
Chemically mediated rheotaxis of endangered tri-1 

spine horseshoe crab: potential dispersing 2 

mechanism to vegetated nursery habitats along the 3 

coast  4 
 5 
 6 
Kit Yue Kwan1,#, Xin Yang1,#, Chun-Chieh Wang2,*, Yang Kuang1, Yulong Wen1, Kian Ann 7 
Tan1, Peng Xu1, Wenquan Zhen1, Xueping Wang1, Junhua Zhu1, Xing Huang1 8 
 9 
1 College of Marine Sciences, Beibu Gulf Ocean Development Research Centre, Guangxi Key 10 
Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, 11 
China 12 
2 Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine 13 
Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China  14 
 15 
* Corresponding Author: 16 
Chun-Chieh Wang 17 
98 Daling Road, Nanning, Guangxi, 530007, China 18 
Email address: chunchiehwang@gxas.cn 19 
 20 
# Co-first Author 21 
 22 
Abstract 23 
Background: An enhanced understanding of larval ecology is fundamental to improve the 24 
management of locally depleted horseshoe crab populations in Asia. Recent studies in the 25 
northern Beibu Gulf, China demonstrated that nesting sites of Asian horseshoe crabs are 26 
typically close to their nursery beaches with high-density juveniles distributed around mangrove, 27 
seagrass and other structured habitats. 28 
Methods: A laboratory Y-maze chamber was used to test whether the dispersal of early-stage 29 
juvenile tri-spine horseshoe crab Tachypleus tridentatus is facilitated by chemical cues to 30 
approach suitable nursery habitats. The juvenile orientation to either side of the chamber 31 
containing controlled seawater or another with various vegetation cues, as well as their 32 
movement time, the largest distance and displacement were recorded. 33 
Results: The juveniles preferred to orient toward seagrass Halophila beccarii cues when the 34 
concentration reached 0.5 g l-1, but ceased at 2 g l-1. The results can be interpreted as a shelter-35 
seeking process to get closer to the preferred settlement habitats. However, the juveniles 36 
exhibited avoidance behaviors in the presence of mangrove Avicennia marina and saltmarsh 37 
cordgrass Spartina alterniflora at 2 g l-1. The juveniles also spent less time moving in the 38 
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presence of the A. marina cue, as well as reduced displacement in water containing the S. 46 
alterniflora cue at 1 and 2 g l-1. These results may explain the absence of juvenile T. tridentatus 47 
within densely vegetated areas, which have generally higher organic matter and hydrogen 48 
sulfide.  49 
Conclusion: Early-stage juvenile T. tridentatus are capable of detecting and responding to 50 
habitat chemical cues, which can help guide them to high-quality settlement habitats. Preserving 51 
and restoring seagrass beds in the intertidal areas should be prioritized when formulating habitat 52 
conservation and management initiatives for the declining horseshoe crab populations. 53 
 54 
Introduction 55 
Horseshoe crabs are an ancient group of invertebrates that are broadly distributed along the west 56 
coast of the North Atlantic and Pacific Oceans. They are inshore species which are important in 57 
the food web of coastal and estuarine ecosystems (Botton, 2009). Their eggs serve as protein and 58 
lipid sources for fishes and migratory shorebirds (Mizrahi & Peters, 2009), whereas the juveniles 59 
and adults are key predators of the benthic community in intertidal flats (Gaines et al., 2002; 60 
John et al., 2012; Kwan et al., 2021). However, horseshoe crabs are heavily harvested for their 61 
blood for the manufacture of Tachypleus and Limulus amebocyte lysates, the worldwide 62 
standardized tests for bacterial endotoxin detection in pharmaceutical products (Gauvry, 2015; 63 
Tinker-Kulberg et al., 2020). In addition to resource exploitation, habitat loss and degradation 64 
from coastal development (Tsuchiya, 2009; Nelson et al., 2015; Wang et al., 2020), as well as 65 
bycatch by artisanal fishing and discarded fishing gear, are also widely observed to cause 66 
considerable threats to horseshoe crab populations (Zauki et al., 2019; Wang et al., 2022). The 67 
Atlantic horseshoe crab Limulus polyphemus and tri-spine horseshoe crab Tachypleus tridentatus 68 
are listed as “Vulnerable” (Smith et al., 2016) and “Endangered” (Laurie et al., 2019), 69 
respectively, in the IUCN Red List of Threatened Species, while the status of other two Asian 70 
species, the coastal horseshoe crab T. gigas and mangrove horseshoe crab Carcinoscorpius 71 
rotundicauda are under reassessment owing to the recent reports describing substantial 72 
population declines (John et al., 2018; Wang et al., 2020). To reverse the declining trend, 73 
national and regional conservation measures have been imposed in Bangladesh, India, China, 74 
Singapore, Indonesia, and in specific regions in Japan. The effectiveness of these measures in 75 
protecting the remaining horseshoe crab populations may be limited (Wang et al., 2020), 76 
possibly due to insufficient scientific knowledge, financial resources and enforcement capacity 77 
(Xie et al., 2020).  78 
 The larval dispersal and settlement of marine species are critical for the persistence of 79 
local populations; therefore, an enhanced understanding of their ecology and behavior, 80 
particularly for endangered or locally depleted species, is useful for management and 81 
conservation (Botton & Loveland, 2003; Green et al., 2015; Whomersley et al., 2018). 82 
Horseshoe crabs have unique reproductive strategies to maximize egg hatching success and 83 
subsequent larval development (Penn & Brockmann, 1994; Vasquez et al., 2015). The spawning 84 
pairs in amplexus migrate from shallow waters to sandy estuarine beaches, and lay clusters of 85 
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eggs beneath the sediment in the intertidal zones (Smith et al., 2017). The eggs hatch into 101 
planktonic trilobite larvae and settle in the vicinity of the shoreline (Botton & Loveland, 2003; 102 
Botton, Tankersley & Loveland, 2010). Most hatched larvae emerge from the sediment at high 103 
spring tides when the water reaches the height of the nests (Botton & Loveland, 2003; Ehlinger 104 
et al., 2003), facilitating larval dispersal from the nesting locations.  105 

While the spawning biology of horseshoe crabs may share common characteristics, the 106 
existing information for Asian species is limited and mostly descriptive. Similar to their Atlantic 107 
counterpart, the distribution of newly settled and early-stage juvenile T. tridentatus and C. 108 
rotundicauda populations is non-random and has a high tendency to stay close to mangrove, 109 
seagrass and other structured habitats (Kwan et al., 2016; Kaiser & Schoppe, 2018; Xie et al., 110 
2020; Meilana, Hakim & Fang, 2021). Recent spawning habitat surveys in the northern Beibu 111 
Gulf, following the last report in 1984 in China (Cai, Lin & Huang, 1984), demonstrated that the 112 
identified nesting beaches were adjacent to nursery habitats for juveniles (Kwan et al., 2022). 113 
Little is known regarding the movement behavior of the larvae and early-stage juveniles under 114 
field conditions. Previous laboratory studies on L. polyphemus suggest that their directed 115 
movements to water flow (i.e., rheotaxis) change upon exposure to habitat chemical cues 116 
(Medina & Tankersley, 2010; Butler & Tankersley, 2020). A rheotaxis can either be positive by 117 
turning face into the current to hold their position rather than being swept downstream, or 118 
negative to avoid oncoming currents (Kobayashi et al., 2014). In the experiment of Butler & 119 
Tankersley (2020), L. polyphemus larvae exhibited a positive rheotaxis in the presence of 120 
chemical cues from seagrass associated with their settlement sites, which may imply that the 121 
strong tendency of early juveniles to remain close to the beach is a consequence of upstream 122 
movement behavior mediated by habitat chemical cues. However, the mechanism of post-larval 123 
orientation and settlement is likely species- and/or site-specific, depending on the perceived 124 
coastal environmental conditions (Rossi et al., 2019). 125 

In this study, we examined whether the early-stage juvenile T. tridentatus are able to 126 
detect and respond to chemical cues associated with varied coastal vegetations available in their 127 
nursery habitats. We predict that the habitat chemical cues can influence the orientation and 128 
movement behaviors of juvenile, providing guidance to preferred settlement habitats, which 129 
shapes the distribution patterns of early juveniles in the immediate vicinity of the shoreline. The 130 
Beibu Gulf, a semi-closed gulf located off the coast of southern China and northern Vietnam, is 131 
broadly considered to be one of the most important habitats for the remaining high-density 132 
population of endangered T. tridentatus (Brockmann & Smith, 2009; Sekiguchi & Shuster, 2009; 133 
Liao et al., 2019). The spawning and nursery habitats of Asian horseshoe crabs in the gulf are 134 
typically characterized by extensive mangrove fringes along the coastline with patches of 135 
seagrass Halophila spp. and saltmarsh cordgrass Spartina alterniflora scattered on the intertidal 136 
flats (Xie et al., 2020; Kwan et al., 2022). These characteristics of the spawning and nursery 137 
habitats serve as a good opportunity to test our prediction of the orientation and movement 138 
behaviors of the endangered T. tridentatus juveniles for exploring the ecological importance to 139 
settlement in suitable habitats.   140 
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 149 
Materials & Methods 150 
Larval and juvenile horseshoe crab rearing 151 
Tachypleus tridentatus larvae were obtained from the Guangxi Institute of Oceanology, China. 152 
The use of hatchery-bred animals was approved by the Department of Agriculture and Rural 153 
Affairs of Guangxi Region, China (approval number 2022-0131). Mating pairs of T. tridentatus 154 
were kept in indoor tanks with an approximately 10-cm sediment layer underneath. The released 155 
eggs were incubated in hanging baskets from the surface of culture water with continuous, 156 
vigorous airflow pumping below the baskets (Xu et al., 2021). Most eggs developed and hatched 157 
into trilobite larvae after one-month rearing under the following environmental conditions: 158 
temperature 26–30oC, salinity 32–33 ppt, pH 7.6–7.9, dissolved oxygen 6–7 mg l-1.   159 

The hatched larvae were transported to the laboratory and cultured in aquarium tanks 160 
(dimension: 120 × 40 × 25 cm) equipped with a water filtration system, thermostatic heaters and 161 
ultraviolet sterilizers. A 4-cm sediment layer was provided underneath. Seawater was maintained 162 
at the rearing conditions similar to egg incubation. The water quality was monitored weekly, and 163 
half of the volume of water was changed every month or whenever water ammonia concentration 164 
was above 0.1 mg l-1. Frozen brine shrimp larvae were provided thrice per week when the larvae 165 
had developed into second-instar juveniles. 166 
 167 
Experimental setup and conditioned water preparation 168 
The experimental setup consisted of a laboratory Y-maze acrylic chamber and two reservoirs 169 
containing control and conditioned waters, separately (Fig. 1a). A water pump was placed within 170 
each reservoir to pump the test waters into the inflow end at each side of the Y-maze chamber. 171 
The chamber was filled with seawater to 6 cm depth with a 1-cm sand layer underneath, so as to 172 
keep all experimental juveniles completely submerged under the water. Prior to the experiment, 173 
two acrylic movable plates were inserted near the outflow end of the chamber (Fig. 1a) to 174 
maintain the water level and avoid the immediate mixing between control and conditioned 175 
waters. The experiment began after the experimental waters had been flowing in the chamber for 176 
at least 10 mins. The flow rate was calculated by measuring the volume of outflowing seawater 177 
per unit time. A standard flow rate (200 mL/min) was maintained throughout the experiments by 178 
adjusting the control valve on each water tube connected to the water pumps until reaching stable 179 
equilibrium from each side with the aid of different dyed waters (water-soluble ink). Two video 180 
cameras were installed on each side to record juvenile directional movements relative to the flow 181 
of water.  182 

Conditioned waters were prepared using three dominant vegetation sources, including 183 
mangrove Avicennia marina, seagrass Halophila beccarii and saltmarsh cordgrass Spartina 184 
alterniflora, which can be found in T. tridentatus nursery habitats along the coast of the northern 185 
Beibu Gulf, China (Xie et al., 2020). Fresh fallen leaves of mangrove, seagrass and saltmarsh 186 
cordgrass were collected at the identified nursery sites (Kwan et al., 2021) during low tides in the 187 
summer (May–September) of 2020. The collected samples were rinsed repeatedly, freeze-dried 188 



for at least one week, and ground into the powder with a mortar and pestle. The dried samples 189 
were weighed, dissolved into artificial seawater at salinity 30 ppt, homogenized and filtered after 190 
12 h, to prepare the conditioned waters at concentrations of 0.25, 0.50, 1.00 and 2.00 g l-1. The 191 
levels were selected based on the concentration range (0.3–30 g l-1) described in Butler & 192 
Tankersley (2020). However, the preparation method of conditioned seawater in the present 193 
study (dissolution of ground vegetation powder) was slightly different from those in the previous 194 
study (24-h incubation of fresh vegetation), which should cause different actual levels of 195 
chemical cues available in the conditioned waters. The trials with concentrations higher than 2 g 196 
l-1 were not conducted because the conditioned water would become too turbid and the juvenile 197 
behavioral parameters could not be quantified. Artificial seawater at salinity 30 ppt was used as 198 
the control. All experimental waters were subjected to experiments within 12 h of preparation. 199 
 200 
Orientation and movement behaviors toward chemical cues 201 
To quantify the movement responses during the settlement process, the orientation and various 202 
behavioral data from 60 juveniles were collected per treatment. During each treatment, a second-203 
instar juvenile T. tridentatus (prosomal width: 7.5–8.8 mm, wet weight: 35.9–55.3 mg) was 204 
randomly chosen and introduced into the intersection area of the chamber (Fig. 1a). The juvenile 205 
was given 30 mins to respond to the flow by moving upstream to either side of the chamber 206 
containing control or conditioned water, or downstream toward the outflow end. The orientation, 207 
movement time, the largest movement distance and displacement of the juvenile were quantified 208 
based on the video recordings. After the completion of data collection from 10 juveniles, the 209 
inner surface and sand layer of the chamber was rinsed completely. Another group of 10 210 
juveniles was used for the same treatment by alternating the inflow of conditioned water from 211 
the left to the right arm of the chamber, to test if the choice of seawater source by the juveniles 212 
was non-random. The set of experiment was repeated three times, and all juveniles were only 213 
used once per observation (each treatment: 10 juveniles × 2 positions × 3 replicates).  214 

Because none of the experimental juveniles traveled downstream throughout the 215 
experiment, the orientation parameter was used to quantify the percentage of individuals moving 216 
upstream to choose control/conditioned water. The orientation toward conditioned or control 217 
water of each juvenile was recorded by a single video, and the percentage of individuals moving 218 
up to either side of the Y-maze chamber was calculated based on the video recordings from 10 219 
different juveniles. A juvenile that failed to travel in either direction during the first 10 mins was 220 
considered “unresponsive” and would be replaced by another juvenile. The proportion of 221 
“unresponsive” juveniles was very low, which ranged from 0–1 individuals in each experimental 222 
replicate. Movement time was the total time the juveniles spent crawling or swimming in the 223 
chamber. The largest movement distance was defined as the longest length traveled in a single 224 
upstream direction, whereas displacement was the length between the initial and final points of 225 
movement within the allowed experimental time, i.e., 30 mins (Fig. 1b). Artificial lighting was 226 
used to ensure that all animals were exposed to the same conditions. None of the juveniles was 227 
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sacrificed during the experiment, and the study protocol was approved by the Committee for 232 
Animal Welfare of the Beibu Gulf University. 233 
 234 
Statistical analysis 235 
Data were first examined for normality and homogeneity of variance by Shapiro-Wilk and 236 
Levene’s tests, respectively. Student’s t and Mann-Whitney U tests were conducted to check 237 
whether the choice of the left/right arm of the chamber by the juveniles was non-random. The 238 
data from two groups of 10 juveniles were pooled for subsequent behavioral parameter analyses 239 
after the differences were found to be statistically similar (Table S1). Since the orientation data 240 
were non-normal, non-parametric binomial tests were performed to examine the possible 241 
differences in juvenile orientation between control and conditioned waters at individual 242 
concentration. The test proportion of the binomial model was set at 0.50. Student’s t tests were 243 
used for other behavioral parameters analyses. To understand the overall effects of various 244 
vegetation sources at different concentrations on juvenile behaviors, the data were analyzed 245 
using two-way analysis of variance (ANOVA: source [fixed] × concentration [fixed]). Multiple 246 
pair-wise comparisons among sources/concentrations were applied using post hoc Tukey’s tests 247 
with Bonferroni adjustments when a significant difference was identified. All the above analyses 248 
were implemented using IBM SPSS Statistics Software (version 26, New York, USA). 249 
 250 
Results 251 
Between 17%–82% of juvenile T. tridentatus traveled to the side containing habitat cues from 252 
different vegetation sources at various concentrations (Fig. 2a-c). Binomial tests between control 253 
and treatment groups revealed that statistically higher proportions of juveniles responded to H. 254 
beccarii chemical cues at 0.50 and 1.00 g l-1, while significantly lower percentages of juveniles 255 
moved upstream approaching A. marina chemical cues at 2.00 g l-1 and S. alterniflora chemical 256 
cues at 2.00 g l-1 (Fig. 2a-c). For other behavioral parameters, a significant reduction in juvenile 257 
movement time for >57% was detected in water containing A. marina cue at 2.00 g l-1, while the 258 
juvenile largest movement distance and displacement performed in seawater sources with 259 
chemical cues were similar to those recorded in the control (Table 1, Fig. 2d). 260 

When the overall effects of various vegetation sources at different concentrations were 261 
simultaneously considered, both source and concentration of chemical cues were found to 262 
significantly alter the displacement of juveniles, but only source and concentration were noted to 263 
affect juvenile movement time and the largest distance, respectively (Table 2, Fig. 3). A 264 
significant decrease in juvenile displacement at 1.00 and 2.00 g l-1 was also observed in water 265 
containing S. alterniflora cue (Fig. 3a). In terms of movement time, the juveniles were more 266 
active in seawater containing H. beccarii cue than those in A. marina (Fig. 3b). A significant 267 
reduction in the largest movement distance of juveniles was also recorded at 2 g l-1, compared to 268 
those at 0.25 g l-1, regardless of the vegetation sources (Fig. 3c). 269 
 270 
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Discussion 294 
There is increasing interest in studying horseshoe crab populations due to their biomedical 295 
importance and use in various fisheries, and understanding the factors that may contribute to 296 
larval recruitment is a worthwhile investigation. Recent studies provided useful information on 297 
the nesting/nursery habitat distributions and larval hatching processes of Asian horseshoe crabs 298 
(Itaya et al., 2022; Kuang et al., 2022; Kwan et al., 2022). However, little is known regarding 299 
the role of chemoreceptive and olfactory capabilities in larval transport and settlement, despite 300 
the fact that high densities of juvenile Asian horseshoe crabs are known to occur in the upper 301 
intertidal beaches adjacent to mangrove, seagrass and other structured habitats (Xie et al., 2020). 302 
In this study, the use of chemical cues in seeking preferred settlement habitat by T. tridentatus 303 
was tested using a laboratory Y-maze chamber. Our results provided evidence that early-stage 304 
juvenile T. tridentatus are capable of detecting and responding to chemical cues associated with 305 
the typical vegetations available in nursery habitats. Overall, the juveniles were attracted to the 306 
seagrass H. beccarii cue when the concentration reached 0.5 or 1 g l-1. On the other hand, the 307 
juveniles tended to avoid chemical cues from mangrove A. marina and saltmarsh cordgrass S. 308 
alterniflora at relatively high concentrations (i.e., 2 g l-1 in this study). 309 

The use of chemical cues was documented in examples of marine decapod crustaceans 310 
and fish (Havel & Fuiman, 2015; Foretich et al., 2017; Hinojosa et al.; 2018; Arvedlund & 311 
Kavanagh, 2020). Horseshoe crabs are known to possess a variety of chemoreceptors on the 312 
gills, flabellum, chilaria and walking legs, which would respond to oxygen in seawater and 313 
varying chemical cues associated with food (Quinn, Paradise & Atema, 1998; Mittmann & 314 
Scholtz, 2001; Saunders et al., 2010). In Cape Cod, U.S.A, L. polyphemus were observed to 315 
locate their preferred food, Mya arenaria, which were completely buried within the sediment 316 
(Smith, 1953). There is also evidence of chemical cue use by male L. polyphemus in locating 317 
spawning females. Hassler and Brockmann (2001) found that a cement model with conditioned 318 
seawater collected from spawning females was more attractive to males. Previous studies also 319 
demonstrated that L. polyphemus would use other sensory cues in addition to chemical cues to 320 
adapt to the overall complexity of signals in coastal and estuarine environments. The use of 321 
visual cues enables male L. polyphemus to see and respond to females at night (Barlow, Ireland 322 
& Kass, 1982; Herzog, Powers & Barlow, 1996) and are more attracted to unpaired and larger 323 
females (Hassler & Brockmann, 2001; Barlow & Powers, 2003).  324 

Relatively little is known about the use of multisensory cues by larvae and juvenile 325 
horseshoe crabs to identify preferred habitats. Limulus polyphemus larvae were noted to be more 326 
active at nighttime and positively phototactic to dim light sources such as moonlight (Rudloe, 327 
1979; Botton & Loveland, 2003). The major releases of hatched larvae from the nesting sites are 328 
shown to be associated with high water conditions such as hydration, hypoosmotic shock and 329 
agitation (Ehlinger & Tankersley, 2003; Botton, Tankersley & Loveland, 2010; Kuang et al., 330 
2022). These exogenous cues are possibly detected by mechanoreceptors available on the entire 331 
surface of prosoma, spines and walking legs (Wyse 1971), to facilitate the dispersal of larvae 332 
away from the spawning locations. Our results, together with previous studies on L. polyphemus 333 
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(Medina & Tankersley, 2010; Butler & Tankersley, 2020), suggest that chemical cues are 336 
involved in the settlement and habitat selection process. Horseshoe crab larvae and juveniles 337 
were more directed toward chemical cues from seagrasses (Medina & Tankersley, 2010; Butler 338 
& Tankersley, 2020). The responses were perceived as a shelter-seeking behavior, since high-339 
density juvenile T. tridentatus populations in the northern Beibu Gulf, China were found in areas 340 
of seagrass patches, mainly Halophila species (Xie et al., 2020). Apart from providing refuge 341 
from predation, other studies also revealed that the juveniles predominantly assimilated energy 342 
from seagrass as basal production sources in the food web (Kwan et al., 2015; Fan et al., 2017; 343 
Kwan et al. 2021). However, it is rare to find juvenile Asian horseshoe crabs near S. alterniflora 344 
in the field, even though the invasive plant has expanded rapidly throughout the Chinese 345 
coastline (Meng et al., 2020), and highly overlapped with horseshoe crab habitats (Kwan et al., 346 
2015; Xie et al., 2020; Kwan et al., 2021). Our data also showed that juvenile T. tridentatus 347 
showed stronger preferences for the native H. beccarii habitat over the one with invasive S. 348 
alterniflora.  349 

Although not addressed in our study, biofilm available on the plants and other substrata 350 
can also act as settlement cues for a broad variety of marine invertebrate larvae, including 351 
mollusks (Liang et al., 2020), crustaceans (Siddik & Satheesh, 2019), polychaetes (Freckelton et 352 
al., 2022), gastropods (La Marca et al., 2021), cnidarians (Petersen et al., 2021) and 353 
echinoderms (Huggett et al., 2006). Marine biofilms are complex, heterogenic microbial 354 
communities, mainly bacteria and diatoms, surrounded by a matrix of extracellular polymeric 355 
substances (Antunes, Leão & Vasconcelos, 2019). Larval settlement responses to different 356 
bacteria can be species-specific. Similarly, the bacterial community on the surfaces and/or roots 357 
of habitat plants can also be important as settlement and behavioral cues for early-stage T. 358 
tridentatus. While the role of bacteria in larval settlement of horseshoe crabs is currently unclear, 359 
their larvae and early-stage juveniles are known to feed primarily on sedimentary organic matter 360 
(Gaines et al., 2002; Kwan et al., 2021), which is dominated by benthic diatoms (e.g., 361 
Naviculaceae and Cymbellaceae in Beibu Gulf region, Table S2). Alternatively, chemical 362 
compounds released during the decay processes of coastal plants may also attract the settlement 363 
of marine invertebrate larvae, as seen in several amphipod species associated with seagrass bed 364 
(Edgar 1992) and the mangrove jellyfish Cassiopea xamachana (Hofmann et al., 1996; Fleck & 365 
Fitt, 1999). However, the preparation of conditioned seawater using dried plant materials in the 366 
current study may lower the effects of live bacteria and decayed plant compounds on settlement 367 
behaviors of the early-stage juvenile T. tridentatus.  368 

In this study, the chemically-mediated orientation and movement behaviors of the 369 
juveniles were generally concentration-dependent. As noted in Figure 2(b), the juveniles 370 
preferred the water containing seagrass chemical cues at a concentration of 0.5 and 1 g l-1. 371 
However, the effect on directional choice toward seagrass cue was ceased at 2 g l-1 and became 372 
statistically similar to that observed in control water. The results can be interpreted as the 373 
movement process of the juveniles seeking settlement habitats (Medina & Tankersley, 2010): 374 
their movements become more directed when the juveniles get closer to the source, which is 375 
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indicated by the increased concentration of seagrass chemical cues. When the concentration is 384 
too high (e.g., 2 g l-1 in this study), the juveniles may perceive the signal as the arrival to the 385 
preferred settlement habitats, and therefore their behavioral responses would become weaker. In 386 
contrast, the juveniles exhibited avoidance behaviors when getting too close to mangrove and 387 
saltmarsh cordgrass, as indicated by selecting the side with control seawater when the source 388 
concentrations had reached 2 g l-1. Other movement behaviors, including reduced time spent on 389 
movement and/or shorter displacement, also recorded a similar trend (Figs. 2d and 3a). A 390 
possible explanation for such avoidance behaviors is that the densely vegetated saltmarsh 391 
cordgrass and mangrove areas have slower water movement and accumulation of the fine-392 
grained, poorly drained substratum, which would result in higher concentrations of organic 393 
matter and hydrogen sulfide in the areas (Wang et al., 2015; Rossi et al., 2019; Su et al., 2020; Li 394 
et al. 2021). A recent study in the Beibu Gulf region also demonstrated that the Spartina 395 
occupation reduced the diversity of macroinvertebrate assemblages on intertidal flats (Su et al., 396 
2020), and therefore may affect the availability of food sources for the juveniles (Kwan et al., 397 
2021). The presence of high tannin, phenolics and other plant defensive compounds in A. marina 398 
and S. alterniflora extracts (Zhou et al., 2010; Zhang et al., 2021) were found to negatively 399 
affect benthic invertebrates (Alongi, 1987; Lee, 1999), probably also reducing the rheotaxis of 400 
juvenile T. tridentatus toward these vegetations.  401 

While the induction by a single source of vegetation cues never exists in the marine 402 
environment, and the actual contribution of these factors in the field is poorly understood, similar 403 
laboratory experiments are common and useful to investigate the mechanism of larval settlement 404 
and habitat selection in marine invertebrates (Suárez-Rodríguez, Kruesi & Alcaraz, 2019; 405 
Gravinese et al., 2020; Brooker et al., 2022). For example, Jensen & Morse (1990) identified an 406 
inductive organic molecule that induced larval settlement in marine polychaete Phragmatopoma 407 
californica in the laboratory and also triggered the same processes in the ocean. Previous 408 
research on horseshoe crabs, to the best of our knowledge, has not compared the potential 409 
behavioral difference between hatchery-bred individuals and those in the field. However, given 410 
that horseshoe crab populations are threatened and even endangered across the distribution 411 
range, previous studies suggest the use of artificially cultured horseshoe crabs is useful to explain 412 
the habitat selection mechanisms and distribution patterns of the wild populations (e.g., Medina 413 
& Tankersley, 2010; Hieb et al., 2015; Kwan et al., 2020; Chan et al., 2022). Apart from this, 414 
horseshoe crabs are also likely to use multiple sensory cues, particularly visual cues, in 415 
settlement habitat selection. As the entire exclusion of the multisensory factors is challenging, in 416 
this study, we can observe some discrepancies in the juvenile orientation results. In Figure 2, the 417 
juveniles showed (1) avoidance behavior toward mangrove A. marine cues at 2.00 g l-1

, but not at 418 
0.25, 0.50 and 1.00 g l-1; and (2) there is neither preference nor avoidance of cordgrass S. 419 
alterniflora except at the highest concentration of 2.00 g l-1. Therefore, consideration of the 420 
simultaneous use of multiple sensory cues is needed in horseshoe crabs to make further 421 
conclusions on the process and mechanism of juvenile habitat selections. Another possibility of 422 
the discrepancies is due to the lower resolution of orientation data compared to the other 423 
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behavioral parameters: multiple video recordings from a group of juveniles were required to 432 
obtain each percentage orientation sample value, but only one video recording per juvenile 433 
would be needed to collect each of the other behavioral parameter values. 434 

Collectively, our results demonstrated the differential orientation behaviors of juveniles 435 
between seagrass and mangrove/cordgrass chemical cues, which may provide useful navigation 436 
to juvenile T. tridentatus to identify and settle on the upper intertidal flats adjacent to seagrass 437 
habitats, and avoid getting too close to densely vegetated areas of mangroves and saltmarsh 438 
cordgrass. The results of nursery habitat selection can maximize the chance to obtain high-439 
quality food and avert adverse environmental conditions, and thereby increasing the survival rate 440 
of the juveniles. Additional emphasis on mating, food searching and predation avoidance should 441 
also be addressed in T. tridentatus and other Asian species to make further conclusions on the 442 
role of chemical cues in horseshoe crabs. From a management perspective, preserving coastal 443 
and estuarine habitats, particularly those with seagrass beds, should be prioritized in management 444 
measures for conservation of the declining Asian horseshoe crab populations. Active seagrass 445 
restoration in the upper and middle portion of intertidal areas can also benefit Asian horseshoe 446 
crab conservation by providing more suitable nursery habitats for shelter and basal production 447 
sources in the juvenile food web. 448 
 449 
Conclusions 450 
Our findings demonstrated that early-stage juvenile T. tridentatus are capable of detecting and 451 
responding to varying sources of habitat vegetation. Positive rheotaxis was exhibited in the 452 
presence of seagrass H. beccarii cue at 0.5 and 1 g l-1, but juveniles avoided mangrove A. marina 453 
and saltmarsh cordgrass S. alterniflora cues when the concentrations were too high at 2 g l-1. 454 
Juvenile displacement was also significantly reduced in water containing S. alterniflora cue at 1 455 
and 2 g l-1. These behaviours may help guide juveniles to high-quality settlement habitats, as 456 
seagrass is known to serve as basal production sources in the T. tridentatus food web, as well as 457 
prevent juveniles from getting too close to the mangrove and saltmarsh cordgrass, which are 458 
generally higher in organic matter and hydrogen sulfide. The present study provided valuable 459 
evidence on the scope of larval dispersal and habitat selection mediated by habitat chemical cues, 460 
which is useful to improve the management efforts for the declining Asian horseshoe crab 461 
populations. 462 
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