souza et al., 2021). Both these techniques
yielded satisfactory two-class prediction. However, their nature is quite different from the
one encompassed in this study. First, (Arnold et al., 2021) brought biomarkers collected
only on admission to their classification rationale, moreover de Souza et al. (2021) have
employed demographical data to achieve their classification, highlighting the differential
analysis protruded by the inclusion of immune biomarkers.

We also noticed the inability of two (out of three) ANN models to correctly predict
recovered patients from a validation cohort. All the patients in this cohort were recruited in
the ICU; also, due to limitations in binarizing these patients into two classes (i.e., recovered
and deceased, as found in the training/testing cohort), the recovered label in this cohort
means the patients were discharged from ICU but remained hospitalized. Therefore, we
argue that inflammatory activity was still happening within those patients, which is why
more generic models (i.e., classification with all biomarkers and classification with TNF-
α) failed to correctly label those patients.

A reduced set of immune biomarkers identified by this work has succeeded in predicting
the outcome of patients. In fact, in frameworks for therapeutic development (CDER, 2014),
a set of candidate biomarkers is identified for further tests to validate the indirect/direct
causal relation between a biomarker, a disease, and its treatment (Kraus, 2018).

We faced limitations in this study due to the reduced size obtained in the cohorts. To
overcome this issue and grant validity to our findings, we opted to train/test the model
with one dataset and use an additional set for validation. In addition, other studies that
used biomarkers from clinical cohorts (Bermejo-Martin et al., 2020; Fazolo et al., 2021;
Sardar, Sharma & Gupta, 2021) did not show a substantial improvement in their sample
population to ours. Another potential limitation we faced was due to the classificatory
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nature of this study, which asks for categorical variables (i.e., recovered or deceased) to
classify patients. For that, regression models (i.e., Recurrent Neural Networks) can analyze
how numerical variables behave over time.

Therefore, we suggest that an extensive round of tests, such as the one achieved by
the employment of deep learning ANNs in this work, functions as a form to curate
biological information in an in-silico way as the non-linear relationship among a plethora
of biomarkers might not be explored by conventional statistical approaches. We believe
that our results might be an initial step for feeding models for drug targeting, highlighting
in-silico biology as an economical way to tailor hypotheses to be further investigated by
molecular and experimental analyses.

CONCLUSIONS
In this work, we have identified a neural network architecture and stressed this classification
model with different inputs to achieve an optimal classification. In all instances, the
training/testing dataset was satisfactorily predicted by the model we proposed. Next, when
validated with external data, we were able to screen one subset of biomarkers that correctly
predicted the clinical outcomes of COVID-19 patients belonging to two cohort studies.
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