
Exogenous melatonin improves salt
tolerance mainly by regulating the
antioxidant system in cyanobacterium
Nostoc flagelliforme
Xiaolong Yuan1, Jing An1, Tao Zheng1 and Wenjian Liu2

1 School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an,
China

2 School of Environmental Science and Engineering, Shaanxi University of Science & Technology,
Xi’an, China

ABSTRACT
Melatonin is a multifunctional nontoxic bio-stimulant or signaling molecule,
generally distributing in different animal and plant organs for invigorating numerous
physiological processes against abiotic stresses. In this study, we investigated the
potential impact of melatonin on the cyanobacterium Nostoc flagelliforme when
exposed to salt stress according to some biochemical and physiological parameters,
such as relative electrolyte leakage, PSII activity, and photosynthetic pigments
including chlorophyll a, phycocyanobilin, and phycoerythrobilin. We found that
melatonin could also maintain K+ homeostasis in salt-stressed N. flagelliforme. These
above results confirmed melatonin had multiple functions in hyperosmotic stress and
ion stress caused by salinity. Notably, we observed melatonin could regulate the
reactive oxygen species (ROS) signal and distinctly decrease the content of hydrogen
peroxide and superoxide anion in salt-stressed cells, which were largely attributed to
the increased antioxidant enzymes activities including catalase, superoxide
dismutase, ascorbate peroxidase, and glutathione reductase. Finally, qRT-PCR
analysis showed that melatonin stimulated the expression of antioxidant genes
(NfCAT, NfSOD, and NfGR). In general, our findings demonstrate melatonin has
beneficial effects on N. flagelliforme under salt stress by intensively regulating
antioxidant system.
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INTRODUCTION
Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitously distributed molecule that
exists in both animals, plants, and microorganisms (Hardeland et al., 2010; Kanwar, Yu &
Zhou, 2018; Xie et al., 2022), acts as a pleiotropic signaling molecule and plays
multifunctional roles in seed germination, root, and shoot development (Tan et al., 2012;
Park & Back, 2012; Martinez et al., 2018). Melatonin is usually involved in signal
transduction under salt stress including hydrogen peroxide and abscisic acid (Zhang et al.,
2014; Gong et al., 2017). From last few years, melatonin has been identified as a novel class
of metabolic regulator in the biological kingdoms. It can improve the tolerance of plants to
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numerous abiotic stresses such as high temperature (Shi et al., 2015b), cold (Li et al.,
2017b), salt (Jiang et al., 2016; Siddiqui et al., 2019; Zhan et al., 2019), and heavy metal
(Posmyk et al., 2008). The endogenus melatonin levels show the circadian rhythm,
indicating a role in photoperiodic and rhythmic phenomena in the dinoflagellate
unicellular algae Gonyaulax polyedra (Caniatio et al., 2003). In addition, melatonin can
effectively scavenge ROS such as H2O2 and O•−

2 in crops, vegetables, and algae (Wei et al.,
2015; Shi et al., 2015a; Ke et al., 2018; Zhang et al., 2018). It has been demonstrated that
exogenous melatonin promotes the tolerance against adverse environmental factors
through detoxifying ROS up to tolerable levels by enhancing antioxidant enzymes activities
and regulating the transcription levels of genes related to the antioxidant system in
organisms (Rodriguez et al., 2004; Fischer et al., 2013). The main mechanism by which
melatonin enhances the tolerance of diverse abiotic stresses is attributed to its antioxidative
role as a scavenger of reactive oxygen species (ROS) (Weeda et al., 2014).

Many areas of the world, particularly arid and semi-arid regions, are severely affected by
soil salinization (Himabindu et al., 2016). The accepted view is that high salinity causes
multiple stresses (hyperosmotic, ionic, and oxidative) which limit the growth and
development of plants (Carillo et al., 2019). At present, a large number of studies have
focused on osmotic stress and ion stress caused by salinity. The excessive NaCl in the soil
can directly cause inconvenience to water use efficiency due to hyperosmotic stress
(Munns & Tester, 2008). In addition, the NaCl-induced ionic stress disturbs the K+/Na+

balance (Gao et al., 2016), reduces the accumulation of photosynthetic pigments (Kao, Tsai
& Shih, 2003), and disrupts the enzymatic reaction processes (Li et al., 2012). It is
noteworthy that the oxidative stress caused by NaCl should not be ignored, oxidative stress
is the most dangerous event under salt conditions which triggers overproduction of ROS
that cause extensive cellular death and DNA damage, collapse the enzymatic actions, along
with distraction of the antioxidant defense system and dysfunction of physiological and
molecular mechanisms of plants (Mittler, 2002; Apel & Hirt, 2004; Miller et al., 2010;
Caverzan, Casassola & Brammer, 2016; Choudhary, Kumar & Nirmaljit, 2020). Thus, more
attention should be payed on the damage of oxidative stress to plants or other organisms
under high salinity.

Most studies have confirmed the beneficial effects of melatonin on plants after exposure
to salt stress. However, its potential effects on cyanobacterium have been less understood.
Nostoc flagelliforme is a terrestrial and nitrogen-fixing cyanobacteria that grows in arid and
semi-arid steppes (Gao, 1998). It can change the nutrient composition and water
conduction ability of the sand by fixing the soil particles (Chen et al., 2011). These
functions can affect the distribution of vegetation and turn desert into fertile soil (Bailey,
Mazurak & Rosowski, 1973). Unfortunately, N. flagelliforme often suffer from the harsh
environment, especially salt stress (Ye & Gao, 2004). Therefore, alleviating the damage of
salt stress to N. flagelliforme can improve its application value and protect the ecological
environment. In microalgae, some reports have proved exogenous melatonin could
alleviate abiotic stresses including salt (Zhao et al., 2021) and high light (Ding et al., 2018).
However, the application of melatonin on alleviating salt stress to the macroscopic
cyanobacterium N. flagelliforme has never been reported.
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In this study, we clarified the powerful role of melatonin in N. flagelliforme to adapt to
salt stress from the physiological and molecular levels. We found exogenous melatonin
could facilitate the photosynthetic pigments synthesis and maintain K+ homeostasis under
salt stress. Moreover, application of melatonin significantly reduced the content of H2O2

and O•−
2 in N. flagelliforme under salt stress and the corresponding antioxidant enzymes

activities were increased. qRT-PCR analysis verified the molecular fact that melatonin
could enhance the salt tolerance of cyanobacteria N. flagelliforme. Our findings
emphasized the antioxidant roles of melatonin against salt stress in N. flagelliforme.
We firstly explained the regulatory mechanism of melatonin to resist salt stress, which
could be useful for improving the eco-friendly terrestrial cyanobacterium to adapt to
high-salinity habitats.

MATERIALS AND METHODS
Cyanobacterium, culture conditions, and experimental treatments
The terrestrial cyanobacterium Nostoc. flagelliforme (Yinchuan, Northwest of China) was
used in this study. Algal cells were cultured in 250 mL glass flasks containing 100 mL Blue
Green-11 (BG-11) medium at 25 �C under continuous cool-white fluorescent light
illumination of 40 µmol photons m−2 s−1 (Ai et al., 2014). The flasks were shaken at
130 rpm in a shaker. The 100 mL BG-11 medium was composed of K2HPO4 (0.23 mM),
MgSO4·7H2O (0.30 mM), CaCl2·2H2O (0.24 mM), C6H8O7 (0.03 mM), C6H10FeNO8 (0.02
mM), EDTA disodium (3.42 mM), Na2CO3 (1.99 mM), H3BO3 (46.26 mM), MnCl2·4H2O
(9.15 mM), ZnSO4·7H2O (1.38 mM), Na2MoO4·2H2O (1.63 mM), CuSO4·5H2O (0.32 mM),
Co(NO3)2·6H2O (0.17 mM), and NaNO3 (16.94 mM). The present experiment was divided
into four groups: (i) control (BG-11 medium), (ii) salt stress (+300 mM NaCl), (iii)
melatonin (+200 mM MT), (iv) melatonin and salt stress (+200 mM MT+300 mM NaCl).
The algal cells were cultivated for 14 days.

Evaluation of algal cell growth
The dry weight (DW) was used to measure the growth of N. flagelliforme. A total of 5 mL
culture was centrifuged (8,000 rpm, 10 min) and the pellet was dried at −80 �C until the
weight was constant. The relative electrolytic leakage (REL) was determined using the
conductivity meter (Shanghai Instruments Inc, Shanghai, China). A total of 5 mL cell
suspension was rinsed with distilled water, and the conductivity of distilled water was
measured as Cw. The suspension was allowed to stand for 10 min and its conductivity was
detected as C1. Then the sample was boiled for 30 min to measure conductivity at 25 �C as
C2. The REL was calculated using the following equation:
RELð%Þ ¼ ðC1−CwÞ=ðC2−CwÞ � 100% (An et al., 2017).

The photosynthetic pigments measurements
The chlorophyll a (Chl a) content was measured using a UV-vis spectrophotometer
(Shanghai Spectrum Instruments Inc., Shanghai, China). A total of 5 mL cell suspension
was centrifuged (8,000 rpm, 10 min) and then Chl a was extracted with 5 mL 95% ethanol
for 24 h at 4 �C in the dark. After centrifuging (6,000 rpm, 5 min), the supernatant was
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detected in absorbance at 664.1 and 648.6 nm, respectively. The concentration of Chl a was
calculated as follows: Chl a (mg/mL) = 13.36 × A664.1 − 5.19 × A648.6 (Zhao et al., 2008).

The phycobiliprotein content was measured using a UV-vis spectrophotometer
(Shanghai Spectrum Instruments Inc., Shanghai, China). A total of 10 mL cell suspension
was centrifuged (6,000 rpm, 5 min). The pellet was washed twice with distilled water and
centrifuged (6,000 rpm, 5 min). The cells were dissolved in 3 mL phosphate buffer
(0.1 mM, pH 7.0) to sonicate. Then the sample was repeatedly frozen and thawed three
times in liquid nitrogen and then centrifuged (10,000 rpm, 5 min). The supernatant was
used to detect the phycobiliprotein content. Phycocyanin (PC) and Phycoerythrin (PE)
content were calculated as follows: PC (mg/mL) = (A620 − 0.0474 × A652)/5.34; PE
(mg/mL) = (A562 − 2.41 × PC − 0.849 × APC)/9.62 (Mishra et al., 2012).

The PS II activity (Fv/Fm) was determined at 25 �C using a portable plant efficiency
analyzer (AquaPen, Czech Republic). The cell suspension was dark-adapted for 15 min
before the measurement. The specific parameters were set as follows: Time = 005 s, auto
data, and 100% light (Gao et al., 2014).

Na+ and K+ content measurements
A total of 5 mL cell suspension was dried to constant weight at 80 �C and digested in 10 mL
68% sulfuric acid. Then the sample was adjusted up to 10 mL with 1% nitric acid.
The content of Na+ and K+ was measured by an atomic absorption spectrometer (ZEEnit
700P; Analytik Jena, Jena, Germany) (Gao, Ren & Lu, 2006).

Determination of hydrogen peroxide and superoxide anion levels
The H2O2 content was measured by the titanium sulfate colorimetric method (Deadman,
Hellgardt & Hii, 2017). Hydrogen peroxide reacted with titanium sulfate to produce yellow
peroxide-titanium complexes, which were soluble in acid. The absorbance of the mixture
can be detected at 412 nm. The content of H2O2 was calculated from a standard curve.
The generation rate of superoxide anion (O•−

2 ) was detected by the method of
hydroxylamine oxidation in the absorbance at 530 nm (Qiu et al., 2014). The standard
curves and detection methods were based on the assay kit (Sangon Biotech, Shanghai,
China), respectively.

Antioxidant enzymes activities measurements
The superoxide dismutase (SOD) activity was assayed using the photochemical nitroblue
tetrazolium (NBT) method (Li et al., 2011). The catalase (CAT) activity was assayed
spectrophotometrically at 240 nm. Catalase can decompose H2O2, the absorbance of
mixture at 240 nm decreased with reaction time, and the rate of absorbance change was
used to calculate CAT activity (Qiu et al., 2014). Ascorbate peroxidase catalyzed the
oxidation of ascorbic acid (ASA) by H2O2. The ascorbate peroxidase (APX) activity can be
calculated in absorbance at 290 nm by measuring the oxidation rate of ASA (Jiang &
Zhang, 2002). Glutathione reductase can catalyze the dehydrogenation of NADPH to
generate NADP+, and glutathione reductase (GR) activity was obtained by measuring the
rate of decrease in absorbance at 340 nm to calculate the rate of NADPH dehydrogenation
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(Cui et al., 2017). All of these antioxidant enzymes activities were quantified using the
enzyme assay kit (Sangon Biotech, Shanghai, China), respectively.

RNA extraction and qRT-PCR analysis
Algal cells from different treatment groups at 0, 3, 6, 12 and 24 h were collected and stored
at −80 �C. Three independent biological replicates, each containing a pool of 10 mL
culture, were sampled for transcriptome analysis. Total RNA was extracted from frozen
algal samples using TRIzol reagent (Tiangen, Beijing, China). Then, 1 mg total RNA of each
sample was reverse transcribed according to manufacturer instructions (TUREscript 1st
Strand cDNA Synthesis Kit; PIONEER, Dongguan, China). The gene specific primers were
listed in Table 1; qRT-PCR was performed in 20 mL volume according to manufacturer
instructions (2 × Sybr Green qPCR Mix; PIONEER, Dongguan, China). PCR cycles were
set up as follows: pre-denaturation at 95 �C for 3 min, 40 cycles of 95 �C for 15 s and 60 �C
for 30 s. The gene relative expression levels were normalized and calibrated according to
the 2−ΔΔCT method (Schmittgen & Livak, 2008), with the16S-rRNA gene as the internal
reference.

Statistical analysis
All data were analyzed via SPSS Ver 25.0 statistical software. Values were presented as the
mean ± SD (n = 3). Statistical differences in the data were analyzed using one-way
ANOVA followed by Duncan’s multiple range tests. The significance was established at the
p < 0.05 level.

RESULTS
Effects of melatonin on cell growth under salt stress
The growth and appearance of algal cells after different treatments were investigated.
The dry weight (DW) was significantly declined under salinity stress compared with other

Table 1 Sequences of primers used in quantitative real-time PCR.

Gene Primer sequnces (5′→3′)

NfCAT F: GGCAAGTGACACAGGAACC

R: CCACGCTCATCTTGACCATT

NfSOD F: TCGGTAGTGGCTGGTCTT

R: AGTCAATGTAGTAGGCGTGTTC

NfGR F: CCACCTCAACACCAGATAT

R: GTTACCGCTTCCAAGTCT

NfEST1 F: CTGATGGAATTGGCGTTGGA

R: TTAGCGTTGTTGCGTCTGTAAT

NfTrKA F: TGTGGCTTGAGTGGTATTG

R: GGCGGCAGAGTCTATATTG

16S-rRNA F: CAGGTGGCAATGTAAGTCT

R: TCGTCCCTCAGTGTCAGTT

Note:
The gene specific primers were listed.
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treatments. The DW of MT-treated culture under salt stress was significantly increased
compared with the only salinity. The melatonin alone did not affect DW compared with
the control (Fig. 1A). The relative electrolyte leakage (REL) of salt-stressed culture was
higher than other cultures. After treatment with melatonin, the REL values significantly
decreased under salt stress, but the melatonin alone did not affect REL compared with the
control (Fig. 1B). It indicated that melatonin could protect the permeability f cell
membranes under salt stress. Meanwhile, we found algal cells showed different appearance
especially application of melatonin (Fig. 1C).

Effects of melatonin on photosynthetic pigments under salt stress
Melatonin pretreatment could change the color of algal cells, and then the impact of
melatonin on photosynthetic pigments was explored. Compared with the control, the Chl
a, PC, and PE content were reduced in other cultures (Figs. 2A–2C). It indicated that
melatonin could decrease the Chl a, PC, and PE content with or without salt stress.
Interestingly, after treatment with melatonin, Fv/Fm, which reflects the maximum
quantum efficiency of photosystem II, was significantly increased under NaCl stress
(Fig. 2D).

Figure 1 The growth and appearance of algal cells after different treatments were investigated.
Effects of melatonin on (A) dry weight (DW), (B) relative electrolytic leakage (REL), and (C) appear-
ance of algal cells at 14 days under 300 mM NaCl stress. Data represent the mean ± SD (n = 3). Columns
labelled with different letters among treatments show statistical differences (p < 0.05).

Full-size DOI: 10.7717/peerj.14479/fig-1
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Effects of melatonin on Na+ and K+ contents under salt stress
To evaluate the effects of melatonin on K+ retention under saline conditions,
NaCl-induced ion contents in algal cells were detected. Melatonin treatment significantly
alleviated the increased of Na+ accumulation and K+ exosmosis in algal cells under salt
stress (Figs. 3A and 3B). The melatonin alone improved the content of Na+ and declined
the content of K+ compared with the control, respectively. Interestingly, MT treatment
contributed to the increase of the K+/Na+ ratio in algal cells under salt stress, but the
melatonin alone did not affect the K+/Na+ ratio compared with the control (Fig. 3C).

Effects of melatonin on the expression patterns of osmotic responsive
and K+ channel gene under salt stress
To explore the effects of melatonin on the expression of genes related to osmotic
responsive and K+ channels under salt stress, we determined the expression levels of
NfEST1 and NfTrKA. NfEST1 is relate to osmotic stress. The relative high level expression
of NfTrKA indicates relatively large damage to cell. NfTrKA is potassium channel protein
gene, which cause the K+ efflux resulting in the imbalance of intracellular charge.

Figure 2 Melatonin pretreatment could change the color of algal cells, and then the impact of
melatonin on photosynthetic pigments was explored. Effects of melatonin on (A) chlorophyll a (Chl
a) content, (B) phycocyanin (PC) content, (C) phycoerythrin (PE) content, and (D) PSII activity of algal
cells at 14 days under 300 mMNaCl stress. Data represent the mean ± SD (n = 3). Columns labelled with
different letters among treatments show statistical differences (p < 0.05).

Full-size DOI: 10.7717/peerj.14479/fig-2
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The expression levels of these two genes exhibited no distinction under control and
melatonin culture. Salt stress significantly increased the expression levels of these genes,
particularly after 6 and 12 h of salinity stress. After addition of melatonin, the expression
levels of NfEST1 and NfTrKA were markedly decreased under salt stress (Fig. 4).

Effects of melatonin on H2O2 and O•−
2 concentration under salt stress

To investigate the role of melatonin in inhibiting ROS overproduction under salt stress, we
determined the formation of H2O2 and O•−

2 in algal cells (Fig. 5). Excessive accumulation of
hydrogen peroxide and superoxide anion under salt stress could cause oxidative stress.
Compared with other treatments, the concentration of H2O2 and O•−

2 were remarkably
increased under salt stress. However, melatonin treatment could significantly reduce the
ROS levels under salt stress. The melatonin alone did not affect ROS accumulation
compared to the control.

Effects of melatonin on antioxidant enzymes activities under salt
stress
To further assess the mechanism of melatonin in improving salt tolerance of algal cells, we
examined the changes in antioxidant enzymes activities (Fig. 6). Compared with the

Figure 3 To evaluate the effects of melatonin on K+ retention under saline conditions, NaCl-induced
ion contents in algal cells were detected. Effects of melatonin on (A) Na+ content, (B) K+ content, and
(C) K+/Na+ ratio of algal cells at 14 days under 300 mM NaCl stress. Data represent the mean ± SD
(n = 3). Columns labelled with different letters among treatments show statistical differences (p < 0.05).

Full-size DOI: 10.7717/peerj.14479/fig-3
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control, NaCl treatment exhibited the increased activities of catalase (CAT), superoxide
dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) in algal
cells, respectively. Application of melatonin to algal cells significantly increased the
activities of these enzymes under NaCl treatment.

Effects of melatonin on the expression patterns of antioxidant
enzymes genes under salt stress
To further explore the effects of melatonin on the antioxidant defense system of
N. flagelliforme under salt stress, we investigated the relative expression levels of
antioxidant enzymes genes through qRT-PCR. NaCl treatment could increase expression

Figure 5 To investigate the role of melatonin in inhibiting ROS overproduction under salt stress, we
determined the formation of H2O2 and O•−

2 in algal cells. Effects of melatonin on (A) H2O2 content,
and (B) O•−

2 generation rate of algal cells at 14 days under 300 mMNaCl stress. Data represent the mean ±
SD (n = 3). Columns labelled with different letters among treatments show statistical differences
(p < 0.05). Full-size DOI: 10.7717/peerj.14479/fig-5

Figure 4 To explore the effects of melatonin on the expression of genes related to osmotic responsive
and K+ channels under salt stress, we determined the expression levels of NfEST1 and NfTrKA. Effects
of melatonin on the expression levels of (A) NfEST1 and (B) NfTrKA of algal cells under 300 mM NaCl
stress. Data represent the mean ± SD (n = 3). Columns labelled with different letters among treatments
show statistical differences (p < 0.05). Full-size DOI: 10.7717/peerj.14479/fig-4
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levels of NfCAT, NfSOD, and NfGR in algal cells, respectively. After addition of melatonin,
the expression of NfCAT was markedly increased, particularly after 3 and 6 h under salt
stress (Fig. 7A); the expression levels of NfSOD and NfGR were markedly increased,
particularly after 12 and 24 h under salt stress (Figs. 7B and 7C). It indicated that
melatonin could increase the expression of antioxidant genes in algal cells under salt stress.

DISCUSSION
Extensive evidence has revealed the beneficial role of melatonin in improving salt tolerance
of different plant species, such as crop (Liang et al., 2015; Li et al., 2017c; Chen et al., 2018),
fruit (Li et al., 2017a), and vegetable (Wang et al., 2016). Despite some researches proved
exogenous melatonin could alleviate abiotic stresses in microalgae (Ding et al., 2018; Zhao
et al., 2021), there is no recent study to understand how melatonin alleviates the damage of
salt stress to eco-friendly terrestrial cyanobacterium. In the current study, we for the first
time report exogenous melatonin can improve salt tolerance of terrestrial cyanobacterium
N. flagelliforme, particularly regulating the antioxidant system.

Figure 6 To further assess the mechanism of melatonin in improving salt tolerance of algal cells, we
examined the changes in antioxidant enzymes activities. Effects of melatonin on (A) catalase (CAT),
(B) superoxide dismutase (SOD), (C) ascorbate peroxidase (APX), and (D) glutathione reductase (GR)
activities of algal cells at 14 days under 300 mM NaCl stress. Data represent the mean ± SD (n = 3).
Columns labelled with different letters among treatments show statistical differences (p < 0.05).

Full-size DOI: 10.7717/peerj.14479/fig-6
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Exogenous melatonin counteracts NaCl-induced inhibition of algal
cells by regulating biosynthesis of photosynthetic pigments and
modulating K+ homeostasis
N. flagelliforme is a prokaryotic microorganism, which contains a variety of photosynthetic
pigments including chlorophyll a (Chl a), phycocyanin (PC), and phycoerythrin (PE).
Photosynthesis is the most important physical and chemical process of energy production
in N. flagelliforme. However, its habitats are often threatened by salt stress (Jia et al., 2010).
Salt stress can destruct photosynthetic electron transport duo to the production of ROS
such as H2O2 and

•OH (Bose & Howlader, 2020). It has been proved that MT could protect
the photosystem by increasing the activities of antioxidant enzymes to achieve favorable
ROS levels (Yin et al., 2019). In this study, the obtained results showed that melatonin
decreased the content of Chl a, PC, and PE under normal conditions or salinity conditions
(Figs. 2A–2C), inconsistent with previous reports in plants under abiotic stresses on the
aspect of chlorophyll content (Arnao & Hernández-Ruiz, 2008; Tan et al., 2019). However,
we found that melatonin had a significant improvement on Fv/Fm under salinity
conditions (Fig. 2D), which may attribute to the role of melatonin in directly scavenging
ROS by boosting antioxidant enzymes activities (Fig. 6) and stimulating related
antioxidant genes up-regulation (Fig. 7).

Figure 7 To further explore the effects of melatonin on the antioxidant defense system of
N. flagelliforme under salt stress, we investigated the relative expression levels of antioxidant
enzymes genes through qRT-PCR. Effects of melatonin on relative expression levels of (A) NfCAT,
(B) NfSOD, and (C) NfGR under 300 mM NaCl stress. Data represent the mean ± SD (n = 3). Columns
labelled with different letters among treatments show statistical differences (p < 0.05).

Full-size DOI: 10.7717/peerj.14479/fig-7
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Potassium (K+) is an essential mineral nutrient for algal growth. Inversely, elevated Na+

disturbs ion homeostasis. Organisms respond to salt stress by maintaining low levels of
cytosolic Na+ and a high cytosolic K+ (Golldack et al., 2003; Khan et al., 2012). In this
study, salt stress led to a sharp increase in Na+ content and a decrease in K+ content (Figs.
3A and 3B). Exogenous MT alleviated the adverse effects of salt stress by maintaining a
higher K+ level or K+/Na+ ratio (Figs. 3B and 3C). Furthermore, our findings showed that
the expression levels of two osmotic genes (NfEST1 and NfTrKA) were individually
increased under salt stress after 6 and 12 h by the qRT-PCR assay. However, MT treatment
had no significantly difference under non-salinity or salinity conditions (Fig. 4).
We deduce the pathway for K+ leak of algal cells under salt conditions via ROS-activated
K+ channels (Shabala et al., 2016). Likewise, we presume the higher K+ content of
MT-treated cells under salinity depends on the favorable ROS level. Consistent with this
notion was a recent study on rice showed that decrease of salt-induced K+ efflux by
exogenous MT was attributed to the ROS scavenge activity (Liu et al., 2020).

These above results showed that a higher K+/Na+ ratio and the good recovery capability
of Fv/Fm are crucial for cell survival under salt stress. All these factors together instigated
the MT-treated cells under salt stress for better growth due to the improved DW and
decreased REL values (Fig. 1).

Exogenous melatonin improves salt tolerance of algal cells by
regulating antioxidant systems
Excessive ROS under salt stress usually causes cellular damage or death. Some reports have
revealed that exogenous melatonin can decrease ROS accumulation under salinity stress
(Tan et al., 2000; Gao et al., 2019). In this study, we found algal cells maintained redox
homeostasis under normal conditions, MT treatment effectively decreased NaCl-induced
H2O2 and O•−

2 content (Fig. 5). As is known from recent evidence, plants or
microorganisms efficiently resist oxidative stress via a series of ROS-scavenging systems
orchestrated by non-enzymatic and enzymatic antioxidant mechanisms (Arbona et al.,
2017; Zhao et al., 2020). During detoxification of oxidative stress, the antioxidant enzyme
SOD, is used as the first line of defense to scavenge oxygen free radicals, which dismutates
O•−

2 to O2 and H2O2, whereas CAT eliminates H2O2 by decomposing H2O2 to H2O. In the
ascorbate-glutathione cycle, the enzymatic action of APX can reduce the accumulation of
H2O2. GR plays a key role in the removal of reactive oxygen species in the oxidative stress
response. GR catalyzes NADPH to reduce GSSG to produce GSH, which helps to maintain
the ratio of GSH/GSSG in the organisms (Wang et al., 2012). Thus, the activities of
antioxidant enzymes and the redox state of primary antioxidants play important roles in
protecting algal cells against free radical damage (Ding et al., 2018). As a potent
antioxidant, MT acts as a first line of defense against abiotic stress (Arnao & Hernández-
Ruiz, 2014). It was proved that reduced cellular damage by exogenous MT was closely
linked to improved ROS detoxification by the involvement of CAT, SOD, and GR pathway,
which play a key role in the upregulation of antioxidant enzymes (Zhang et al., 2015).
Our results also confirmed this view by measuring antioxidant enzymes activities (Fig. 6).
In the present experiment, qRT-PCR trial demonstrated that exogenous melatonin
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obviously increased the expression levels of related antioxidant enzymes genes in algal cells
under salt stress (Fig. 7).

CONCLUSIONS
Facing with environmental changes, it is necessary to explore innovative techniques to
improve the tolerance of plants or prokaryotic microorganisms against various abiotic
stresses. Accumulating evidence indicate that melatonin can enhance salt tolerance
associated with scavenging ROS and regulating antioxidant system. In the present study,
we for the first time verified the functions of melatonin in eco-friendly terrestrial
cyanobacterium against salt stress. Our findings showed that the application of melatonin
reduced H2O2 and O•−

2 content, which led to better growth for algal cells, improvement on
Fv/Fm, and indirectly maintaining a higher K+ level in algal cells. Meanwhile, the results of
antioxidant enzymes activities and antioxidant genes transcription suggested that
melatonin enhanced salt tolerance by activating antioxidant system in N. flagelliforme.
Therefore, the study presented here provides a theoretical basis and technical support for
applying melatonin to related fields, especially in crop production and environment
protection.
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