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Pathogenic fungal infection success depends on the ability to bypass the immune
response. Most strategies for fungal infection control are focused on the inhibition of
virulence factors and increasing the eûectiveness of antifungal drugs. Nevertheless, little
attention has been focused on their physiological resistance to the immune system. Hints
may be found in pathogenic fungi that also inhabit the soil. In nature, the saprophyte
lifestyle of fungi is also associated with predators that can induce oxidative stress upon
cell damage. The natural sources of nutrients for fungi are linked to cellulose degradation,
which in turn generates reactive oxygen species (ROS). Overall, the antioxidant arsenal
needed to thrive both in free-living and pathogenic lifestyles in fungi is fundamental for
success. In this review, recent ûndings regarding catalases and oxidative stress in fungi
and how these can be in close relationship with pathogenesis are presented. Additionally,
special focus is placed on catalases of Sporothrix schenckii as a pathogenic model with a
dual lifestyle. It is assumed that catalase expression is activated upon exposure to H2O2,
but there are reports where this is not always the case. Additionally, it may be relevant to
consider the role of catalases in S. schenckii and why their study can assess their
involvement in the virulence phenotype of diûerent species of Sporothrix and when each
of the three catalases are most needed. Additionally, studying antioxidant mechanisms in
other isolates of pathogenic and free-living fungi may be linked to the virulence phenotype
and be potential therapeutic and diagnostic targets. Thus, the rationale for this review to
place focus on fungal catalases and their role in pathogenesis in addition to counteracting
the eûect of immune system reactive oxygen species. Compelling evidence indicates they
are potential targets for treatment and diagnosis. Fungi that thrive in soil and have
mammal hosts could shed light on the importance of these enzymes in the two types of
lifestyles. We look forward to encouraging more research in a myriad of research areas on
catalase biology with a focus on basic and applied objectives and to place these enzymes
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13 Abstract

14 Pathogenic fungal infection success depends on the ability to bypass the immune 
15 response. Most strategies for fungal infection control are focused on the inhibition of 
16 virulence factors and increasing the effectiveness of antifungal drugs. Nevertheless, 
17 little attention has been focused on their physiological resistance to the immune system. 
18 Hints may be found in pathogenic fungi that also inhabit the soil. In nature, the 
19 saprophyte lifestyle of fungi is also associated with predators that can induce oxidative 
20 stress upon cell damage. The natural sources of nutrients for fungi are linked to 
21 cellulose degradation, which in turn generates reactive oxygen species (ROS). Overall, 
22 the antioxidant arsenal needed to thrive both in free-living and pathogenic lifestyles in 
23 fungi is fundamental for success. In this review, recent findings regarding catalases and 
24 oxidative stress in fungi and how these can be in close relationship with pathogenesis 
25 are presented. Additionally, special focus is placed on catalases of Sporothrix schenckii 
26 as a pathogenic model with a dual lifestyle. It is assumed that catalase expression is 
27 activated upon exposure to H2O2, but there are reports where this is not always the 
28 case. Additionally, it may be relevant to consider the role of catalases in S. schenckii 
29 and why their study can assess their involvement in the virulence phenotype of different 
30 species of Sporothrix and when each of the three catalases are most needed. 
31 Additionally, studying antioxidant mechanisms in other isolates of pathogenic and free-
32 living fungi may be linked to the virulence phenotype and be potential therapeutic and 
33 diagnostic targets. Thus, the rationale for this review to place focus on fungal catalases 
34 and their role in pathogenesis in addition to counteracting the effect of immune system 
35 reactive oxygen species. Compelling evidence indicates they are potential targets for 
36 treatment and diagnosis. Fungi that thrive in soil and have mammal hosts could shed 
37 light on the importance of these enzymes in the two types of lifestyles. We look forward 
38 to encouraging more research in a myriad of research areas on catalase biology with a 
39 focus on basic and applied objectives and to place these enzymes as potential virulence 
40 determinants.
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41

42

43 1 Introduction

44 When cells are exposed to oxidative stress, specifically H2O2, it is assumed that 
45 antioxidant enzymes are induced and perform their task to detoxify the cell milieu. 
46 However, this is not always the case; sometimes, antioxidant enzymes are damaged by 
47 the same molecules they should eliminate (Karakus, 2020; Nicholls, 2012).

48 Vertebrates use hydrogen peroxide as a biological weapon in combination with other 
49 molecules to potentiate its effect. This is particularly efficient for damaging the 
50 pathogen's DNA (Mahaseth and Kuzminov, 2017), resulting in a more complicated task 
51 to survive the immune response.

52 Pathogens encode various antioxidant molecules, including catalases. Catalases (EC 
53 1.11.1.6) are heme-containing enzymes that catalyze the dismutation of hydrogen 
54 peroxide (2H2O2) into 2H2O and oxygen (O2). These molecules are widespread in 
55 aerobic organisms and have been linked to survival during oxidative stress (Karakus, 
56 2020; Nicholls, 2012). Catalases are homotetrameric proteins containing a heme group 
57 buried deep in the protein. The access to the catalytic domain is through a 45 Å channel 
58 where H2O2 residence is enhanced, rendering a selectivity for this substrate 
59 (Dominguez et al., 2014) and having evolved to exclude water molecules; this allows a 
60 high kinetic activity (which the km is in the range of 20 to 200 mM) (Dominguez et al., 
61 2010; Hansberg et al., 2012).

62 The sequence and structure of catalase domains are more divergent than previously 
63 thought. This feature has rendered the classifications of these enzymes in three clades 
64 (Dominguez et al., 2010; Horvath and Grishin, 2001). Clade I refers to catalases from 
65 plants, green algae, and Clade III to archaea, bacteria, fungi, and animals (Dominguez 
66 et al., 2010). These clades are proteins with subunits of 55 to 69 kDa. Clade II belongs 
67 to bacteria, archaea, and fungi and is formed by larger subunits of 75 to 86 kDa; the 
68 additional residues are located in the C-terminal domain and belong to type 1 glutamine 
69 amidotransferase (Horvath and Grishin, 2001).

70 Catalases have complex reaction mechanisms for a simple dismutation reaction, which 
71 has been a hot research topic. Although much information is available, it mostly focuses 
72 on bacteria and some examples of fungal catalases. Nevertheless, catalases are still 
73 being studied due to their diversity among prokaryotic and eukaryotic organisms. One 
74 example is a catalase found with phenol oxidase activities and the interchange of 
75 activities between catalase and phenol oxidase in Scytalidium thermophilum (Sutay 
76 Kocabas et al., 2008). This has been observed to be relevant in polyphenol oxidation, 
77 where H2O2 is released (Akagawa et al., 2003), thus affecting the free-living lifestyle of 
78 bacteria and fungi. These enzymes have been demonstrated to have a bacterial origin 
79 (Bacteroidetes) and have been found in another Ascomycota (Kamlárová et al., 2018).
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80 In the case of some parasites that do have catalases, these enzymes have been 
81 demonstrated to play a key role against host defense mechanisms and survival. In 
82 some cases, only one catalase gene is present, but an important arsenal of other 
83 Reactive Oxygen Species (ROS) detoxifying enzymes is needed for survival (Kwok et 
84 al., 2004; Staerck et al., 2017), adding to our current understanding of the pathogenesis 
85 of protists.

86 In the literature, there are experimental conditions where fungal catalases are induced 
87 and needed for survival, with a focus on the signal transduction pathways that regulate 
88 their expression (Aguirre et al., 2006). Nevertheless, in fungal pathogens, this is not fully 
89 addressed because the best-studied Ascomycete catalases are encoded in the genome 
90 of Neurospora crassa, which have a link in morphogenesis and cell differentiation as 
91 well as for contending with environmental stressors (Aguirre et al., 2005; Fountain et al., 
92 2016). Additionally, extensive structural studies have been carried out on N. crassa 
93 catalases, showing unique features for H2O2 binding and recognition in a water milieu 
94 (Dominguez et al., 2010) and complex inhibitory mechanisms by singlet oxygen 
95 reducing its stability and resistance to degradation (Días et al., 2005). In the case of 
96 bovines, catalase possesses resistance to singlet oxygen. In turn, this is not known in 
97 pathogenic fungi and may become a potential target for treatment using other inhibitors 
98 (Kim et al., 2001).

99 In Candida albicans, the high expression of these enzymes may result in reduced 
100 fitness. High expression levels in clinical isolates result in a double-edged sword; on the 
101 one hand, it protects cells from stress conditions, but on the other hand, in the absence 
102 of stress, it reduces cell fitness that is alleviated by iron supplementation (Pradhan et 
103 al., 2017). Additionally, low expression levels impair the colonization of certain tissues in 
104 a mouse model (Pradhan et al., 2017).

105 ROS production in fungal organisms varies, and asexual development is closely related 
106 to ROS present in the environment. When catalases are absent, the asexual cycle of 
107 the cell differentiation program is enhanced (Michán et al., 2003; Zamocky et al., 2009). 
108 Catalase expression, for instance, is related to redox balance control in plant 
109 pathogens, such as Sclerotinia sclerotiorum, where this enzyme is needed for cell 
110 integrity, oxidative stress resistance, pathogenicity, and antifungal resistance (Huang et 
111 al., 2021). What is truly striking in S. sclerotiorum is that the genome encodes seven 
112 catalases. Nevertheless, only one contributes to oxidative stress resistance (Huang et 
113 al., 2021). The role of the other catalases remains to be explored.

114 Determining the importance of catalases may impede the discovery of novel potential 
115 uses in diagnosing and treating pathogenic fungi. One such example is the presence of 
116 circulating antibodies in patients infected with Histoplasma capsulatum that recognize 
117 catalases B and P, serving as potential targets for diagnosis kits (Almeida et al., 2020), 
118 and these enzymes have been demonstrated to be required for virulence (Holbrook et 
119 al., 2013; Johnson et al., 2002).

120 For all the above, this review addresses the following question: why have catalases 
121 been neglected in pathogenic fungi research as both potential targets for treatment and 
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122 diagnosis? One important aspect that partially explains this is that these enzymes are 
123 assumed to be highly conserved and functionally defined in all kingdoms of life. 
124 However, oxidative stress has different outcomes in distinct organisms. Likewise, this 
125 review proposes a closer look on Sporothrix schenkii as an example of an emerging 
126 fungal pathogen with an evolutionary well-adapted saprophytic lifestyle.

127 2 Methodology

128 The literature was consulted through Pubmed and Google Scholar. Key words used 
129 were �Catalase�, �Pathogenic fungi�, �Sporothrix schenckii�, and the Boolean �and� for the 
130 combination of these keywords. Authors conducted independent review of the literature 
131 to prevent any bias. 

132 The sequence analysis was conducted using BLASTp (Altschul et al., 1990). Protein 
133 structure prediction was conducted using AlphaFold2 (Jumper et al., 2021) with the 
134 default options, using the API hosted at Söding lab based on MMseqs2 server (Mirdita 
135 et al., 2019). Phylogenetic analysis was conducted with MEGA version 11.0.13 (Tamura 
136 et al., 2021).

137 3 The case of pathogenic fungi: Sporothrix schenckii

138 In the genome sequence of S. schenckii, three catalase coding genes were identified 
139 based on homology to Aspergillus and Neurospora genes. In RedoxiBase 
140 (http://peroxibase.toulouse.inra.fr/) (Savelli et al., 2019), only one catalase is annotated 
141 for S. schenckii (as KatE, accession number XP_016592737.1 or SPSK1099_11725-RA 
142 in the S. schenckii genome database). However, at least three were identified by 
143 BLAST analysis and expressed in response to oxidative stress (Román-Casiano et al., 
144 2021). The work by Román-Casiano (2021) described the response of these three 
145 catalases in the presence of H2O2 and the relative expression levels, showing that Cat1, 
146 one of the small catalases, is highly expressed upon H2O2 exposure. The second 
147 catalase that is highly expressed is the large subunit catalase (81.4 kDa). When 
148 analyzing several fungi in RedoxiBase, the repertoire found for antioxidant enzymes is 
149 vast and varied in all species; this imposes a challenge when assessing their role, 
150 specifically in cases where two contrasting lifestyles are found in the same organism. In 
151 Ascomycota alone, catalases and catalase/peroxidases are the fourth most abundant 
152 antioxidant enzymes. The three front runners ahead of catalases are cytochrome C 
153 peroxidase, fungi-bacteria glutathione peroxidase, and hybrid ascorbate-cytochrome C 
154 peroxidase.

155 In the work by Román-Casiano and colleagues (2021), two isoforms (CAT1 and CAT 3, 
156 accession numbers: ERS99939.1 and ERT00986.1, respectively) were shown to be 
157 highly expressed upon exposure to oxidative stress. However, in a recent paper, 
158 Saucedo-Campa and collaborators showed that this organism's landscape is more 
159 complex than previously thought. Several moonlight proteins are induced by oxidative 
160 stress by H2O2 (Saucedo-Campa et al., 2022), suggesting that the arsenal for H2O2 
161 detoxification in this organism is complex and involves proteins previously thought to be 
162 related to protein folding, lipid metabolism, or even metabolic enzymes that in the cell 
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163 wall may represent the first line of defense. Additionally, in the case of menadione-
164 induced oxidative stress, other moonlight proteins are present in the cell wall as 
165 protection against oxidative stress (Félix-Contreras et al., 2020).

166 In the case of the catalases of S. schenckii, structural features can now be modeled 
167 with accuracy. The sequence features of the three catalases encoded in the S. schenkii 
168 genome suggest that these enzymes may play different roles depending on the 
169 organism's morphological state as either free-living or as a pathogen. In Figure 1 Panel 
170 A, BLAST analysis shows that the main homologs of S. schenckii catalases are 
171 clustered (Figure 1 Panel B and C). The variation in catalytic residues poses the 
172 question of whether the catalases of S. schenckii have different kinetic parameters and 
173 may respond differently to oxidant agents and other molecules present in the media 
174 (see below).

175 The other aspect to consider with catalases is the conservation of structural features. In 
176 Figure 2, Panel A shows the previously high-resolution crystal structure reported for N. 
177 crassa catalases, which have been studied in detail (Díaz et al., 2009). Future research 
178 can be focused on structural comparisons with other fungal organisms and may 
179 ultimately lead to the study of the kinetic and structural features of other fungal 
180 catalases. As shown here, Cat1 and Cat2 of S. schenckii are small catalases, while 
181 Cat3 is a member of the large catalases.

182 In the case of catalase 1, the relevant BLAST hits are with catalases from Ascomycetes 
183 such as Ophiostoma piceae, Diaporthe sp., Valsa mali, Hypoxylon sp., among other 
184 plant pathogens (Figure 1 Panel A). Here, the phylogenetic distribution is wider than 
185 that observed for the other two catalases.

186 For catalase 2, the homology with BLAST hits is the lowest of the three catalases, and 
187 the highest proteins showing homology are derived from Fusarium, Trichoderma, 
188 Aspergillus, and Penicillium species. However, the homology found is lower than that 
189 observed with the other two catalases.

190 Catalase 3, with homology to catalases from ascomycete fungi such as Coniochaeta sp, 
191 Thozetella sp, Podospora anserina, and others with similar lifestyles, is strikingly similar 
192 to Catalase 1 from N. crassa. The most distant hit is with the bioluminescent 
193 basidiomycete Mycena chlorophos. Overall, this is consistent with the previous report of 
194 Román-Cansiano on identifying these enzymes and renders a potential specific role of 
195 each catalase while growing in a saprophytic stage or during the interaction with the 
196 host (Román-Casiano et al., 2021).

197 One interesting feature of these catalases is that the catalytic residues are not 
198 conserved, especially the catalytic triad Arg 87 (conserved), tryptophan 90 (not 
199 conserved, replaced by valine), and histidine 91 (conserved) (Zámocký et al., 2009; 
200 Díaz et al., 2009) (Figure 1 Panel C), which may have contrasting affinities for H2O2 or 
201 inhibitory molecules (Karakus, 2020).
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202 In S. schenckii, the expression patterns of the catalase genes in transcriptomic data 
203 (Giosa et al., 2020) and http://sporothrixgenomedatabase.unime.it/) are as follows: the 
204 highest expressing enzyme in the yeast form is Cat 3 (ERT00986.1) at 7.38 log2FC. For 
205 Cat1 (ERS99939.1), it is 5.44 log2FC in the yeast form. Finally, Cat 2 (ERS95255.1) 
206 was not found in the transcriptome analysis between morphologies, consistent with the 
207 findings by Román-Casiano and colleagues (2021), where even in the presence of 
208 H2O2, the expression is low. However, the zymogram analysis shown by Román-
209 Cansiano (2021) suggests that the three catalases are expressed, and in high H2O2 

210 concentrations, Cat3 loses activity completely, and a decrease in total catalase activity 
211 is observed. This may impact the infection progression by limiting or blocking growth.

212 Overall, the catalase-encoding gene distribution is complex. Even with extensive 
213 genomic data, these enzymes' congruent analysis and evolutionary aspects have been 
214 carried out in fungi, especially in pathogenic fungi (Passardi et al., 2007). Biochemical 
215 data on these enzymes are also missing, particularly regarding H2O2 affinity, catalytic 
216 velocity, and inhibitors.

217 The structure of fungal catalases shows that the large and small subunit catalases 
218 contain well-defined domains (Figure 2 Panel A). The heme is deeply buried in the 
219 active site and is accessible via a 45 Å tunnel. Close inspection of the catalase models 
220 from S. shcenckii suggests that small subunit catalases are more structurally divergent 
221 from N. crassa homologs. Overall, the conserved residues are in the vicinity of the 
222 active site. Cat3 from S. schenckii shows a conserved structure compared to the well-
223 defined N. crassa large subunit catalase (Figure 2).

224 Further analysis of the cumulative genomic data may shed light on the sequence and 
225 structural differences of catalases related to differences in catalysis and stability, 
226 subcellular localization, and turnover. A surprising role for catalases was found by 
227 Nava-Ramírez and Hansberg (2020), who demonstrated that the C-terminal domain of 
228 the large-size subunit catalase from N. crassa possesses chaperone activity that is 
229 absent in small subunit catalases. When this C-terminal domain is transferred to small 
230 subunit catalases, it functions as a chaperone as well, rendering a more stable enzyme 
231 not only for H2O2 but also for other stress conditions (Hansberg et al., 2022). The C-
232 terminal domain originates from the fusion of the bacterial small subunit catalase and 
233 Hsp31 chaperone (Hansberg et al., 2022). The chaperone activity is closely related to 
234 the effect of ROS and the misfolding of proteins, rendering catalases a secondary tool 
235 for preventing cell damage. The structural features found in catalase 3 of S. schenckii 
236 may also possess this activity (Figure 2 Panel B, catalase 3), which is also relevant 
237 during exposure to innate immune cells.

238 The biochemical features of S. schenckii catalases and experimental determination of 
239 their structure are lacking. Additionally, their role in infection has not been studied in 
240 detail. The evidence suggests that these enzymes are relevant to oxidative stress, but 
241 further research is needed.

242 4 Future research
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243 The study of both the free-living and the pathogenic lifestyle of S. schenckii is relevant 
244 to understanding dissemination and zoonosis. In the case of fungi that interact with 
245 plant hosts, such as Trichoderma atroviride, its genome encodes two catalase-
246 peroxidases (http://peroxibase.toulouse.inra.fr/). In the case of T. atroviride, the role of 
247 these catalases has not been addressed, but KatG2 (TatKatG2) sequence analysis 
248 suggests that it is a secreted enzyme (Zámocký et al., 2009).

249 An important feature of oxidative stress and radical detoxifying enzymes is linked to cell 
250 damage in T. atroviride. Hernández-Oñate and colleagues (2012) described that 
251 NADPH oxidase-dependent ROS production is linked to development upon physical cell 
252 injury. H2O2 and oxylipins are signaling molecules shared in all kingdoms of life that 
253 respond to damage. Moreover, Catalase 2 is downregulated in transcriptomic data, 
254 suggesting that H2O2 is a part of the signaling for injury repair and needs to accumulate 
255 in the hyphae; this remains an open question in the case of pathogenic fungi and the 
256 role of ROS in the differentiation process, cell damage and the regulation of cell death 
257 mechanisms.

258 Oxidative stress is linked to cellulose degradation and involves the generation of 
259 hydroxyl radicals via the Fenton reaction from the H2O2 produced by the lytic 
260 polysaccharide monooxygenases (LPMOs) secreted by fungi (Li et al., 2021; Castaño et 
261 al., 2018). ROS that are produced in this process also have a deleterious effect on 
262 antioxidant enzymes such as oxidases, glutathione S-transferases, and thioredoxins, 
263 which may increase cell damage by reducing antioxidant enzymes (Castaño et al., 
264 2021), while glycoside hydrolases are adapted to such conditions. Taking the data from 
265 Román-Cansiano (2021) and the observation that cellulose degradation requires and 
266 exacerbates ROS production and antioxidant enzymes are sensitive to this 
267 environmental insult, it is tempting to test catalase activities in Sporothrix and other 
268 pathogenic fungi growing with cellulose as a carbon source and to test which catalase is 
269 more active or is resistant to oxidative stress during the free-living lifestyle of these 
270 organisms. For instance, it remains to be seen whether the expression of a ³-
271 glucosidase with transglycosylation and cellulase activities are involved in the in vivo 
272 cellulolytic complex of S. shenckii (Hernández-Guzmán et al., 2016).

273 The regulatory pathways for the antioxidant response are also diverse in fungi. The 
274 antioxidant counteracting transcription factors are also involved in virulence traits in 
275 plant pathogens (Singh et al., 2021), which is related to the role of ROS and cell 
276 damage (Hernández-Oñate et al., 2012). The varying lifestyle of S. schenckii poses the 
277 open question of how to cope with the various ROS stress encountered in this 
278 organism's two lifestyles.

279 To our surprise, little is known about the inhibition of fungal catalases. The canonical 
280 catalase inhibitors are sodium azide, hydroxylamine, potassium cyanide, salicylic acid 
281 (also a molecule involved in plant defense systems), metal ions, and 3-amino-1,2,3-
282 triazol, but no quantitative or structural studies have been carried out with catalases 
283 from fungi. The best examples are either mammalian or bacterial purified enzymes (Ma 
284 et al., 2017).

PeerJ reviewing PDF | (2022:09:77047:0:1:NEW 6 Sep 2022)

Manuscript to be reviewed

http://peroxibase.toulouse.inra.fr/
emmanuel.orta
Tachado

emmanuel.orta
Texto insertado
For

emmanuel.orta
Texto insertado
oxidative

emmanuel.orta
Tachado

emmanuel.orta
Texto insertado
c

emmanuel.orta
Nota adhesiva
Insert the citation of Hernández-Oñate et al, 2012. 

emmanuel.orta
Texto insertado
operate in 

emmanuel.orta
Tachado

emmanuel.orta
Texto insertado
analyzed

emmanuel.orta
Texto insertado
saprophytic lifestyle. 

emmanuel.orta
Texto insertado
 dual

emmanuel.orta
Tachado



285 One concerning setting is the activation of catalases; one study showed that metformin, 
286 a common anti-diabetic drug, activates catalase in a mouse model with tetrachloride-
287 induced severe oxidative liver injury (Dai et al., 2014); thus, the detailed role of 
288 catalases in pathogenic fungi could lead to preventive actions in patients undergoing 
289 metformin treatment. Additional evidence of catalase activation is the role of the alkaloid 
290 piperine in enhancing its activity (Caceres et al., 2017). Another interesting catalase 
291 activator is vanillin and vanillic acid in animal models (Salau et al., 2020), suggesting 
292 that further research is needed to discover and use antifungal treatments.

293 The inhibition of catalases may require extensive experimental analysis for each fungal 
294 catalase. There are cases where catalases are inhibited with relatively harmless 
295 molecules derived from natural products such as tea catechins or plant flavonoids (Pal 
296 et al., 2014; Krych and Gebicka, 2013) or simply by ethanol (Temple and Ough, 1975). 
297 Another relevant aspect is the inhibition of catalase by natural means, such as targeting 
298 heme iron with molecules present in the respiratory burst, such as reactive nitrogen 
299 species. Heme binds molecules such as nitric oxide, cyanide, and hydrogen sulfide 
300 (Bieza et al., 2015; Milani et al., 2005); thus, exploring another hydrogen peroxide 
301 detoxifying enzyme, such as peroxidases, is relevant to the mechanism of invasion and 
302 survival by pathogenic fungi of mammalian and plant hosts.

303 Additionally, a collection of different compounds found in the plant Jacquima macrocara 
304 that inhibit the growth and spore germination of Fusarium verticillioides inhibits catalase 
305 activity completely at 1.25 mg/mL of the plant extract (Valenzuela-Cota el al., 2019). 
306 The repercussions of finding novel antimicrobial compounds that one of its targets is the 
307 antioxidant capacity of pathogenic fungi is worth exploring further, not only for human 
308 pathogens but also for veterinary purposes and phytopathogenic fungi.

309 Environmental hazards can also be of interest (Asemoloye et al., 2018). Asemoloye and 
310 colleagues (2018) found that crude oil induced catalases, laccases, and peroxidases in 
311 fungal organisms present in the rhizosphere. These results are relevant for the 
312 biodegradation of oil-derived molecules and strong selective pressure for fungi that, as 
313 demonstrated, require degrading enzymes such as laccase and an arsenal of 
314 antioxidant enzymes but are also strong selective pressure for pathogenic fungi with a 
315 free-living stage.

316 The redox state regulates the circadian response in fungi (Liang et al., 2022). 
317 Nevertheless, does this influence the pathogenic state of Sporothrix and other 
318 pathogenic fungi, such as Metharizium, in response to light? In particular, survival 
319 mechanisms during UV light exposure (Brancini et al., 2022) or the role of conidia 
320 formation and other biological aspects of cell differentiation, such as the outcome of 
321 light of different wavelengths, have been reported in Metarhizium (Dias et al., 2020). On 
322 the other hand, cell differentiation in fungi depends on ROS, specifically for the 
323 formation of invasive structures such as the appressorium in Magnaporthe oryzae (Kou 
324 et al., 2019). In vivo measurements of ROS during cell differentiation or invasion could 
325 shed light on the role of ROS in dimorphic pathogenic fungi.
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326 All questions regarding the role of catalases and the antioxidant arsenal can be first 
327 assessed in alternative infection models, such as Tenebrio molitor (Lozoya-Pérez et al., 
328 2021; de Souza et al., 2015). Using T. molitor as a model, relevant information can be 
329 obtained from gene knockouts or silencing of catalase genes.

330 Are other conditions relevant for catalase regulation? Recently, it was found that 
331 different species of Sporothrix show lower survival rates due to abnormal cell-wall 
332 composition during carbon and nitrogen starvation and are also linked to the virulence 
333 phenotype elicited by different members of the Sporothrix complex (Lozoya-Pérez et al., 
334 2020). One interesting feature to explore is whether catalases and other antioxidant 
335 enzymes are downregulated during starvation, which may also reduce virulence.

336 Finally, do pathogenic fungi possess bifunctional catalases, which may be involved in 
337 the free-living lifestyle and have a pivotal role in host invasion? One such example is the 
338 bifunctional catalase MkatG1 in the locust-specific pathogen Metarhizium acridum 
339 (Keyhani et al., 2017). In this insect pathogen, catalase is induced during exposure to 
340 the cuticle and appressorium formation. In the mutant lacking this catalase, germination 
341 and appressorium formation are reduced on locust wings and quinone/phenolic 
342 compounds, showing the relevance of this catalase/peroxidase enzyme in host 
343 invasion.

344 Overall, catalases offer the opportunity to revisit their role and can provide potential 
345 solutions for antifungal therapies. Linares and colleagues found that anticancer drugs 
346 enhance the activity of catalases in C. albicans, which could contribute to the 
347 concomitant infections of this pathogen among patients undergoing chemotherapy 
348 (Linares et al., 2006). 

349 The case of the Candida genus is particularly relevant to the study of catalases and 
350 pathogenesis. Firstly, members of the Candida genus contain differences in their cell 
351 wall components, resulting in a differential recognition by the immune system (Navarro-
352 Arias et al., 2019). Secondly, this genus shows a geographic-dependent prevalence 
353 and, thus, different phenotypes related to antifungal drugs and virulence determinant 
354 production (Ziccardi et al., 2015), rendering it a hot topic to analyze with other aspects 
355 such as catalase production. Finally, the relationship of some members of the Candida 

356 genus and higher expression levels of virulence factors, resistance to polyenes, azoles, 
357 and echinocandins, along with higher catalase expression, is part of the pathogenesis, 
358 as demonstrated for Candida glabrata (Figueiredo-Carvalho et al., 2017).  

359 In the case of fungal pathogens, there are still several basic physiological aspects to be 
360 explored to fully assess ways of controlling fungal infections and reducing treatment 
361 resistance. Also, the study of clinical or specific geographical isolates will help to 
362 determine virulence and resistance to antifungal drugs (Ziccardi et al., 2015), which may 
363 be favored by higher catalase expression or diversity.  
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611 Figure legends:

612 Figure 1. Sequence and structural features of S. schenckii catalases. Panel A, BLAST 
613 analysis was used to identify the closest homologs for the three catalases of S. 
614 schenckii, and 100 hits were downloaded and visually represented in pairwise identity 
615 2D maps with Alignment Viewer (https://alignmentviewer.org/). In Panel A, pairwise 
616 identity 2D maps are shown for the three catalases. The number of hits for catalase 1 
617 (ERS99939.1) was 132. For Catalase 2 (ERS95255.1), 177 hits were obtained, and for 
618 Catalase 3 (ERT00986.1), 140 hits were obtained. Catalase 2 shows lower homology 
619 with the cognate orthologs than Catalase 1 or 3. In Panel B, Sequence alignment and 
620 phylogenetic analysis of the three catalases from Neurospora crassa and S. shenckii 
621 (Phylogenetic analysis was conducted with MEGA version 11.0.13 (Tamura et al., 
622 2021)) In Panel C, Weblogo fragments representing the regions with the active site 
623 residues from the sequence alignment between N. crassa and S. schneckii catalases. 
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624 Red arrows indicate conserved catalytic residues in all sequences, and blue arrows 
625 represent residues identified from the catalytic core but are not conserved in all 
626 catalases (data retrieved from Díaz et al., 2009).

627 Figure 2. Conserved structural features of S. schenckii catalases compared with N. 
628 crassa experimentally determined structures. Panel A, protein dimers are represented 
629 as ribbon and rainbow of N. crassa catalases. The PDB number is indicated. 1SY7 is 
630 the large subunit catalase/peroxidase, and 5WHS and 4BIM are the small subunit 
631 catalases. Relevant domains are indicated in the large subunit catalase, and heme is 
632 indicated with white arrows. Panel B, AlphaFold 2 models of the S. schenckii catalases 
633 and structural alignment with the three N. crassa catalases (RMSD 1.15). In blue is 
634 1SY7, in green is 4BIM, in red is 5WHS, in yellow is catalase 1 (ERS99939.1), in light 
635 blue is catalase 2 (ERS95255.1), and in purple is catalase 3 (ERT00986.1). Conserved 
636 residues are indicated in magenta. Structural alignment was conducted with mTM-aling 
637 (Dong et al., 2018)

638

639

PeerJ reviewing PDF | (2022:09:77047:0:1:NEW 6 Sep 2022)

Manuscript to be reviewed

emmanuel.orta
Tachado

emmanuel.orta
Texto insertado
n



Figure 1
Sequence and structural features of S. schenckii catalases.

Panel A, BLAST analysis was used to identify the closest homologs for the three catalases of
S. schenckii, and 100 hits were downloaded and visually represented in pairwise identity 2D
maps with Alignment Viewer (https://alignmentviewer.org/). In Panel A, pairwise identity 2D
maps are shown for the three catalases. The number of hits for catalase 1 (ERS99939.1) was
132. For Catalase 2 (ERS95255.1), 177 hits were obtained, and for Catalase 3 (ERT00986.1),
140 hits were obtained. Catalase 2 shows lower homology with the cognate orthologs than
Catalase 1 or 3. In Panel B, Sequence alignment and phylogenetic analysis of the three
catalases from Neurospora crassa and S. shenckii (Phylogenetic analysis was conducted with
MEGA version 11.0.13 (Tamura et al., 2021)) In Panel C, Weblogo fragments representing the
regions with the active site residues from the sequence alignment between N. crassa and S.

schneckii catalases. Red arrows indicate conserved catalytic residues in all sequences, and
blue arrows represent residues identiûed from the catalytic core but are not conserved in all
catalases (data retrieved from Díaz et al., 2009).
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Figure 2
Conserved structural features of S. schenckii catalases compared with N. crassa
experimentally determined structures.

Panel A, protein dimers are represented as ribbon and rainbow of N. crassa catalases. The
PDB number is indicated. 1SY7 is the large subunit catalase/peroxidase, and 5WHS and 4BIM
are the small subunit catalases. Relevant domains are indicated in the large subunit catalase,
and heme is indicated with white arrows. Panel B, AlphaFold 2 models of the S. schenckii

catalases and structural alignment with the three N. crassa catalases (RMSD 1.15). In blue is
1SY7, in green is 4BIM, in red is 5WHS, in yellow is catalase 1 (ERS99939.1), in light blue is
catalase 2 (ERS95255.1), and in purple is catalase 3 (ERT00986.1). Conserved residues are
indicated in magenta. Structural alignment was conducted with mTM-aling (Dong et al.,
2018)
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