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ABSTRACT
Seed germination is a key stage in the life history of plants, which has a crucial effect
on plant community structure. Climate change has substantially altered the surface
soil temperature and light availability, which can affect seed germination. However,
whether the seed germination of different functional groups is affected by the
interactions of light and temperature remains unclear. Under laboratory conditions,
we examined the effects of low temperature and darkness, as well as their interaction,
on the seed germination of 16 species belonging to three plant functional groups
(annual and biennials, perennial grasses, and perennial forbs) in a typical steppe,
Northern China. We found that low temperature had a significant negative effect on
seed germination of all species. Low temperature significantly decreased the final
germination percentage and germinative force of the three plant functional groups,
and the germination duration of perennial grasses. Darkness significantly decreased
the germinative force of perennial forbs and total seeds, and the germination
duration of perennial grasses. The interactive effects of light and temperature on the
seed final germination percentage and germinative force of perennial grass indicated
that darkness strengthened the inhibitory effect of low temperature on the seed
germination of the grass functional group. Our study indicate that the seed
germination of different plant functional groups varied greatly in response to
changing environmental conditions. Our results suggest that future climate change
could alter the regeneration and species composition of plant communities through
changing seed germination.
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INTRODUCTION
Seed germination is the initial stage of plant growth, and it affects the development and
reproduction of individual plants, as well as the structure and composition of the plant
community (Hoyle et al., 2014; Zhang et al., 2020). Compared with the vulnerability
of seedlings, seeds are highly tolerant to environmental stress (Chen et al., 2019). The
establishment of seedlings likely depends on the response of seed germination to the
environment. Many plants have dormancy mechanisms to prevent germination, and seeds
will break the seed coat and protrude the radicle until the conditions are suitable for seed
germination and seedling growth (Miransari & Smith, 2014; Lai et al., 2019). Germination
percentage and germination time determine the timing and location of seedling
establishment, and affect species coexistence and plant community development (Tobe,
Zhang & Omasa, 2005; Zhang et al., 2020). There is thus a need to identify the factors that
affect the seed germination percentage and germination time.

Temperature and light have critically important effects on seed germination
(El-Keblawy, 2017; Chen et al., 2019). Temperature is essential for breaking seed dormancy
and inducing seed germination, as it stimulates enzyme activity in plant seeds, leading
to the rupture of the seed coat, and enhances water permeability (Tabatabaei, 2015).
The response of seed germination to temperature is often characterized by a parabolic
relationship (Chen et al., 2019). There is an optimal temperature for seed germination, and
temperatures above or below the optimum can inhibit seed germination (Durr et al., 2015).
Ongoing global climate warming has not only resulted in a gradual increase in soil
temperature but also led to shorter winters and the melting of snowpack in early spring
(Walck et al., 2011). The lack of insulation from snow can lead to changes in soil and litter
temperature, which can disrupt the regeneration of plants and alter the adaptive ranges of
species due to frost exposure (Walck et al., 2011). Most studies have focused on clarifying
the impact of higher temperatures on seed germination (Ronnenberg et al., 2007; Durr
et al., 2015;Hadi et al., 2018). There is thus a need to study the effect of low temperature on
seed germination to evaluate the responses of the community composition and structure to
climate change.

Light also plays an important role in seed germination (Baskin & Baskin, 1998). Light
can increase the content and activity of some enzymes in seeds and promote seed
germination (Shahverdi et al., 2019). Light perceived by plants can be converted into
internal signals that result in endogenous phytohormone responses (Seo et al., 2009).
However, the seed germination of some plants is not light sensitive. For example, the seed
germination of Caragana korshinskii, which grows on the dunes of Central Asia, shows no
response to light (Zeng et al., 2003). The response of seeds to light is a mechanism that
germination occurs under conditions conducive to seedling growth (Wang et al., 2014).
Seedlings can be established to meet their own growth and nutritional requirements
through photosynthesis (El-Keblawy, 2017). In environments where seeds may be buried
in deep soil, covered by litter, or sheltered by caregivers, light is an important factor in
determining the locations the most suitable for seedling establishment after germination
(Wang et al., 2014; El-Keblawy, 2017). There is thus a need to study the response of
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grassland communities to changes in light. Although the effects of temperature and light
on seed germination have been extensively studied, how the interaction between low
temperature and darkness affects seed germination remains unclear.

The responses of the germination rate of different plant functional groups to nutrients
and light vary under global change (Wang et al., 2014). Plant functional group is the group
of plant species that share key functional traits, have similar response mechanisms to
specific environmental factors, and have similar effects on the main ecosystem processes
(Li et al., 2017; Su et al., 2018; Chen et al., 2020; Li et al., 2021). Therefore, the various
responses of seed germination to light and temperature in plant communities may be
related to the identity of plant functional groups. In a previous study examining the early
succession of Mongolian steppe after drought, the forbs of two Chenopodium species had a
lower seed germination rate compared with Salosla collina, an annual plant (Kinugasa
et al., 2016). Light can significantly reduce the seed germination rate of perennial grasses
regardless of temperature and water conditions (Hu et al., 2013). Several studies have
investigated seed germination under different environmental factors, but few have
examined how light and temperature and their interaction affect the seed germination
percentage, germination time, and germinative force of different plant functional groups.

The grasslands in northern China support animal husbandry, yet these grasslands are
sensitive to changes in climate and land use patterns (Zhang et al., 2020; Wang et al.,
2020a; Wang et al., 2021). There is thus a need to explore the effects of different
temperature and light conditions on seed germination of different functional groups. Here,
we conducted temperature and light treatment experiments on seeds of typical grassland
plants in northern China, and raised the following questions: (1) How do three plant
functional groups respond to temperature and light for seed germination, and (2) and
whether there was an interaction between temperature and light on seed germination.

MATERIALS AND METHODS
Study site and materials
The seeds of this study were collected from a temperate steppe located in Duolun County
(42�02′N, 116�17′E, 1,324 m a.s.l), Inner Mongolia, Northern China. The long-term mean
annual precipitation of the area is 383 mm, and approximately 90% of the annual
precipitation falls during the growing season (May to October). The mean annual air
temperature is 2.1 �C. The maximum monthly mean temperature (18.9 �C) occurs in July.
January is the coldest month with an average temperature of −17.5 �C. The annual
accumulated temperature is 1,600–3,200 �C. The plant community of the grassland
ecosystem primarily consists of perennial forbs and grasses; annuals and biennials are also
common (Sagar et al., 2019; Miao et al., 2020; Wang et al., 2020a).

The seeds of more than 600 native mature plant individuals from 16 common species
were collected in semi-arid grassland from September to October 2017. These species
belong to the three main functional groups: perennial forbs (PF), perennial grasses (PG),
and annuals and biennials (AB). There were nine PF species (Artemisia frigida, Taraxacum
mongolicum, Potentilla tanacetifolia, Potentilla bifurca, Lespedeza davurica, Medicago
ruthenica, Plantago asiatica, Allium tenuissimum L., and Thalictrum petaloideum), four
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PG species (Stipa krylovii, Agropyron cristatum, Pennisetum centrasiaticum, and Leymus
chinensis) and three AB species (Artemisia scoparia, Chamaerhodos erecta, and
Dontostemon dentatus) (Zhong et al., 2019; Miao et al., 2020).

Seed germination
The seeds were dried and then preserved in the dark at natural temperature until April
2018 for germination experiments. Germination experiments were conducted in 10 cm
diameter Petri dishes. This experiment used a factorial design with two factors: light
(photoperiod, darkness) and temperature (low temperature, high temperature), which
were combined into four different treatments: high temperature/photoperiod (20 �C, 12 h
light/12 h dark), low temperature/photoperiod (4 �C, 12 h light/12 h dark), high
temperature/darkness (20 �C, 24 h dark), and low temperature/darkness (4 �C, 24 h dark).
There were three replicates for each treatment. The different photoperiods were used to
simulate the availability of light, darkness is to simulate the expected changes due to
nitrogen deposition promotes plant individual growth and litter increase under climate
change, which leads to prolongation of dark environment (Hoyle et al., 2014; Chen et al.,
2019). A total of 4 �C was used to simulate the snow-melting field temperature in winter
(spring) after seed dispersal, and 20 �C was used to simulate the optimal germination
temperature of local seeds (Hoyle et al., 2014; Zhang, 2018; Wang et al., 2020b).

First, 192 Petri dishes (16 species × 4 treatments × 3 replicates) were selected for
disinfection, a layer of filter paper was placed in each Petri dish. A total of 20 seeds were
evenly distributed in each dish and moistened with a spray bottle. Finally, the Petri dishes
were placed in different incubators for the germination experiment. Water was added daily
for 60 days to keep the Petri dish filter paper moist. Radicle emergence was used as the
criterion for germination, and germinating seeds were immediately removed to reduce the
disturbance on other seeds (Lai et al., 2019).

Statistical analysis
Germination was measured using four indices: final germination percentage (FGP),
germinative force (GF), germination duration (GD), and germination start (GS):

FGP is the percentage of germinated seeds to tested seeds (Lai et al., 2019; Zhang et al.,
2020); GF is the percentage of seed germination at peak to tested seeds. GF measures the
speed and uniformity at which seeds germinate. GF and FGP are the main indexes for
measuring the quality of seeds (Zhou et al., 2020). GD is the number of days from
germination of the first seed to germination of the last seed (Bu et al., 2008); GS is the
number of days from the start of the experiment to the germination of the first seed (Chen
et al., 2019).

Using data of the 16 species, generalized linear models (GLM) were used to test the
effects of temperature and light and their interaction on seed germination of each plant
functional group. The sample sizes of PF, PG and AB in each treatment were 27, 12, 9,
respectively. F-tests were conducted to evaluate whether GLM predictors explained a
significant fraction of the total deviance or not. Tukey’s honestly significant difference
(HSD) test was used to evaluate significant differences among multiple treatments based
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on ANOVA results. Means (±SE) of non-transformed data were calculated and shown in
figures. Spearman correlation method was used to determine the correlations among FGP,
GF, GD, and GS. All statistical analyses were performed using R software (R Core Team,
2022), and the threshold for statistical significance was P < 0.05.

RESULTS
Seed final germination proportion
Two-way ANOVA indicated that plant functional groups presented a statistically different
response in FGP (Table 1, P < 0.05). The mean FGP of PG was 22.6%, which was the lowest
among the three plant functional groups (Fig. 1). Low temperature significantly inhibited
the FGP of total seeds by 29.7% (P < 0.001, absolute change, Table 2). Darkness had no
significant effect on FPG. There was no interactive effect between temperature and light on
the FGP of total seeds. Low temperature significantly inhibited the FGP of PF, PG, and AB
by 30.5%, 19.0%, and 41.9%, respectively (Table 2, Fig. 1). The interactions of temperature
and light had a significant effect on the FGP of PG (P = 0.024). Under photoperiod
conditions, low temperature decreased the FGP of PG seeds by 10.0%. Under darkness, low
temperature significantly decreased the FGP of PG seeds by 27.9%. Darkness promoted the
FGP of PG by 4.2% at high temperature and inhibited the FGP of PG by 13.8% at low
temperatures. According to Tukey’s honestly significant difference (HSD) test, the
values of FGP of perennial forbs and total species were the highest under the high
temperature/photoperiod treatment, and were lowest under low temperature/darkness
treatment.

Seed germinative force
There were statistical differences among plant functional groups in FGP (Table 1, Fig. 2).
Low temperature and darkness significantly decreased the GF of total seeds by 13.4% and
3.7%, respectively. There was no interaction between the effects of temperature and light
on the GF of total seeds. Low temperature significantly decreased the GF of PF, PG, and
AB by 11.9%, 8.1%, and 24.7%, respectively (Table 2, Fig. 2). Darkness significantly

Table 1 The effects of light, temperature and plant functional group (PFG) on final germination
percentage (FGP), germinative force (GF), germination duration (GD) and germination start (GS)
based on generalized linear model analyses.

FGP GF GD GS

F P F P F P F P

Light 1.895 0.170 4.978 0.027 1.639 0.202 1.506 0.221

Temperature 48.237 <0.001 68.338 <0.001 4.903 0.028 378.742 <0.001

PFG 3.698 0.027 7.837 <0.001 0.487 0.616 0.808 0.448

Light × Temperature 1.698 0.194 2.831 0.094 0.931 0.336 0.379 0.539

Light × PFG 0.109 0.897 0.292 0.747 2.405 0.093 0.068 0.935

Temperature × PFG 0.829 0.438 2.123 0.123 0.705 0.495 1.141 0.322

Light × Temperature × PFG 0.962 0.384 0.375 0.688 0.954 0.387 1.777 0.172

Note:
Significant effects (P < 0.05) are in bold.
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Figure 1 Effects of temperature (high temperature, low temperature) and light (photoperiod,
darkness) on seed final germination percentage of total species (Total), perennial forbs (PF),
perennial grasses (PG), and annuals and biennials (AB). Error bars indicate the standard error of
three replicates. The different letters over the bars represent significant difference among the four
treatments based on Tukey’s honestly significant difference test (P < 0.05).

Full-size DOI: 10.7717/peerj.14485/fig-1

Table 2 The effects of light and temperature on final germination percentage (FGP), germinative
force (GF), germination duration (GD) and germination start (GS) of perennial forbs (PF),
perennial grasses (PG), annuals and biennials (AB) and total specie (Total) based on generalized
linear model analyses.

FGP GF GD GS

F P F P F P F P

PF Light 1.355 0.247 3.960 0.049 0.261 0.611 0.653 0.421

Temperature 21.943 <0.001 24.260 <0.001 3.616 0.060 194.280 <0.001

Light × Temperature 0.879 0.351 1.734 0.191 1.277 0.261 1.621 0.206

PG Light 0.863 0.358 0.929 0.340 10.645 0.002 0.986 0.326

Temperature 13.879 <0.001 30.181 <0.001 4.047 0.050 123.118 <0.001

Light × Temperature 5.042 0.030 4.080 0.050 2.235 0.142 0.154 0.697

AB Light 0.059 0.810 0.386 0.539 0.318 0.577 0.115 0.737

Temperature 17.419 0.000 27.542 <0.001 0.001 0.977 67.933 <0.001

Light × Temperature 0.259 0.614 0.000 0.996 0.390 0.537 1.853 0.183

Total Light 1.834 0.177 4.381 0.038 1.566 0.212 1.450 0.230

Temperature 46.694 <0.001 60.134 <0.001 4.683 0.032 364.650 <0.001

Light × Temperature 1.641 0.202 2.501 0.115 0.889 0.347 0.365 0.547

Note:
Significant effects (P < 0.05) are in bold.
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reduced the GF of PF by 4.9%. The interaction between temperature and light significantly
affected the GF of PG (P = 0.043, Table 2). Under photoperiod conditions, low
temperature significantly reduced the GF of PG seeds by 6.3%. Under darkness, low
temperature significantly decreased the GF of PG seeds by 10%. According to Tukey’s
honestly significant difference (HSD) test, the values of GF of perennial forbs and total
species were the highest under the high temperature/photoperiod treatment, and were
lowest under low temperature/darkness treatment.

Seed germination duration
Low temperature significantly decreased the GD of total seeds by 1.6 days (Table 2, Fig. 3).
Low temperature significantly reduced the GD of PG by 2.0 days. Darkness significantly
reduced the GD of PG by 3.3 days. There was no interaction effect between temperature
and light on the GD of total seeds and the three functional groups.

Seed germination start
Low temperature significantly prolonged the GS of total seeds by 19.8 days (Table 1, Fig. 4).
Low temperature significantly increased the GS of PF, PG, and AB by 18.9, 21.0, and
20.7 days, respectively (Table 2, Fig. 4). Darkness had no significant effect on the GS of seed
germination. There was no significant interaction effect between temperature and light on
the GS of total seeds and different functional groups.

Figure 2 Effects of temperature (high temperature, low temperature) and light (photoperiod,
darkness) on seed germinative force of total species (Total), perennial forbs (PF), perennial
grasses (PG), and annuals and biennials (AB). Error bars indicate the standard error of three
replicates. The different letters over the bars represent significant difference among the four treatments
based on Tukey’s honestly significant difference tests (P < 0.05).

Full-size DOI: 10.7717/peerj.14485/fig-2
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Figure 3 Effects of temperature (high temperature, low temperature) and light (photoperiod,
darkness) on seed germination duration of total species (Total), perennial forbs (PF), perennial
grasses (PG), and annuals and biennials (AB). Error bars indicate the standard error of three
replicates. The different letters over the bars represent significant difference among the four treatments
based on Tukey’s honestly significant difference tests (P < 0.05).

Full-size DOI: 10.7717/peerj.14485/fig-3

Figure 4 Effects of temperature (high temperature, low temperature) and light (photoperiod,
darkness) on seed germination start of total species (Total), perennial forbs (PF), perennial
grasses (PG), and annuals and biennials (AB). Error bars indicate the standard error of three
replicates. The different letters over the bars represent significant difference among four treatments based
on Tukey’s honestly significant difference tests (P < 0.05). Full-size DOI: 10.7717/peerj.14485/fig-4
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Relationships between germination indexes
The mean FGP, GF, and GD of all species were negatively correlated with the mean GS
(Fig. 5). There was a pairwise positive correlation among the average FGP, GF, and GD of
all species.

DISCUSSION
Effect of temperature on seed germination
Seed germination was sensitive to environmental conditions, and excessively high or low
temperatures were not conducive to seed germination (Hadi et al., 2018; Chen et al., 2019;
Zhang et al., 2020). In this study, low temperature significantly decreased the final
germination percentage and germination force of all seeds. This is consistent with the
results of previous studies indicating that low temperatures could significantly inhibit seed
germination (Lai et al., 2019). In this experiment, 4 �C was used to simulate the
snow-melting field temperature in winter (early spring) after seed dispersal, and 20 �C was
used to simulate the optimal germination temperature of local seeds (Hoyle et al., 2014).
The optimal temperature for seed germination was closely related to the maternal habitat
(Liu, Qi & Shu, 2004). Suboptimal temperatures could affect the activity of a series of
cytoplasmic enzymes and cell membrane permeability, which in turn affected the process
of seed germination (Finch-Savage & Leubner-Metzger, 2006; Penfield, 2017). The low
temperature treatment might lead to decreases in the enzyme activity and metabolism in

Figure 5 The relationship among final germination percentage, germinative force, germination
duration, and germination start of total species. Each data point represents the mean value of each
species across the four treatments. ���P < 0.01, ��P < 0.01, �P < 0.05.

Full-size DOI: 10.7717/peerj.14485/fig-5
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seeds and thereby inhibit seed germination. Low temperature significantly shortened the
germination duration of total seeds. The accumulated cold temperature before seed
germination could induce or accelerate seed development and thus shorten the
germination duration (Chen et al., 2019). Low temperature could also restrict seed
germination, as the time required for the germination of the tested seeds increase.
Correlation analysis indicated that the duration of seed germination increased as the
final germination percentage and germinative force increased (Fig. 5). Decreases in the
germination duration indicated that some early germinating species might gain a
competitive advantage through increased access to resources (Wang et al., 2020b).

Low temperature had different effects on seed germination percentage and germinative
force of different functional groups. Compared with perennial forbs and perennial grasses,
seeds of annual and biennials were more sensitive to low temperature. This finding was
consistent with the results of previous experiments showed that low temperature reduced
seed germination of annual plants and induced dormancy (Zhang et al., 2015). Short-lived
plants had more dormant seeds than long-lived plants as well as more requirements for
their seeds to germinate (Bu et al., 2008). Compared with perennials, annual plants only
produced seeds once in their lifetime and were more dependent on the environment in
which seeds germinate. Under harsh environmental conditions, plants had two
germination strategies: adventurous germination or dormancy (Greenberg, Smith & Levey,
2001). Once an annual plant failed to germinate, it lost the seed genotype that does not
germinate, and thus the annual plant goes into dormancy to forego the risk of germination
(Bu et al., 2008). The final germination percentage was the lowest for perennial grasses.
This might be explained by the fact that perennial species did not depend on successful
germination in any year, nor on the establishment of a persistent seed bank, because they
could survive for a long time through vegetative growth (Wesche et al., 2006). Previous
study had shown that dominant perennial plants, such as Agropyron cristatum and Stipa
gobiaa, did not produce new seedlings for many years (Wesche et al., 2006). Seeds buried in
the soil sense temperature changes and selected suitable times to initiate their life cycle
(Chen et al., 2019). Therefore, short-term changes in the plant community might stem
from changes in annual and biennial plants (Zeng et al., 2016; Anniwaer et al., 2020).
In addition, the final germination percentage of total seeds in this experiment was low, this
might stem partly from the fact that seeds were stored at room temperature after being
collected from the field, which reduced seed vigor (Liu, Qi & Shu, 2004; Shen et al., 2008).
Some studies had shown that seed vigor was better maintained when seeds were
refrigerated (Liu, Qi & Shu, 2004). The responses of seed germination of perennial and
annual plants to low temperature differed, indicating that the various germination
strategies employed by different plant functional groups might affect the community
structure.

Global warming will likely result in shorter winters and the melting of snow (Walck
et al., 2011). Reductions in snow cover resulted in colder soil and deeper soil frosts; this
could cause germinated seedlings to die or seeds to go back into dormancy, which leaved
more seeds in the soil seed bank (Walck et al., 2011). In this study, it was impossible to
identify the effect of fluctuating temperatures on seed germination (Shen et al., 2008). Seed

Liu et al. (2022), PeerJ, DOI 10.7717/peerj.14485 10/18

http://dx.doi.org/10.7717/peerj.14485
https://peerj.com/


of some species could come out of dormancy only after they were exposed to fluctuating
temperatures (Benech-Arnold et al., 2000). Therefore, it is necessary to further explore the
effects of changes in plant seed functional groups on plant community structure under
different temperature fluctuations.

Effect of light on seed germination
Light was a key environmental factor affecting seed germination (Finch-Savage &
Leubner-Metzger, 2006). After seed maturity and shedding, seeds might be distributed in
different environments on the soil surface. For seeds in soil, the spectral composition and
irradiance of light were important signals that can indicate the suitability of environmental
conditions (Gu et al., 2005). Differences in illumination might induce the dormancy or
germination of plant seeds (Gresta et al., 2010). The dark conditions used in this study had
also been examined in previous studies (Hoyle et al., 2014; Chen et al., 2019). Increased
litter, mainly due to nitrogen deposition, limited the availability of light and increased the
possibility that plant seeds would be covered when they left the parent plant (Jensen &
Gutekunst, 2003). Darkness significantly reduced seed germinative force, which might
stem from the mechanism by photosensitivity (Gresta et al., 2010). The photosensitive
properties of plants prevented seeds from being established in shaded environments
covered with litter or trees; consequently, appropriate sites needed to be identified to
promote the establishment of seedlings after germination (El-Keblawy, 2017). Seeds could
use light to detect the distance from the ground and thus identified suitable sites to
promote the establishment of seedlings after germination (Flores, Gonzalez-Salvatierra &
Jurado, 2016). Darkness significantly reduced the germinative force of perennial forbs, but
had no significant effect on perennial grasses or annual and biennial plants. Previous
studies had shown that two Chenopodium plants had low seed final germination
percentage under the combined action of light and temperature (Kinugasa et al., 2016).
These differences led to variation in the germination time and space of different species
and functional groups in semiarid grassland community. Plant functional groups had
evolved different mechanisms to cope with environmental resource scarcity.

The decrease in seed germination under darkness might protect established plant
seedlings from limitations in light resources; canopy space was an important factor
limiting the establishment of seedlings (Olff et al., 1994). The increase in plant litter
promoted by nitrogen deposition increased the amount of surface cover and created a dark
environment that affected seed germination (Jensen & Gutekunst, 2003; Zhang, Wang &
Wan, 2019). For some plant seeds that are buried under leaf litter, the need for light to
induce germination during burial may prevent germination (Schutz & Rave, 1999).
Therefore, light competition could limit the richness of plant species through seed
germination (Yang et al., 2011). Under environmental conditions that were not conducive
to germination, seeds remain in a dormant state until conditions were suitable (Hu et al.,
2013). These results indicated that the dark conditions caused by the litter would affect the
process of seed germination, and the light limitation of litter could be reduced by proper
grazing and mowing in the future to promote plant establishment (Yuan, Liang & Zhang,
2016).
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Interaction effect of temperature and light on seed germination
Environmental factors such as temperature and light were key factors affecting seed
germination (Gao et al., 2012). Seed germination could only respond to specific
combinations of environmental factors (Yi et al., 2019), and adverse temperature and light
conditions, individually or in combination, might prevent the germination of newly shed
seeds (Schutz & Rave, 1999). In this study, low temperature and darkness had a significant
interaction effect on the final germination percentage and germinative force of perennial
grass. Darkness intensified the inhibitory effect of low temperature on seed germination of
perennial grass. Seed final germination percentage was the lowest under the combined
action of darkness and low temperature, and this interaction between light and
temperature also affected germinative force of perennial grass (Wu et al., 2016). These
observations indicated that interactions among different environmental factors could
affect seed germination, and differences were observed among the different plant
functional groups (Wu et al., 2016; Chen et al., 2019; Yi et al., 2019). Johnson’s experiment
(2012) showed that the interaction between light and temperature affected seed
germination by demonstrating that higher temperatures were required for seeds to
germinate in the presence of light (Johnson & Kane, 2012). Furthermore, in some plants
with strong photosensitivity, seed germination was mediated by temperature-controlled
phytochromes (Yang et al., 1995). Plants had evolved strategies that involve both
predicting germination and optimizing their adaptability, wherein some seeds were
allowed to germinate in the current environment while others remain dormant, thus
hedging their bets on unpredictable conditions that were not conducive to seedling
establishment (Yi et al., 2019).

The findings of this study suggested that low temperature significantly inhibited seed
final germination percentage, especially that of annual and biennial plants. This effect had
also been observed in adult plants in terrestrial ecosystems. Annuals were more sensitive to
temperature changes than perennials, and their growth would be promoted by changes in
temperature (Zhou et al., 2011). Many annual and biennial plants had a better bet-hedging
strategy for completing their life cycle earlier under suitable conditions, which provided an
advantage in resource competition (Gremer & Venable, 2014; Zhang et al., 2020). The
results of seed germination at the functional group level were consistent with those found
at the plant community level, indicating that the response of seed germination to
environmental changes could explain community changes. Under multi-factor climate
change, the responses of seed germination of the plant community would be complex.
Seed germination was a key stage in plant life history, but it was only the first step, and
there was still a lot of uncertainty about how the structure of plant community might
change. In addition, to verify the long-term effects of climate change on plant community
structure, multi-year sampling and increasing sample numbers are required, while
focusing on whether seed germination status is consistent with the response of adult plant
communities to climate change.
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CONCLUSION
We found that low temperature had significant negative effects on seed final germination
percentage, germinative force, germination duration, and germination start at both the
community level and the functional group level. The negative effects of low temperature on
the final germination percentage and germinative force were higher for annuals and
biennials than for other plant functional groups. Perennial grasses were affected by the
interaction between low temperature and darkness. Darkness strengthened the inhibitory
effect of low temperature on seed final germination percentage and germination force of
perennial grasses. The changes in community structure caused by the diverse response of
different functional groups affected the original ecological services provided by ecosystems.
The responses of seed germination of plant functional groups to changes in the
environmental conditions in semiarid grasslands require further exploration for explaining
the responses and changes in the ecological function of plant communities under future
climate change.
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