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ABSTRACT
Background. An enhanced understanding of larval ecology is fundamental to improve
the management of locally depleted horseshoe crab populations in Asia. Recent studies
in the northern Beibu Gulf, China demonstrated that nesting sites of Asian horseshoe
crabs are typically close to their nursery beaches with high-density juveniles distributed
around mangrove, seagrass and other structured habitats.
Methods. A laboratory Y-maze chamber was used to test whether the dispersal of early-
stage juvenile tri-spine horseshoe crab Tachypleus tridentatus is facilitated by chemical
cues to approach suitable nursery habitats. The juvenile orientation to either side of
the chamber containing controlled seawater or another with various vegetation cues,
as well as their movement time, the largest distance and displacement were recorded.
Results. The juveniles preferred to orient toward seagrassHalophila beccarii cues when
the concentration reached 0.5 g l−1, but ceased at 2 g l−1. The results can be interpreted
as a shelter-seeking process to get closer to the preferred settlement habitats. However,
the juveniles exhibited avoidance behaviors in the presence of mangrove Avicennia
marina and invasive saltmarsh cordgrass Spartina alterniflora at 2 g l−1. The juveniles
also spent less time moving in the presence of the A. marina cue, as well as reduced
displacement in water containing the S. alterniflora cue at 1 and 2 g l−1. These results
may explain the absence of juvenile T. tridentatuswithin densely vegetated areas, which
have generally higher organic matter and hydrogen sulfide.
Conclusion. Early-stage juvenile T. tridentatus are capable of detecting and responding
to habitat chemical cues, which can help guide them to high-quality settlement habitats.
Preserving and restoring seagrass beds in the intertidal areas should be prioritized
when formulating habitat conservation and management initiatives for the declining
horseshoe crab populations.
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INTRODUCTION
Horseshoe crabs are an ancient group of invertebrates that are broadly distributed along
the west coast of the North Atlantic and Pacific Oceans. They are inshore species which are
important in the food web of coastal and estuarine ecosystems (Botton, 2009). Their eggs
serve as protein and lipid sources for fishes and migratory shorebirds (Mizrahi & Peters,
2009), whereas the juveniles and adults are key predators of the benthic community in
intertidal flats (Gaines et al., 2002; John et al., 2012; Kwan et al., 2021). However, horseshoe
crabs are heavily harvested for their blood for the manufacture of Tachypleus and Limulus
amebocyte lysates, the worldwide standardized tests for bacterial endotoxin detection
in pharmaceutical products (Gauvry, 2015; Tinker-Kulberg et al., 2020). In addition to
resource exploitation, habitat loss and degradation from coastal development (Tsuchiya,
2009; Nelson et al., 2015; Wang et al., 2020), as well as bycatch by artisanal fishing and
discarded fishing gear, are also widely observed to cause considerable threats to horseshoe
crab populations (Zauki et al., 2019; Wang et al., 2022). The Atlantic horseshoe crab
Limulus polyphemus and tri-spine horseshoe crab Tachypleus tridentatus are listed as
‘‘Vulnerable’’ (Smith et al., 2016) and ‘‘Endangered’’ (Laurie et al., 2019), respectively, in
the IUCN Red List of Threatened Species, while the status of other two Asian species, the
coastal horseshoe crab T. gigas and mangrove horseshoe crab Carcinoscorpius rotundicauda
are under reassessment owing to the recent reports describing substantial population
declines (John et al., 2018; Wang et al., 2020). To reverse the declining trend, national and
regional conservationmeasures have been imposed in Bangladesh, India, China, Singapore,
Indonesia, and in specific regions in Japan. The effectiveness of thesemeasures in protecting
the remaining horseshoe crab populations may be limited (Wang et al., 2020), possibly due
to insufficient scientific knowledge, financial resources and enforcement capacity (Xie et
al., 2020).

The larval dispersal and settlement of marine species are critical for the persistence of
local populations; therefore, an enhanced understanding of their ecology and behavior,
particularly for endangered or locally depleted species, is useful for management
and conservation (Botton & Loveland, 2003; Green et al., 2015; Whomersley et al., 2018).
Horseshoe crabs have unique reproductive strategies to maximize egg hatching success
and subsequent larval development (Penn & Brockmann, 1994; Vasquez et al., 2015). The
spawning pairs in amplexus migrate from shallow waters to sandy estuarine beaches, and
lay clusters of eggs beneath the sediment in the intertidal zones (Smith et al., 2017). The
eggs hatch into planktonic trilobite larvae and settle in the vicinity of the shoreline (Botton
& Loveland, 2003; Botton, Tankersley & Loveland, 2010). Most hatched larvae emerge from
the sediment at high spring tides when the water reaches the height of the nests (Botton
& Loveland, 2003; Ehlinger, Tankersley & Bush, 2003), facilitating larval dispersal from the
nesting locations.

While the spawning biology of horseshoe crabs may share common characteristics,
the existing information for Asian species is limited and mostly descriptive. Similar
to their Atlantic counterpart, the distribution of newly settled and early-stage juvenile
T. tridentatus and C. rotundicauda populations is non-random and has a high tendency to
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stay close to mangrove, seagrass and other structured habitats (Kwan et al., 2016; Kaiser
& Schoppe, 2018; Xie et al., 2020; Meilana, Hakim & Fang, 2021). Recent spawning habitat
surveys in the northern Beibu Gulf, following the last report in 1984 in China (Cai,
Lin & Huang, 1984), demonstrated that the identified nesting beaches were adjacent
to nursery habitats for juveniles (Kwan et al., 2022). Little is known regarding the
movement behavior of the larvae and early-stage juveniles under field conditions. Previous
laboratory studies on L. polyphemus suggest that their directed movements to water flow
(i.e., rheotaxis) change upon exposure to habitat chemical cues (Medina & Tankersley,
2010; Butler & Tankersley, 2020). A rheotaxis can either be positive by turning face into
the current to hold their position rather than being swept downstream, or negative to
avoid oncoming currents (Kobayashi et al., 2014). In the experiment of Butler & Tankersley
(2020), L. polyphemus larvae exhibited a positive rheotaxis in the presence of chemical
cues from seagrass associated with their settlement sites, which may imply that the strong
tendency of early juveniles to remain close to the beach is a consequence of upstream
movement behavior mediated by habitat chemical cues. However, the mechanism of
post-larval orientation and settlement is likely species- and/or site-specific, depending on
the perceived coastal environmental conditions (Rossi et al., 2019a).

In this study, we examined whether the early-stage juvenile T. tridentatus are able to
detect and respond to chemical cues associated with varied coastal vegetations available
in their nursery habitats. We predict that the habitat chemical cues can influence the
orientation and movement behaviors of juvenile, providing guidance to preferred
settlement habitats, which shapes the distribution patterns of early juveniles in the
immediate vicinity of the shoreline. The Beibu Gulf, a semi-closed gulf located off the
coast of southern China and northern Vietnam, is broadly considered to be one of
the most important habitats for the remaining high-density population of endangered
T. tridentatus (Brockmann & Smith, 2009; Sekiguchi & Shuster, 2009; Liao et al., 2019).
The spawning and nursery habitats of Asian horseshoe crabs in the gulf are typically
characterized by extensive mangrove fringes along the coastline with patches of seagrass
Halophila spp. and invasive saltmarsh cordgrass Spartina alterniflora scattered on the
intertidal flats (Xie et al., 2020; Kwan et al., 2022). These characteristics of the spawning
and nursery habitats serve as a good opportunity to test our prediction of the orientation
and movement behaviors of the endangered T. tridentatus juveniles for exploring the
ecological importance to settlement in suitable habitats.

MATERIALS & METHODS
Larval and juvenile horseshoe crab rearing
Tachypleus tridentatus larvae were obtained from the Guangxi Institute of Oceanology,
China. The use of hatchery-bred animals was approved by the Department of Agriculture
and Rural Affairs of Guangxi Region, China (approval number 2022-0131). Mating pairs
of T. tridentatus were kept in indoor tanks with an approximately 10-cm sediment layer
underneath. The released eggs were incubated in hanging baskets from the surface of
culture water with continuous, vigorous airflow pumping below the baskets (Xu et al.,
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2021). Most eggs developed and hatched into trilobite larvae after one-month rearing
under the following environmental conditions: temperature 26–30 ◦C, salinity 32–33 ppt,
pH 7.6–7.9, dissolved oxygen 6–7 mg l−1.

The hatched larvae were transported to the laboratory and cultured in aquarium tanks
(dimension: 120 × 40 × 25 cm) equipped with a water filtration system, thermostatic
heaters and ultraviolet sterilizers. A 4-cm sediment layer was provided underneath.
Seawater was maintained at the rearing conditions similar to egg incubation. The water
quality was monitored weekly, and half of the volume of water was changed every month
or whenever water ammonia concentration was above 0.1 mg l−1. Frozen brine shrimp
larvae were provided thrice per week when the larvae had developed into second-instar
juveniles.

Experimental setup and conditioned water preparation
The experimental setup consisted of a laboratory Y-maze acrylic chamber and two reservoirs
containing control and conditioned waters, separately (Fig. 1A). A water pump was placed
within each reservoir to pump the test waters into the inflow end at each side of the Y-maze
chamber. The chamber was filled with seawater to six cm depth with a 1-cm sand layer
underneath, so as to keep all experimental juveniles completely submerged under the water.
Prior to the experiment, two acrylic movable plates were inserted near the outflow end of
the chamber (Fig. 1A) to maintain the water level and avoid the immediate mixing between
control and conditioned waters. The experiment began after the experimental waters had
been flowing in the chamber for at least 10 mins. The flow rate was calculated by measuring
the volume of outflowing seawater per unit time. A standard flow rate (200 mL/min) was
maintained throughout the experiments by adjusting the control valve on each water tube
connected to the water pumps until reaching stable equilibrium from each side with the
aid of different dyed waters (water-soluble ink). Two video cameras were installed on each
side to record juvenile directional movements relative to the flow of water.

Conditioned waters were prepared using three dominant vegetation sources, including
mangrove Avicennia marina, seagrass Halophila beccarii and saltmarsh cordgrass Spartina
alterniflora, which can be found in T. tridentatus nursery habitats along the coast of the
northern Beibu Gulf, China (Xie et al., 2020). Fresh fallen leaves of mangrove, seagrass
and saltmarsh cordgrass were collected at the identified nursery sites (Kwan et al., 2021)
during low tides in the summer (May–September) of 2020. The collected samples were
rinsed repeatedly, freeze-dried for at least one week, and ground into the powder with a
mortar and pestle. The dried samples were weighed, dissolved into artificial seawater at
salinity 30 ppt, homogenized and filtered after 12 h, to prepare the conditioned waters
at concentrations of 0.25, 0.50, 1.00 and 2.00 g l−1. The levels were selected based on the
concentration range (0.3–30 g l−1) described in Butler & Tankersley (2020)). However,
the preparation method of conditioned seawater in the present study (dissolution of
ground vegetation powder) was slightly different from those in the previous study (24-h
incubation of fresh vegetation), which should cause different actual levels of chemical cues
available in the conditioned waters. The trials with concentrations higher than 2 g l−1 were
not conducted because the conditioned water would become too turbid and the juvenile
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Figure 1 (A) The experimental setup comprises a Y-maze chamber used to measure the rheotaxis and
movement behavior of juvenile T. tridentatus in response to control (blue) versus conditioned seawa-
ter with chemical cues (red). (B) A typical example of juvenile movement in the chamber. Direction of
water flow is indicated by dashed arrows. The movement pathway is indicated by a dashed line. Pi= initial
position, Pf = final position when the allowed experimental time ended, i.e., 30 mins.

Full-size DOI: 10.7717/peerj.14465/fig-1

behavioral parameters could not be quantified. Artificial seawater at salinity 30 ppt was
used as the control. All experimental waters were subjected to experiments within 12 h of
preparation.

Orientation and movement behaviors toward chemical cues
To quantify the movement responses during the settlement process, the orientation and
various behavioral data from 60 juveniles were collected per treatment. During each
treatment, a second-instar juvenile T. tridentatus (prosomal width: 7.5–8.8 mm, wet
weight: 35.9–55.3 mg) was randomly chosen and introduced into the intersection area
of the chamber (Fig. 1A). The juvenile was given 30 mins to respond to the flow by
moving upstream to either side of the chamber containing control or conditioned water,
or downstream toward the outflow end. The orientation, movement time, the largest
movement distance and displacement of the juvenile were quantified based on the video
recordings. After the completion of data collection from 10 juveniles, the inner surface
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and sand layer of the chamber was rinsed completely. Another group of 10 juveniles was
used for the same treatment by alternating the inflow of conditioned water from the left to
the right arm of the chamber, to test if the choice of seawater source by the juveniles was
non-random. The set of experiment was repeated three times, and all juveniles were only
used once per observation (each treatment: 10 juveniles ×2 positions ×3 replicates).

Because none of the experimental juveniles traveled downstream throughout the
experiment, the orientation parameter was used to quantify the percentage of individuals
moving upstream to choose control/conditioned water. The orientation toward
conditioned or control water of each juvenile was recorded by a single video, and the
percentage of individuals moving up to either side of the Y-maze chamber was calculated
based on the video recordings from 10 different juveniles. A juvenile that failed to travel
in either direction during the first 10 mins was considered ‘‘unresponsive’’ and would be
replaced by another juvenile. The proportion of ‘‘unresponsive’’ juveniles was very low,
which ranged from 0–1 individuals in each experimental replicate. Movement time was the
total time the juveniles spent crawling or swimming in the chamber. The largest movement
distance was defined as the longest length traveled in a single upstream direction, whereas
displacement was the length between the initial and final points of movement within the
allowed experimental time, i.e., 30 mins (Fig. 1B). Artificial lighting was used to ensure
that all animals were exposed to the same conditions. None of the juveniles were sacrificed
during the experiment, and the study protocol was approved by the Committee for Animal
Welfare of the Beibu Gulf University.

Statistical analysis
Data were first examined for normality and homogeneity of variance by Shapiro–Wilk
and Levene’s tests, respectively. Student’s t and Mann–Whitney U tests were conducted
to check whether the choice of the left/right arm of the chamber by the juveniles was
non-random. The data from two groups of 10 juveniles were pooled for subsequent
behavioral parameter analyses after the differences were found to be statistically similar
(Table S1). Since the orientation data were non-normal, non-parametric binomial tests
were performed to examine the possible differences in juvenile orientation between
control and conditioned waters at individual concentration. The test proportion of
the binomial model was set at 0.50. Student’s t tests were used for other behavioral
parameters analyses. To understand the overall effects of various vegetation sources at
different concentrations on juvenile behaviors, the data were analyzed using two-way
analysis of variance (ANOVA: source [fixed] × concentration [fixed]). Multiple pair-wise
comparisons among sources/concentrations were applied using post hoc Tukey’s tests with
Bonferroni adjustments when a significant difference was identified. All the above analyses
were implemented using IBM SPSS Statistics Software (version 26; Armonk, NY, USA).

RESULTS
Between 17%–82% of juvenile T. tridentatus traveled to the side containing habitat cues
from different vegetation sources at various concentrations (Figs. 2A–2C). Binomial tests
between control and treatment groups revealed that statistically higher proportions of
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Figure 2 Effects of each vegetation source at varying concentrations compared to the control on rheo-
taxis (A–C), andmovement time (D) of juvenile T. tridentatus. Movement time of the juveniles in sea-
grass H. beccarii and saltmarsh cordgrass S. alterniflora cues was statistically similar to those in the control,
and was not shown in the figure. The data are expressed in mean±standard deviation. Different lowercase
letters represent statistical differences (p< 0.05) between control (white bars) and conditioned (grey bars)
waters at the corresponding concentration.

Full-size DOI: 10.7717/peerj.14465/fig-2

juveniles responded to H. beccarii chemical cues at 0.50 and 1.00 g l−1, while significantly
lower percentages of juveniles moved upstream approaching A. marina chemical cues at
2.00 g l−1 and S. alterniflora chemical cues at 2.00 g l−1 (Figs. 2A–2C). For other behavioral
parameters, a significant reduction in juvenile movement time for >57% was detected in
water containing A. marina cue at 2.00 g l−1, while the juvenile largest movement distance
and displacement performed in seawater sources with chemical cues were similar to those
recorded in the control (Table 1, Fig. 2D).

When the overall effects of various vegetation sources at different concentrations were
simultaneously considered, both source and concentration of chemical cues were found
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Table 1 Statistical results of Student’s t tests (d.f . = 4) showing the effects of each vegetation source
at varying concentrations compared to the control on various movement behaviors of juvenile T. tri-
dentatus.

Habitat cue Conc. (g l−1) Movement time Largest distance Displacement

t p t p t p

A. marina 0.25 −0.825 0.413 0.196 0.846 0.248 0.805
0.50 −0.169 0.866 −1.725 0.090 −0.935 0.354
1.00 1.446 0.153 0.672 0.504 1.668 0.101
2.00 −3.081 0.003 −1.033 0.306 −1.314 0.194

H. beccarii 0.25 0.088 0.930 0.987 0.328 0.474 0.637
0.50 −0.857 0.395 −0.283 0.778 −0.568 0.572
1.00 1.175 0.245 0.450 0.655 −0.015 0.988
2.00 1.018 0.313 0.335 0.739 0.383 0.703

S. alterniflora 0.25 −0.712 0.479 1.507 0.137 0.595 0.554
0.50 0.117 0.907 0.118 0.907 0.313 0.755
1.00 −1.71 0.093 −0.571 0.570 −0.227 0.821
2.00 −0.279 0.781 −1.254 0.215 −1.225 0.226

Notes.
Significant p values (<0.05) are highlighted in bold.
Conc., Concentration.

to significantly alter the displacement of juveniles, but only source and concentration
were noted to affect juvenile movement time and the largest distance, respectively (Table
2, Fig. 3). A significant decrease in juvenile displacement at 1.00 and 2.00 g l−1 was also
observed in water containing S. alterniflora cue (Fig. 3A). In terms of movement time, the
juveniles were more active in seawater containing H. beccarii cue than those in A. marina
(Fig. 3B). A significant reduction in the largest movement distance of juveniles was also
recorded at 2 g l−1, compared to those at 0.25 g l−1, regardless of the vegetation sources
(Fig. 3C).

DISCUSSION
There is increasing interest in studying horseshoe crab populations due to their biomedical
importance and use in various fisheries, and understanding the factors that may contribute
to larval recruitment is a worthwhile investigation. Recent studies provided useful
information on the nesting/nursery habitat distributions and larval hatching processes of
Asian horseshoe crabs (Itaya et al., 2022; Kuang et al., 2022; Kwan et al., 2022). However,
little is known regarding the role of chemoreceptive and olfactory capabilities in larval
transport and settlement, despite the fact that high densities of juvenile Asian horseshoe
crabs are known to occur in the upper intertidal beaches adjacent to mangrove, seagrass
and other structured habitats (Xie et al., 2020). In this study, the use of chemical cues
in seeking preferred settlement habitat by T. tridentatus was tested using a laboratory
Y-maze chamber. Our results provided evidence that early-stage juvenile T. tridentatus are
capable of detecting and responding to chemical cues associated with the typical vegetations
available in nursery habitats. Overall, the juveniles were attracted to the seagrassH. beccarii
cue when the concentration reached 0.5 or 1 g l−1. On the other hand, the juveniles tended
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Table 2 Statistical results of two-way ANOVA showing the effects of different source and concentra-
tion of chemical cues (g l−1) onmovement behaviors of juvenile T. tridentatus.

Response d.f. F p
Movement time (min)

Source 2 4.344 0.025
Conc. 3 0.751 0.533
Source× Conc. 6 8.316 <0.001
Error 24
Largest distance (cm)
Source 2 2.488 0.104
Conc. 3 3.090 0.046
Source× Conc. 6 1.756 0.151
Error 24
Displacement (cm)
Source 2 4.728 0.019
Conc. 3 4.884 0.009
Source× Conc. 6 2.398 0.060
Error 24

Notes.
Significant p values (<0.05) are highlighted in bold.
d.f., Degree of freedom.

to avoid chemical cues from mangrove A. marina and saltmarsh cordgrass S. alterniflora at
relatively high concentrations (i.e., 2 g l−1 in this study).

The use of chemical cues was documented in examples of marine decapod crustaceans
and fish (Havel & Fuiman, 2016; Foretich et al., 2017; Hinojosa et al., 2018; Arvedlund &
Kavanagh, 2009). Horseshoe crabs are known to possess a variety of chemoreceptors on
the gills, flabellum, chilaria and walking legs, which would respond to oxygen in seawater
and varying chemical cues associated with food (Quinn, Paradise & Atema, 1998;Mittmann
& Scholtz, 2001; Saunders et al., 2010). In Cape Cod, U.S.A., L. polyphemus were observed
to locate their preferred food, Mya arenaria, which were completely buried within the
sediment (Smith, 1953). There is also evidence of chemical cue use by male L. polyphemus
in locating spawning females. Hassler & Brockmann (2001) found that a cement model
with conditioned seawater collected from spawning females was more attractive to males.
Previous studies also demonstrated that L. polyphemus would use other sensory cues in
addition to chemical cues to adapt to the overall complexity of signals in coastal and
estuarine environments. The use of visual cues enables male L. polyphemus to see and
respond to females at night (Barlow, Ireland & Kass, 1982;Herzog, Powers & Barlow, 1996),
and pair up with larger females (Hassler & Brockmann, 2001; Barlow & Powers, 2003).

Relatively little is known about the use of multisensory cues by larvae and juvenile
horseshoe crabs to identify preferred habitats. Limulus polyphemus larvae were noted to be
more active at nighttime and positively phototactic to dim light sources such as moonlight
(Rudloe, 1979; Botton & Loveland, 2003). The major releases of hatched larvae from the
nesting sites are shown to be associated with high water conditions such as hydration,
hypoosmotic shock and agitation (Ehlinger & Tankersley, 2003; Botton, Tankersley &
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Figure 3 Movement behaviors (mean± standard deviation) of juvenile T. tridentatus exposed to
varying habitat chemical cues. The data were tested by two-way ANOVA, followed by multiple post hoc
Tukey tests with Bonferroni adjustments. Different lowercase letters represent statistical differences
(p < 0.05) among vegetation sources at the same concentration, whereas different capital letters
indicate significant differences among concentrations of individual source (A). Since only source and
concentration were noted to affect juvenile movement time (B) and the largest distance (C), respectively,
the statistical differences among treatment groups are indicated by different lowercase letters.

Full-size DOI: 10.7717/peerj.14465/fig-3
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Loveland, 2010; Kuang et al., 2022). These exogenous cues are possibly detected by
mechanoreceptors available on the entire surface of prosoma, spines and walking legs
(Wyse, 1971), to facilitate the dispersal of larvae away from the spawning locations. Our
results, together with previous studies on L. polyphemus (Medina & Tankersley, 2010;
Butler & Tankersley, 2020), suggest that chemical cues are involved in the settlement and
habitat selection process. Horseshoe crab larvae and juveniles were more directed toward
chemical cues from seagrasses (Medina & Tankersley, 2010; Butler & Tankersley, 2020).
The responses were perceived as a shelter-seeking behavior, since high-density juvenile T.
tridentatus populations in the northern Beibu Gulf, China were found in areas of seagrass
patches, mainly Halophila species (Xie et al., 2020). Apart from providing refuge from
predation, other studies also revealed that the juveniles predominantly assimilated energy
from seagrass as basal production sources in the food web (Kwan, Cheung & Shin, 2015;
Fan et al., 2017; Kwan et al., 2021). However, it is rare to find juvenile Asian horseshoe
crabs near S. alterniflora in the field, even though the invasive plant has expanded rapidly
throughout the Chinese coastline (Meng et al., 2020), and highly overlapped with horseshoe
crab habitats (Kwan, Cheung & Shin, 2015;Xie et al., 2020;Kwan et al., 2021). Our data also
showed that juvenile T. tridentatus showed stronger preferences for the native H. beccarii
habitat over the one with invasive S. alterniflora.

Although not addressed in our study, biofilm available on the plants and other substrata
can also act as settlement cues for a broad variety of marine invertebrate larvae, including
mollusks (Liang et al., 2020), crustaceans (Siddik & Satheesh, 2019), polychaetes (Freckelton
et al., 2022), gastropods (La Marca et al., 2018), cnidarians (Petersen et al., 2021) and
echinoderms (Huggett et al., 2006). Marine biofilms are complex, heterogenic microbial
communities, mainly bacteria and diatoms, surrounded by a matrix of extracellular
polymeric substances (Antunes, Leão & Vasconcelos, 2019). Larval settlement responses to
different bacteria can be species-specific. Similarly, the bacterial community on the surfaces
and/or roots of habitat plants can also be important as settlement and behavioral cues for
early-stage T. tridentatus. While the role of bacteria in larval settlement of horseshoe crabs
is currently unclear, their larvae and early-stage juveniles are known to feed primarily on
sedimentary organic matter (Gaines et al., 2002; Kwan et al., 2021), which is dominated by
benthic diatoms (e.g., Naviculaceae and Cymbellaceae in Beibu Gulf region, Table S2).
Alternatively, chemical compounds released during the decay processes of coastal plants
may also attract the settlement of marine invertebrate larvae, as seen in several amphipod
species associated with seagrass bed (Edgar, 1992) and the mangrove jellyfish Cassiopea
xamachana (Hofmann, Fitt & Fleck, 1996; Fleck & Fitt, 1999). However, the preparation of
conditioned seawater using dried plant materials in the current study may lower the effects
of live bacteria and decayed plant compounds on settlement behaviors of the early-stage
juvenile T. tridentatus.

In this study, the chemically-mediated orientation and movement behaviors of the
juveniles were generally concentration-dependent. As noted in Fig. 2B, the juveniles
preferred the water containing seagrass chemical cues at a concentration of 0.5 and 1
g l−1. However, the effect on directional choice toward seagrass cue was ceased at 2 g
l−1 and became statistically similar to that observed in control water. The results can be
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interpreted as the movement process of the juveniles seeking settlement habitats (Medina
& Tankersley, 2010): their movements become more directed when the juveniles get closer
to the source, which is indicated by the increased concentration of seagrass chemical
cues. When the concentration is too high (e.g., 2 g l−1 in this study), the juveniles may
perceive the signal as the arrival to the preferred settlement habitats, and therefore their
behavioral responses would become weaker. In contrast, the juveniles exhibited avoidance
behaviors when getting too close to mangrove and saltmarsh cordgrass, as indicated by
selecting the side with control seawater when the source concentrations had reached 2 g l−1.
Other movement behaviors, including reduced time spent on movement and/or shorter
displacement, also recorded a similar trend (Figs. 2D and 3A). A possible explanation for
such avoidance behaviors is that the densely vegetated saltmarsh cordgrass and mangrove
areas have slower water movement and accumulation of the fine-grained, poorly drained
substratum, which would result in higher concentrations of organic matter and hydrogen
sulfide in the areas (Wang et al., 2015; Rossi et al., 2019b; Su et al., 2020; Li et al., 2021).
A recent study in the Beibu Gulf region also demonstrated that the Spartina occupation
reduced the diversity of macroinvertebrate assemblages on intertidal flats (Su et al., 2020),
and therefore may affect the availability of food sources for the juveniles (Kwan et al.,
2021). The presence of high tannin, phenolics and other plant defensive compounds in
A. marina and S. alterniflora extracts (Zhou et al., 2010; Zhang et al., 2021) were found to
negatively affect benthic invertebrates (Alongi, 1987; Lee, 1999), probably also reducing the
rheotaxis of juvenile T. tridentatus toward these vegetations.

While the induction by a single source of vegetation cues never exists in the marine
environment, and the actual contribution of these factors in the field is poorly understood,
similar laboratory experiments are common and useful to investigate the mechanism of
larval settlement and habitat selection in marine invertebrates (Suárez-Rodríguez, Kruesi
& Alcaraz, 2019; Gravinese et al., 2020; Brooker et al., 2022). For example, Jensen & Morse
(1990) identified an inductive organic molecule that induced larval settlement in marine
polychaete Phragmatopoma californica in the laboratory and also triggered the same
processes in the ocean. Previous research on horseshoe crabs, to the best of our knowledge,
has not compared the potential behavioral difference between hatchery-bred individuals
and those in the field. However, given that horseshoe crab populations are threatened
and even endangered across the distribution range, previous studies suggest the use of
artificially cultured horseshoe crabs is useful to explain the habitat selection mechanisms
and distribution patterns of the wild populations (e.g., Medina & Tankersley, 2010; Hieb
et al., 2015; Kwan et al., 2020; Chan et al., 2022). Apart from this, horseshoe crabs are also
likely to use multiple sensory cues, particularly visual cues, in settlement habitat selection.
As the entire exclusion of the multisensory factors is challenging, in this study, we can
observe some discrepancies in the juvenile orientation results. In Fig. 2, the juveniles
showed (1) avoidance behavior toward mangrove A. marine cues at 2.00 g l−1, but not at
0.25, 0.50 and 1.00 g l−1; and (2) there is neither preference nor avoidance of cordgrass
S. alterniflora except at the highest concentration of 2.00 g l−1. Therefore, consideration
of the simultaneous use of multiple sensory cues is needed in horseshoe crabs to make
further conclusions on the process and mechanism of juvenile habitat selections. Another
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possibility of the discrepancies is due to the lower resolution of orientation data compared
to the other behavioral parameters: multiple video recordings from a group of juveniles
were required to obtain each percentage orientation sample value, but only one video
recording per juvenile would be needed to collect each of the other behavioral parameter
values.

Collectively, our results demonstrated the differential orientation behaviors of juveniles
between seagrass and mangrove/cordgrass chemical cues, which may provide useful
navigation to juvenile T. tridentatus to identify and settle on the upper intertidal flats
adjacent to seagrass habitats, and avoid getting too close to densely vegetated areas of
mangroves and saltmarsh cordgrass. The results of nursery habitat selection can maximize
the chance to obtain high-quality food and avert adverse environmental conditions, and
thereby increasing the survival rate of the juveniles. Additional emphasis on mating, food
searching and predation avoidance should also be addressed in T. tridentatus and other
Asian species to make further conclusions on the role of chemical cues in horseshoe crabs.
From a management perspective, preserving coastal and estuarine habitats, particularly
those with seagrass beds, should be prioritized in management measures for conservation
of the declining Asian horseshoe crab populations. Active seagrass restoration in the upper
and middle portion of intertidal areas can also benefit Asian horseshoe crab conservation
by providing more suitable nursery habitats for shelter and basal production sources in the
juvenile food web.

CONCLUSIONS
Our findings demonstrated that early-stage juvenile T. tridentatus are capable of detecting
and responding to varying sources of habitat vegetation. Positive rheotaxis was exhibited in
the presence of seagrassH. beccarii cue at 0.5 and 1 g l−1, but juveniles avoidedmangrove A.
marina and invasive saltmarsh cordgrass S. alterniflora cues when the concentrations were
too high at 2 g l−1. Juvenile displacement was also significantly reduced in water containing
S. alterniflora cue at 1 and 2 g l−1. These behaviors may help guide juveniles to high-quality
settlement habitats, as seagrass is known to serve as basal production sources in the T.
tridentatus food web, as well as prevent juveniles from getting too close to themangrove and
saltmarsh cordgrass, which are generally higher in organic matter and hydrogen sulfide.
The present study provided valuable evidence on the scope of larval dispersal and habitat
selection mediated by habitat chemical cues, which is useful to improve the management
efforts for the declining Asian horseshoe crab populations.
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